SlideShare a Scribd company logo
1 of 83
Download to read offline
Extra Section
                   Synthetic Division



Fo r us e w it h li nea r fact ors
Warm-up
          Divide.
(3x + 2x − x + 3) ÷ (x − 3)
   3     2
Warm-up
                        Divide.
           (3x + 2x − x + 3) ÷ (x − 3)
                 3    2




x − 3 3x + 2x − x + 3
       3     2
Warm-up
                         Divide.
              (3x + 2x − x + 3) ÷ (x − 3)
                   3    2

          2
     3x
x − 3 3x + 2x − x + 3
          3    2
Warm-up
                         Divide.
              (3x + 2x − x + 3) ÷ (x − 3)
                   3    2

          2
     3x
x − 3 3x + 2x − x + 3
          3    2

   −(3x − 9x )
          3    2
Warm-up
                              Divide.
               (3x + 2x − x + 3) ÷ (x − 3)
                        3    2

          2
     3x
x − 3 3x + 2x − x + 3
          3     2

   −(3x − 9x )
          3     2


              11x − x
                    2
Warm-up
                           Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3    2

     3x +11x
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2
Warm-up
                           Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3    2

     3x +11x
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
              −(32x − 96)
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
              −(32x − 96)
                                 99
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2
                                  3x + 11x + 32, R : 99
                                      2

           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
              −(32x − 96)
                                 99
Rational Roots Theorem
Rational Roots Theorem

  Let p be all factors of the leading
coefficient and q be all factors of the
 constant in any polynomial. Then
 p/q gives all possible roots of the
             polynomial.
Synthetic Division
Synthetic Division


Another way to divide polynomials, without the
use of variables
Synthetic Division


Another way to divide polynomials, without the
use of variables

Only works if you’re dividing by a linear factor
Synthetic Division


Another way to divide polynomials, without the
use of variables

Only works if you’re dividing by a linear factor

Allows for us to test whether a possible root is an
actual zero
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
Example 1
Determine whether 1 is a root of
         4x − 3x + x + 5
           6    4   2




   1 4 0 −3 0 1 0 5

     4
Example 1
Determine whether 1 is a root of
         4x − 3x + x + 5
           6    4   2




   1 4 0 −3 0 1 0 5

     4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4
     4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4
     4 4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4
     4 4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4
     4 4  1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1
     4 4  1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1
     4 4  1 1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1
     4 4  1 1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1
     4 4  1 1 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2
     4 4  1 1 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2
     4 4  1 1 2 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2 2
     4 4  1 1 2 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2 2
     4 4  1 1 2 2 7
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2 2
     4 4  1 1 2 2 7
Example 1
  Determine whether 1 is a root of
         4x − 3x + x + 5
             6       4       2




      1 4 0 −3 0 1 0 5
          4 4 1 1 2 2
        4 4  1 1 2 2 7


4x + 4x + x + x + 2x + 2, R : 7
  5      4       3       2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3      2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3      2

                              5
                 4x − 5 → x − 4
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5

                   4
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                      5
                   4
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                      5
                   4   -2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5
                      5 −2
                   4   -2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                   5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5
                      5 −2
                              27
                   4   -2 −   2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                   5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5 135
                      5 −2 − 8
                              27
                   4   -2 −   2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                   5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5 135
                      5 −2 − 8
                              27       95
                   4   -2 −   2
                                   −   8
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                     5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5 135
                      5 −2 − 8
                                27       95
                   4   -2 −     2
                                     −   8

                           27                 95
           4x − 2x −
              2
                           2
                                ,R:−          8
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3      2
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3      2


                3x − 2 → x −   2
                               3
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3        2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6

                   6
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
                       4
                   6
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
                       4
                   6       -12
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
                       4 -8
                   6       -12
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −    2
                                   3

               2
               3   6 −16 17 −6
                       4 -8
                   6       -12 9
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −    2
                                   3

