Accueil
Explorer
Soumettre la recherche
Mettre en ligne
S’identifier
S’inscrire
Publicité
G6 m5-c-lesson 12-s
Signaler
mlabuski
Suivre
27 May 2015
•
0 j'aime
0 j'aime
×
Soyez le premier à aimer ceci
afficher plus
•
788 vues
vues
×
Nombre de vues
0
Sur Slideshare
0
À partir des intégrations
0
Nombre d'intégrations
0
Prochain SlideShare
Lessons 12 13 merged
Chargement dans ... 3
1
sur
4
Top clipped slide
G6 m5-c-lesson 12-s
27 May 2015
•
0 j'aime
0 j'aime
×
Soyez le premier à aimer ceci
afficher plus
•
788 vues
vues
×
Nombre de vues
0
Sur Slideshare
0
À partir des intégrations
0
Nombre d'intégrations
0
Télécharger maintenant
Télécharger pour lire hors ligne
Signaler
mlabuski
Suivre
Publicité
Publicité
Publicité
Recommandé
Lessons 12 13 merged
mlabuski
707 vues
•
4 diapositives
G6 m5-c-lesson 13-t
mlabuski
872 vues
•
13 diapositives
G6 m5-c-lesson 13-s
mlabuski
652 vues
•
6 diapositives
Derivation of Simpson's 1/3 rule
HapPy SumOn
12K vues
•
12 diapositives
Simpson's rule of integration
VARUN KUMAR
261 vues
•
9 diapositives
G6 m5-c-lesson 12-t
mlabuski
878 vues
•
16 diapositives
Contenu connexe
Présentations pour vous
(18)
K map
DharmaKumariBhandari
•
24 vues
Geometry unit 7.1
Mark Ryder
•
1.3K vues
Formulas for calculating surface area and volume
Mark Ophaug
•
9.3K vues
Notes 10-3
Kate Nowak
•
284 vues
Msm1 fl ch09_06
M, Michelle Jeannite
•
536 vues
Geometry unit 7.5
Mark Ryder
•
1.2K vues
3.5 color specification system
QC Labs
•
807 vues
Geometry unit 7.4
Mark Ryder
•
2.3K vues
(7) Lesson 8.4
wzuri
•
313 vues
Chapter 3
jbutler1227
•
527 vues
Volume of Prisms
bujols
•
1.7K vues
Geometry unit 7.2
Mark Ryder
•
1.1K vues
Geometry unit 7.3
Mark Ryder
•
1.8K vues
Volume presentation
lsreed
•
3.9K vues
Intro To Formula Project
Kathy Favazza
•
502 vues
Approximate Thin Plate Spline Mappings
Archzilon Eshun-Davies
•
854 vues
Exponents lesson and worksheet
Angela Wang
•
139 vues
Mathematics lecture
FedrickC
•
384 vues
En vedette
(20)
Final exam review sheet # 1 2015
mlabuski
•
2.3K vues
Mid module 1 test review
mlabuski
•
3.7K vues
Exit ticket lessons 1 13 sample solutions
mlabuski
•
2.6K vues
Lesson 5 4 solving equations
mlabuski
•
287 vues
Module 3 lesson 12 & 13
mlabuski
•
664 vues
Mid module 3 review
mlabuski
•
780 vues
Brian Cohen's Introduction to Unpacking The Content Standards Wiki
bcsu81
•
543 vues
Unit 2 lesson 4 solving & writing division equations
mlabuski
•
858 vues
Module 3 lesson 10
mlabuski
•
855 vues
G6 m3-mid-module assessment2
mlabuski
•
1.2K vues
G6 m4-a-lesson 1-t
mlabuski
•
516 vues
Module 3 lesson 12
Erik Tjersland
•
878 vues
End of module 3 assessment review
Erik Tjersland
•
773 vues
Module 1 lesson 16 23 review
mlabuski
•
1.3K vues
End of module 3 review
mlabuski
•
731 vues
G6 m3-mid-module assessment2
mlabuski
•
3.4K vues
Module 3 lesson 11
mlabuski
•
703 vues
Mid module assessment task
mlabuski
•
7.2K vues
Module 4 application problems
Arielle Harvey
•
373 vues
Final exam review sheet # 3 2015
mlabuski
•
1.3K vues
Publicité
Similaire à G6 m5-c-lesson 12-s
(20)
G6 m5-a-lesson 5-s
mlabuski
•
663 vues
Grade 9 Learning Module in Math - Module 1 and 2
R Borres
•
15.7K vues
G6 m5-b-lesson 9-s
mlabuski
•
501 vues
Math module
M.J. Labrador
•
228 vues
Grade 9 Math
Cyrus John Arnaiz
•
9.9K vues
Math 9 (module 1 & 2)
Edilissa Padilla
•
194.4K vues
Math9lmdraft3 140611211236-phpapp02
Heriza Mae
•
388 vues
Mathematics 9
Cansinala High School
•
57.4K vues
module in math 9 sy:2014-2015
Marebel Marabiles
•
4K vues
K TO 12 GRADE 9 LEARNER’S MATERIAL IN MATHEMATICS
LiGhT ArOhL
•
592.3K vues
Math9lmdraft3 140611211236-phpapp02
Jhanine Cordova
•
724 vues
G6 m5-a-lesson 5-s
mlabuski
•
346 vues
G6 m4-c-lesson 7-s
mlabuski
•
416 vues
AПDЯЄÏ ѪAПÏБβΔS Mathematics 9 LM
Andrei Manigbas
•
3.1K vues
G6 m4-f-lesson 22-t
mlabuski
•
371 vues
G6 m5-a-lesson 5-t
mlabuski
•
613 vues
G6 m4-f-lesson 22-t
mlabuski
•
612 vues
G6 m5-a-lesson 1-s
mlabuski
•
301 vues
G6 m5-b-lesson 9-t
mlabuski
•
1.1K vues
G6 m5-a-lesson 1-s
mlabuski
•
383 vues
Plus de mlabuski
(20)
Quiz week 1 & 2 study guide
mlabuski
•
2.6K vues
Quiz week 1 & 2 practice
mlabuski
•
1.8K vues
Welcome to social studies
mlabuski
•
1.5K vues
Team orion supply list 15 16
mlabuski
•
659 vues
