SlideShare a Scribd company logo
Soumettre la recherche
Mettre en ligne
S’identifier
S’inscrire
20070702 Text Categorization
Signaler
midi
Suivre
10 Jul 2007
•
0 j'aime
•
1,134 vues
1
sur
37
20070702 Text Categorization
10 Jul 2007
•
0 j'aime
•
1,134 vues
Télécharger maintenant
Télécharger pour lire hors ligne
Signaler
Formation
Technologie
the 16th chapter of the book: foundation of statistical natural language processing
midi
Suivre
Recommandé
Text categorization as graph
Harry Potter
399 vues
•
44 diapositives
Text Classification/Categorization
Oswal Abhishek
267 vues
•
35 diapositives
Text categorization
Phuong Nguyen
2.9K vues
•
55 diapositives
Text categorization
KU Leuven
12.6K vues
•
51 diapositives
Text classification using Text kernels
Dev Nath
3.6K vues
•
42 diapositives
Text Categorization Using Improved K Nearest Neighbor Algorithm
IJTET Journal
796 vues
•
4 diapositives
Contenu connexe
Tendances
Presentation on Text Classification
Sai Srinivas Kotni
1K vues
•
13 diapositives
Tdm probabilistic models (part 2)
KU Leuven
1.7K vues
•
66 diapositives
Lec 4,5
alaa223
1.1K vues
•
21 diapositives
Probabilistic Retrieval Models - Sean Golliher Lecture 8 MSU CSCI 494
Sean Golliher
1.2K vues
•
37 diapositives
Mapping Subsets of Scholarly Information
Paul Houle
551 vues
•
10 diapositives
Data Mining: Concepts and Techniques — Chapter 2 —
Salah Amean
7K vues
•
68 diapositives
Tendances
(20)
Presentation on Text Classification
Sai Srinivas Kotni
•
1K vues
Tdm probabilistic models (part 2)
KU Leuven
•
1.7K vues
Lec 4,5
alaa223
•
1.1K vues
Probabilistic Retrieval Models - Sean Golliher Lecture 8 MSU CSCI 494
Sean Golliher
•
1.2K vues
Mapping Subsets of Scholarly Information
Paul Houle
•
551 vues
Data Mining: Concepts and Techniques — Chapter 2 —
Salah Amean
•
7K vues
Cluster analysis
Hohai university
•
12.1K vues
Deep Learning for Search
Bhaskar Mitra
•
400 vues
Ir models
Ambreen Angel
•
2K vues
Topic Modeling
Karol Grzegorczyk
•
6.4K vues
Chapter 11 cluster advanced : web and text mining
Houw Liong The
•
1.6K vues
Latent dirichletallocation presentation
Soojung Hong
•
993 vues
Cluster Analysis
SSA KPI
•
6.5K vues
Capter10 cluster basic
Houw Liong The
•
1.5K vues
Deep Learning for Search
Bhaskar Mitra
•
1.2K vues
3.1 clustering
Krish_ver2
•
9.9K vues
Learning to Rank - From pairwise approach to listwise
Hasan H Topcu
•
3.7K vues
10 clusbasic
JoonyoungJayGwak
•
90 vues
Introduction to Clustering algorithm
hadifar
•
2K vues
Boolean,vector space retrieval Models
Primya Tamil
•
5.8K vues
En vedette
Text Categorization
cympfh
489 vues
•
33 diapositives
Text categorization with Lucene and Solr
Tommaso Teofili
14.2K vues
•
30 diapositives
Tutorial on Text Categorization, EACL, 2003
Jose Maria Gomez Hidalgo
1.5K vues
•
57 diapositives
NLP for Robotics
University of Colorado at Boulder
2.2K vues
•
13 diapositives
Textmining Predictive Models
guest0edcaf
1.3K vues
•
19 diapositives
[ppt]
butest
585 vues
•
28 diapositives
En vedette
(20)
Text Categorization
cympfh
•
489 vues
Text categorization with Lucene and Solr
Tommaso Teofili
•
14.2K vues
Tutorial on Text Categorization, EACL, 2003
Jose Maria Gomez Hidalgo
•
1.5K vues
NLP for Robotics
University of Colorado at Boulder
•
2.2K vues
Textmining Predictive Models
guest0edcaf
•
1.3K vues
[ppt]
butest
•
585 vues
It
cympfh
•
209 vues
Text categorization
Nguyen Quang
•
540 vues
Text categorization using Rough Set
Sreekumar Biswas
•
1.8K vues
[DL Hacks] Learning Transferable Features with Deep Adaptation Networks
Yusuke Iwasawa
•
5K vues
Text Classification/Categorization
Oswal Abhishek
•
1.2K vues
Text classification
James Wong
•
2.7K vues
Chainerを使ったらカノジョができたお話
Hiroki Yamamoto
•
2.2K vues
NLP
Girish Khanzode
•
9.4K vues
Text clustering
KU Leuven
•
14.5K vues
Text categorization
Shubham Pahune
•
1.7K vues
ICML2016読み会 概要紹介
Kohei Hayashi
•
4.2K vues
Icml読み会 deep speech2
Jiro Nishitoba
•
7.9K vues
Meta-Learning with Memory Augmented Neural Network
Yusuke Watanabe
•
14.7K vues
ベイジアンネットとレコメンデーション -第5回データマイニング+WEB勉強会@東京
Koichi Hamada
•
23.5K vues
Similaire à 20070702 Text Categorization
Jörg Stelzer