               2
               3   6 −16 17 −6
                       4 -8 6
                   6       -12 9
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −    2
                                   3

               2
               3   6 −16 17 −6
                       4 -8 6
                   6       -12 9       0
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3            2


                    3x − 2 → x −    2
                                    3

                2
                3   6 −16 17 −6
                        4 -8 6
                    6       -12 9       0
               6x − 12x + 9, R : 0
                    2
Factoring a Quadratic
Factoring a Quadratic

Multiply a and c
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values

Group first 2 and last 2 terms
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values

Group first 2 and last 2 terms

Factor out the GCF of each
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values

Group first 2 and last 2 terms

Factor out the GCF of each

Factors: (Stuff inside)(Stuff outside)
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2


 2i−6
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2


 2i−6 = −12
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2


 2i−6 = −12
   = 4(−3)
Example 4
                   Factor.
a. 2x + x − 6
      2
                             b. 4x − 19x + 12
                                  2


 2i−6 = −12
    = 4(−3)
2x + 4x − 3x − 6
  2
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                       4i12 = 48
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                       4i12 = 48
      = 4(−3)                       = (−16)(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                       4i12 = 48
      = 4(−3)                         = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                  4x − 16x − 3x + 12
                                    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                        4i12 = 48
      = 4(−3)                         = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                  4x − 16x − 3x + 12
                                    2



(2x + 4x) + (−3x − 6)
   2
                              (4x − 16x) + (−3x + 12)
                                  2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                    b. 4x − 19x + 12
                                         2


    2i−6 = −12                          4i12 = 48
      = 4(−3)                          = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                   4x − 16x − 3x + 12
                                     2



(2x + 4x) + (−3x − 6)
   2
                              (4x − 16x) + (−3x + 12)
                                    2


2x(x + 2) − 3(x + 2)              4x(x − 4) − 3(x − 4)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                    b. 4x − 19x + 12
                                         2


    2i−6 = −12                          4i12 = 48
      = 4(−3)                          = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                   4x − 16x − 3x + 12
                                     2



(2x + 4x) + (−3x − 6)
   2
                              (4x − 16x) + (−3x + 12)
                                    2


2x(x + 2) − 3(x + 2)              4x(x − 4) − 3(x − 4)
  (x + 2)(2x − 3)                   (x − 4)(4x − 3)
Homework
Homework


 Worksheet!

More Related Content

What's hot

Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functionsdionesioable
 
Polynomials and factoring
Polynomials and factoringPolynomials and factoring
Polynomials and factoringShilpi Singh
 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomialsNuch Pawida
 
Mat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curvesMat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curvesGlenSchlee
 
Polynomial function
Polynomial functionPolynomial function
Polynomial functionmaricel mas
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoringelem-alg-sample
 
Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremJohn Rome Aranas
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomialsPaco Marcos
 
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...magnesium121
 
Factoring Polynomials to find its zeros
Factoring Polynomials to find its zerosFactoring Polynomials to find its zeros
Factoring Polynomials to find its zerosDaisy933462
 
Punnett squares presentation teachership academy
Punnett squares presentation teachership academyPunnett squares presentation teachership academy
Punnett squares presentation teachership academyBeth819
 
Synthetic Division
Synthetic DivisionSynthetic Division
Synthetic Divisionscnbmitchell
 
Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on PolynomialsJeramy Donovan
 

What's hot (20)

Factoring
FactoringFactoring
Factoring
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
 
Polynomials and factoring
Polynomials and factoringPolynomials and factoring
Polynomials and factoring
 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomials
 
Mat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curvesMat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curves
 
Polynomial function
Polynomial functionPolynomial function
Polynomial function
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
 
Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theorem
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
 
Factoring Polynomials to find its zeros
Factoring Polynomials to find its zerosFactoring Polynomials to find its zeros
Factoring Polynomials to find its zeros
 
Polynomial equations
Polynomial equationsPolynomial equations
Polynomial equations
 