Literature letter graphic organizer
mlabuski
•
1.8K vues
Team orion supply list 15 16
mlabuski
•
465 vues
Literature letters revised
mlabuski
•
607 vues
Final exam review sheet # 2 2015
mlabuski
•
5.4K vues
Mod 5 lesson 12 13
mlabuski
•
1.8K vues
Mod 5 lesson 9
mlabuski
•
642 vues
Mod 5 lesson 8
mlabuski
•
737 vues
G6 m5-b-lesson 8-t
mlabuski
•
1K vues
G6 m5-b-lesson 8-s
mlabuski
•
468 vues
G6 m5-b-lesson 8-note sheet
mlabuski
•
359 vues
G6 m5-b-lesson 7-t
mlabuski
•
855 vues
G6 m5-b-lesson 7-s
mlabuski
•
641 vues
Mod 5 l esson 7
mlabuski
•
498 vues
G6 m5-a-lesson 6-t
mlabuski
•
1K vues
G6 m5-a-lesson 6-s
mlabuski
•
285 vues
G6 m5-a-lesson 6 problem set #1 student worksheet
mlabuski
•
1K vues
Publicité
G6 m5-c-lesson 12-s
Lesson 12: From
Unit Cubes to theFormulas for Volume Date: 5/27/15 S.57 57 © 2014 Common Core, Inc. Some rightsreserved. commoncore.org This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM 6•5Lesson 12 Lesson 12: From Unit Cubes to the Formulas for Volume Classwork Example 1 a. Write a numerical expression for the volume of each of the rectangular prisms above. b. What do all of these expressions havein common? What do they represent? c. Rewrite the numerical expressions to showwhat they have in common. d. If we know volume for a rectangular prismas length times width times height, what is another formula for volume that we could use based on these examples? e. What is the area of the basefor all of the rectangular prisms?
Lesson 12: From
Unit Cubes to theFormulas for Volume Date: 5/27/15 S.58 58 © 2014 Common Core, Inc. Some rightsreserved. commoncore.org This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM 6•5Lesson 12 f. Determine the volume of each rectangular prismusingeither method. g. How do the volumes of the firstand second rectangular prisms compare? The volumes of the firstand third? Example 2 The baseof a rectangular prismhas an area of 3 1 4 in2.The height of the prismis 2 1 2 in.Determine the volume of the rectangular prism. Extension A company is creatinga rectangular prismthatmust have a volume of 6 ft3. The company also knows that the area of the basemust be 2 1 2 ft2. How can you usewhat you learned today about volume to determine the height of the rectangular prism?
Lesson 12: From
Unit Cubes to theFormulas for Volume Date: 5/27/15 S.59 59 © 2014 Common Core, Inc. Some rightsreserved. commoncore.org This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM 6•5Lesson 12 Problem Set 1. Determine the volume of the rectangular prism. 2. The area of the base of a rectangular prismis 4 3 4 ft2 and the height is 2 1 3 ft. Determine the volume of the rectangular prism. 3. The length of a rectangular prismis 3 1 2 times as longas the width. The height is 1 4 of the width. The width is 3 cm. Determine the volume. 4. a. Write numerical expressionsin two different ways, and explain whateach reveals. b. Determine the volume of the rectangular prism. 5. An aquariumin the shapeof a rectangular prismhas the followingdimensions: length = 50 cm, width = 25 1 2 cm, height = 30 1 2 cm. a. Write numerical expressionsin two different ways, and explain whateach reveals. b. Determine the volume of the rectangular prism. 𝟕 𝟖 𝐦 𝟏 𝟐 𝐦 𝟏 𝟏 𝟐 𝐦 1 2 3 in. 10 1 2 in. 6 in.
Lesson 12: From
Unit Cubes to theFormulas for Volume Date: 5/27/15 S.60 60 © 2014 Common Core, Inc. Some rightsreserved. commoncore.org This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM 6•5Lesson 12 6. The area of the base in this rectangular prismis fixed at 36 cm2. That means for the varying heights there will be various volumes. a. Complete the tableof values to determine the various heights and volumes. b. Write an equation to represent the relationship in the table. Be sure to define the variables used in the equation. c. What is the unit rate for this proportional relationship? Whatdoes it mean in this situation? 7. The volume of a rectangular prismis 16.328 cm3. The height is 3.14 cm. a. Let 𝐴 represent the area of the baseof the rectangular prism. Writean equation that relates the volume, the area of the base, and the height. b. Solve the equation for 𝐴. Height in Centimeters Volume in Cubic Centimeters 𝟐 𝟕𝟐 𝟑 𝟏𝟎𝟖 𝟏𝟒𝟒 𝟏𝟖𝟎 𝟔 𝟕 𝟐𝟖𝟖 12 cm 3 cm
Publicité