butest
818 vues
•
42 diapositives
Machine Learning and Statistical Analysis
butest
468 vues
•
27 diapositives
Machine Learning and Statistical Analysis
butest
278 vues
•
27 diapositives
Machine Learning and Statistical Analysis
butest
201 vues
•
27 diapositives
Machine Learning and Statistical Analysis
butest
268 vues
•
27 diapositives
Machine Learning and Statistical Analysis
butest
280 vues
•
27 diapositives
Similaire à 20070702 Text Categorization
(20)
Jörg Stelzer
butest
•
818 vues
Machine Learning and Statistical Analysis
butest
•
468 vues
Machine Learning and Statistical Analysis
butest
•
278 vues
Machine Learning and Statistical Analysis
butest
•
201 vues
Machine Learning and Statistical Analysis
butest
•
268 vues
Machine Learning and Statistical Analysis
butest
•
280 vues
Machine Learning and Statistical Analysis
butest
•
232 vues
Machine Learning and Statistical Analysis
butest
•
279 vues
ppt
butest
•
1.8K vues
Machine learning and Neural Networks
butest
•
843 vues
Lect4
sumit621
•
1.5K vues
Classifiers
Ayurdata
•
110 vues
Machine Learning: Decision Trees Chapter 18.1-18.3
butest
•
1.2K vues
nnml.ppt
yang947066
•
10 vues
Machine Learning: Foundations Course Number 0368403401
butest
•
502 vues
DWDM-AG-day-1-2023-SEC A plus Half B--.pdf
ChristinaGayenMondal
•
4 vues
[ppt]
butest
•
265 vues
[ppt]
butest
•
602 vues
Discovering Novel Information with sentence Level clustering From Multi-docu...
irjes
•
316 vues
lecture_mooney.ppt
butest
•
358 vues
Dernier
Time management presentation.pptx
ssuser534f79
49 vues
•
23 diapositives
WGPC Scoring Rubric TechSoup.pdf
TechSoup
68 vues
•
2 diapositives
Ethernet.ppt
DrTThendralCompSci
49 vues
•
30 diapositives
Being at an RC: Expectations and Nitty-Gritty of Presentation Techniques, A R...
Assoc. Prof. Dr. Vinod Kumar Kanvaria
157 vues
•
10 diapositives
Info Session on Hackathons
GDSCCVR
495 vues
•
22 diapositives
The Civil War in One Day v2.pptx
Matthew Caggia
57 vues
•
23 diapositives
Dernier
(20)
Time management presentation.pptx
ssuser534f79
•
49 vues
WGPC Scoring Rubric TechSoup.pdf
TechSoup
•
68 vues
Ethernet.ppt
DrTThendralCompSci
•
49 vues
Being at an RC: Expectations and Nitty-Gritty of Presentation Techniques, A R...
Assoc. Prof. Dr. Vinod Kumar Kanvaria
•
157 vues
Info Session on Hackathons
GDSCCVR
•
495 vues
The Civil War in One Day v2.pptx
Matthew Caggia
•
57 vues
'RAY'-volution (Akademos-2021).pdf
AshishBagani2
•
299 vues
1. Introduction to human body.pptx
AbhiDabra
•
602 vues
[English version] Fintech Edu Brochures - 20232024 (1080 × 1080 px).pdf
ChristinaFortunova
•
88 vues
Expectation from Being a Postgraduate Student and Life Strategy as A Research...
BC Chew
•
801 vues
Wireless LANs PPT.ppt
DrTThendralCompSci
•
53 vues
Simple Past Tense IBI FDK 23.pptx
LBB. Mr. Q
•
83 vues
Accessibility Overlays - the policy perspective
Roberto Scano
•
55 vues
The Parts of The SpeechPP.pdf
NetziValdelomar1
•
90 vues
NETWORK LAYER.ppt
DrTThendralCompSci
•
104 vues
[GDSC-GNIOT] Google Cloud Study Jams Day 2- Cloud AI GenAI Overview.pptx
OWAISSALAUDDINKHAN
•
92 vues
Simple Past Tense SM.pptx
LBB. Mr. Q
•
78 vues
How to Use a “Grants Scorecard” to Create Winning Proposals.pdf
TechSoup
•
97 vues
Economic Development in Information and AI Era: Experiences and Expectations
Chinnasamy Muthuraja
•
56 vues
9.14.23 Historical and Political Definitions of Citizenship and Belonging.pptx
MaryPotorti1
•
307 vues
20070702 Text Categorization
1.
Text Categorization Chapter
16 Foundations of Statistical Natural Language Processing
2.
3.
4.
5.
6.
7.
8.
9.
10.
E.g. A
trained decision tree for category “earnings” Doc = {cts=1, net =3} Node1 7681 articles P(c|n1) = 0.3000 split: cts value: 2 Node2 5977 articles P(c|n2) = 0.116 split: net value: 1 Node5 1704 articles P(c|n5) = 0.943 split: vs value: 2 Node3 5436 articles P(c|n3) = 0.050 Node4 541 articles P(c|n4) = 0.649 Node6 301 articles P(c|n6) = 0.694 Node7 1403 articles P(c|n7) = 0.996 cts < 2 cts >= 2 net<1 Net>= 1 vs <2 vs >= 2
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
E.g. w x
x w+x s’ s Yes No
32.
33.
34.
35.
36.
37.
Thanks!