0303 ch 3 day 3
0303 ch 3 day 30303 ch 3 day 3
0303 ch 3 day 3
 
1050 text-bop
1050 text-bop1050 text-bop
1050 text-bop
 
Punnett squares presentation teachership academy
Punnett squares presentation teachership academyPunnett squares presentation teachership academy
Punnett squares presentation teachership academy
 
Synthetic Division
Synthetic DivisionSynthetic Division
Synthetic Division
 
9-5 Notes
9-5 Notes9-5 Notes
9-5 Notes
 
Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on Polynomials
 
Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 

Similar to Synthetic Division

Notes 12.1 identifying, adding & subtracting polynomials
Notes 12.1   identifying, adding & subtracting polynomialsNotes 12.1   identifying, adding & subtracting polynomials
Notes 12.1 identifying, adding & subtracting polynomialsLori Rapp
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Matthew Leingang
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
AA Section 8-8
AA Section 8-8AA Section 8-8
AA Section 8-8Jimbo Lamb
 
Algebra 2 Section 1-7
Algebra 2 Section 1-7Algebra 2 Section 1-7
Algebra 2 Section 1-7Jimbo Lamb
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational formLily Maryati
 
Calculo Thomas (Solutions).pdf
Calculo Thomas  (Solutions).pdfCalculo Thomas  (Solutions).pdf
Calculo Thomas (Solutions).pdfadriano65054
 
AA Section 8-7
AA Section 8-7AA Section 8-7
AA Section 8-7Jimbo Lamb
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at InfinityMatthew Leingang
 
AA Section 7-2/7-3
AA Section 7-2/7-3AA Section 7-2/7-3
AA Section 7-2/7-3Jimbo Lamb
 
AA Section 5-3
AA Section 5-3AA Section 5-3
AA Section 5-3Jimbo Lamb
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6Jimbo Lamb
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressionsking_danickus
 
Implicit Differentiation, Part 2
Implicit Differentiation, Part 2Implicit Differentiation, Part 2
Implicit Differentiation, Part 2Pablo Antuna
 

Similar to Synthetic Division (20)

9-9 Notes
9-9 Notes9-9 Notes
9-9 Notes
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Expand brackets 3
Expand brackets 3Expand brackets 3
Expand brackets 3
 
Notes 12.1 identifying, adding & subtracting polynomials
Notes 12.1   identifying, adding & subtracting polynomialsNotes 12.1   identifying, adding & subtracting polynomials
Notes 12.1 identifying, adding & subtracting polynomials
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
AA Section 8-8
AA Section 8-8AA Section 8-8
AA Section 8-8
 
Algebra 2 Section 1-7
Algebra 2 Section 1-7Algebra 2 Section 1-7
Algebra 2 Section 1-7
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
Calculo Thomas (Solutions).pdf
Calculo Thomas  (Solutions).pdfCalculo Thomas  (Solutions).pdf
Calculo Thomas (Solutions).pdf
 
AA Section 8-7
AA Section 8-7AA Section 8-7
AA Section 8-7
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
 
Em04 il
Em04 ilEm04 il
Em04 il
 
AA Section 7-2/7-3
AA Section 7-2/7-3AA Section 7-2/7-3
AA Section 7-2/7-3
 
AA Section 5-3
AA Section 5-3AA Section 5-3
AA Section 5-3
 
Polinomials division
Polinomials divisionPolinomials division
Polinomials division
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
 
Implicit Differentiation, Part 2
Implicit Differentiation, Part 2Implicit Differentiation, Part 2
Implicit Differentiation, Part 2
 

More from Jimbo Lamb

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5Jimbo Lamb
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4Jimbo Lamb
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1Jimbo Lamb
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3Jimbo Lamb
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2Jimbo Lamb
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1Jimbo Lamb
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9Jimbo Lamb
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8Jimbo Lamb
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6Jimbo Lamb
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5Jimbo Lamb
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4Jimbo Lamb
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3Jimbo Lamb
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2Jimbo Lamb
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1Jimbo Lamb
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5Jimbo Lamb
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4Jimbo Lamb
 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2Jimbo Lamb
 

