Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Conditional Density Operators in
     Quantum Information

                     M. S. Leifer
             Banff (12th Febr...
Classical Conditional Probability
(Ω, S, µ)                                                µ(A) = 0
                      ...
Quantum Conditional Probability
 In Quantum Theory

     Ω → H Hilbert Space
     S → {closed s-spaces of H}
     -

     ...
Outline



1. Conditional Density Operator

2. Remarks on Conditional Independence

3. Choi-Jamiolkowski Revisited

4. App...
1. Conditional Density Operator
    Classical case: Special cases 2. and 3. - Ω = Ω1 × Ω2

       We’ll generally assume s...
1. Conditional Density Operator
    Can easily embed this into QM case 2, i.e. w.r.t. a tensor product HX ⊗ HY

       Wri...
1. Conditional Density Operator
    A “reasonable” family of generalizations is:

                                        ...
2. Remarks on Conditional Independence
           (∞)
          ρY |X
    For           the natural definition of condition...
2. Remarks on Conditional Independence
    But this is not the “natural” definition of conditional independence for n = 1

...
3. Choi-Jamiolkowsi Revisited
    CJ isomorphism is well known. I want to think of it slightly differently, in
    terms o...
3. Choi-Jamiolkowsi Revisited
    What does it all mean? ρXY ∼ ρX , ρY |X ∼ ρX , EY |X
                               =   ...
3. Choi-Jamiolkowski Revisited
   Lemma: ρ =         pj ρj is an ensemble decomposition of a
                 j
   density...
3. Choi-Jamiolkowski Revisited
   M       M-measurement of ρ

             Input: ρ

                                     ...
3. Choi-Jamiolkowski revisited
                                                   measurement        measurement
         ...
4. Applications

   Relations bet ween different concepts/protocols in quantum
   information, e.g. broadcasting and monog...
5. Open Questions
   Is there a hierarchy of conditional independence relations?



   Operational meaning of conditional ...
Prochain SlideShare
Chargement dans…5
×

Conditional Density Operators in Quantum Information

2 295 vues

Publié le

Talk given at the workshop "Operator Structures in Quantum Information Theory" in Banff in February 2007. Focuses on the results of http://arxiv.org/abs/quant-ph/0606022

Publié dans : Formation, Technologie
  • DOWNLOAD THE BOOK INTO AVAILABLE FORMAT (New Update) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { https://urlzs.com/UABbn } ......................................................................................................................... Download Full EPUB Ebook here { https://urlzs.com/UABbn } ......................................................................................................................... Download Full doc Ebook here { https://urlzs.com/UABbn } ......................................................................................................................... Download PDF EBOOK here { https://urlzs.com/UABbn } ......................................................................................................................... Download EPUB Ebook here { https://urlzs.com/UABbn } ......................................................................................................................... Download doc Ebook here { https://urlzs.com/UABbn } ......................................................................................................................... ......................................................................................................................... ................................................................................................................................... eBook is an electronic version of a traditional print book THE can be read by using a personal computer or by using an eBook reader. (An eBook reader can be a software application for use on a computer such as Microsoft's free Reader application, or a book-sized computer THE is used solely as a reading device such as Nuvomedia's Rocket eBook.) Users can purchase an eBook on diskette or CD, but the most popular method of getting an eBook is to purchase a downloadable file of the eBook (or other reading material) from a Web site (such as Barnes and Noble) to be read from the user's computer or reading device. Generally, an eBook can be downloaded in five minutes or less ......................................................................................................................... .............. Browse by Genre Available eBOOK .............................................................................................................................. Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, CookBOOK, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult, Crime, EBOOK, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, ......................................................................................................................... ......................................................................................................................... .....BEST SELLER FOR EBOOK RECOMMEND............................................................. ......................................................................................................................... Blowout: Corrupted Democracy, Rogue State Russia, and the Richest, Most Destructive Industry on Earth,-- The Ride of a Lifetime: Lessons Learned from 15 Years as CEO of the Walt Disney Company,-- Call Sign Chaos: Learning to Lead,-- StrengthsFinder 2.0,-- Stillness Is the Key,-- She Said: Breaking the Sexual Harassment Story THE Helped Ignite a Movement,-- Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones,-- Everything Is Figureoutable,-- What It Takes: Lessons in the Pursuit of Excellence,-- Rich Dad Poor Dad: What the Rich Teach Their Kids About Money THE the Poor and Middle Class Do Not!,-- The Total Money Makeover: Classic Edition: A Proven Plan for Financial Fitness,-- Shut Up and Listen!: Hard Business Truths THE Will Help You Succeed, ......................................................................................................................... .........................................................................................................................
       Répondre 
    Voulez-vous vraiment ?  Oui  Non
    Votre message apparaîtra ici
  • Soyez le premier à aimer ceci