More from Jimbo Lamb (20)

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2
 

Recently uploaded

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 

Recently uploaded (20)

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 

Synthetic Division

  • 1. Extra Section Synthetic Division Fo r us e w it h li nea r fact ors
  • 2. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2
  • 3. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 x − 3 3x + 2x − x + 3 3 2
  • 4. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 2 3x x − 3 3x + 2x − x + 3 3 2
  • 5. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 2 3x x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2
  • 6. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 2 3x x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2
  • 7. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2
  • 8. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2
  • 9. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3
  • 10. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3
  • 11. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3 −(32x − 96)
  • 12. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3 −(32x − 96) 99
  • 13. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 3x + 11x + 32, R : 99 2 11x − x 2 −(11x − 33x) 2 32x + 3 −(32x − 96) 99
  • 15. Rational Roots Theorem Let p be all factors of the leading coefficient and q be all factors of the constant in any polynomial. Then p/q gives all possible roots of the polynomial.
  • 17. Synthetic Division Another way to divide polynomials, without the use of variables
  • 18. Synthetic Division Another way to divide polynomials, without the use of variables Only works if you’re dividing by a linear factor
  • 19. Synthetic Division Another way to divide polynomials, without the use of variables Only works if you’re dividing by a linear factor Allows for us to test whether a possible root is an actual zero
  • 20. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2
  • 21. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5
  • 22. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5
  • 23. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4
  • 24. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4
  • 25. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4
  • 26. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 4
  • 27. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 4 4
  • 28. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 4 4 1
  • 29. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 4 4 1
  • 30. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 4 4 1 1
  • 31. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 4 4 1 1
  • 32. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 4 4 1 1 2
  • 33. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 4 4 1 1 2
  • 34. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 4 4 1 1 2 2
  • 35. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2
  • 36. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2 7
  • 37. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2 7
  • 38. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2 7 4x + 4x + x + x + 2x + 2, R : 7 5 4 3 2
  • 39. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2
  • 40. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4
  • 41. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5
  • 42. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 4
  • 43. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 4
  • 44. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 4 -2
  • 45. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 5 −2 4 -2
  • 46. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 5 −2 27 4 -2 − 2
  • 47. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 135 5 −2 − 8 27 4 -2 − 2
  • 48. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 135 5 −2 − 8 27 95 4 -2 − 2 − 8
  • 49. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 135 5 −2 − 8 27 95 4 -2 − 2 − 8 27 95 4x − 2x − 2 2 ,R:− 8
  • 50. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2
  • 51. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3
  • 52. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6
  • 53. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 6
  • 54. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 6
  • 55. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 6 -12
  • 56. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 -12
  • 57. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 -12 9
  • 58. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 6 -12 9
  • 59. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 6 -12 9 0
  • 60. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 6 -12 9 0 6x − 12x + 9, R : 0 2
  • 63. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b
  • 64. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values
  • 65. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values Group first 2 and last 2 terms
  • 66. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values Group first 2 and last 2 terms Factor out the GCF of each
  • 67. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values Group first 2 and last 2 terms Factor out the GCF of each Factors: (Stuff inside)(Stuff outside)
  • 68. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2
  • 69. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6
  • 70. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12
  • 71. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3)
  • 72. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2
  • 73. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2
  • 74. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2)
  • 75. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 76. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 77. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 78. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 79. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 (4x − 16x) + (−3x + 12) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 80. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 (4x − 16x) + (−3x + 12) 2 2x(x + 2) − 3(x + 2) 4x(x − 4) − 3(x − 4) (x + 2)(2x − 3)
  • 81. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 (4x − 16x) + (−3x + 12) 2 2x(x + 2) − 3(x + 2) 4x(x − 4) − 3(x − 4) (x + 2)(2x − 3) (x − 4)(4x − 3)