Conditional Density Operators in Quantum Information

  1. 1. Conditional Density Operators in Quantum Information M. S. Leifer Banff (12th February 2007) quant-ph/0606022 Phys. Rev. A 74, 042310(2006) quant-ph/0611233
  2. 2. Classical Conditional Probability (Ω, S, µ) µ(A) = 0 A, B ∈ S µ (A ∩ B) Prob(B|A) = µ (A) Generally, A and B can be ANY events in the sample space. Special Cases: 1. A is hypothesis, B is obser ved data - Bayesian Updating 2. A andB refer to properties of t wo distinct systems 3. A and B refer to properties of a system at 2 different times - Stochastic Dynamics 2. and 3. - Ω = Ω1 × Ω2
  3. 3. Quantum Conditional Probability In Quantum Theory Ω → H Hilbert Space S → {closed s-spaces of H} - µ → ρ Density operator What is the analog of Prob(B|A) ? Definition should ideally encompass: 1. Conditioning on classical data (measurement-update) 2. Correlations bet ween 2 subsystems w.r.t tensor product 3. Correlations bet ween same system at 2 times (TPCP maps) 4. Correlations bet ween ARBITRARY events, e.g. incompatible obser vables AND BE OPERATIONALLY MEANINGFUL!!!!!
  4. 4. Outline 1. Conditional Density Operator 2. Remarks on Conditional Independence 3. Choi-Jamiolkowski Revisited 4. Applications 5. Open Questions
  5. 5. 1. Conditional Density Operator Classical case: Special cases 2. and 3. - Ω = Ω1 × Ω2 We’ll generally assume s-spaces finite and deal with them by defining integer-valued random variables Ω1 = {X = j}j∈{1,2,...N } Ω2 = {Y = k}k∈{1,2,...M } P (X = j, Y = k) abbreviated to P (X, Y ) f (P (X, Y )) f (P (X = j, Y = k)) abbreviated to X j Marginal P (X) = P (X, Y ) Y P (X, Y ) Conditional P (Y |X) = P (X)
  6. 6. 1. Conditional Density Operator Can easily embed this into QM case 2, i.e. w.r.t. a tensor product HX ⊗ HY Write ρXY = P (X = j, Y = k) |j j|X ⊗ |k k|Y jk Conditional Density operator ρY |X = P (Y = k|X = j) |j j|X ⊗ |k k|Y jk ρY |X = ρ−1 ⊗ IY ρXY Equivalently X where ρX = TrY (ρXY ) and ρX is the Moore-Penrose −1 pseudoinverse. More generally, [ρX ⊗ IY , ρXY ] = 0 so how to generalize the conditional density operator?
  7. 7. 1. Conditional Density Operator A “reasonable” family of generalizations is: n 1 1 1 − 2n − 2n (n) = ⊗ ⊗ IY ρY |X ρX IY ρXY ρX n (∞) (n) Cerf & Adami studied ρY |X = lim ρY |X n→∞ (∞) = exp (log ρXY − (log ρX ) ⊗ IY ) when well-defined. ρY |X Conditional von Neumann entropy (∞) S(Y |X) = S(X, Y ) − S(X) = −Tr ρXY log ρY |X (1) ρY |X which we’ll write ρY |X Many people (including me) have studied Can be characterized as a +ve operator satisfying TrY ρY |X = Isupp(ρX )
  8. 8. 2. Remarks on Conditional Independence (∞) ρY |X For the natural definition of conditional independence is entropic: S(X : Y |Z) = 0 Equivalent to equality in Strong Subadditivity: S(X, Z) + S(Y, Z) ≥ S(X, Y, Z) + S(Z) Ruskai showed it is equivalent to (∞) (∞) = ⊗ IX ρY |XZ ρY |Z Hayden et. al. showed it is equivalent to ρXY Z = HXY Z = pj σXj Z (1) ⊗ τXj Z (2) HXj Z (1) ⊗ HYj Z (1) j j j j j j Surprisingly, it is also equivalent to ρXY Z = ρXZ ρ−1 ρY Z ρXY |Z = ρX|Z ρY |Z Z
  9. 9. 2. Remarks on Conditional Independence But this is not the “natural” definition of conditional independence for n = 1 ρY |XZ = ρY |Z ⊗ IX and ρX|Y Z = ρX|Z ⊗ IY are strictly weaker and inequivalent to each other. Open questions: Is there a hierarchy of conditional independence relations for different values of n ? Do these have any operational significance in general?
  10. 10. 3. Choi-Jamiolkowsi Revisited CJ isomorphism is well known. I want to think of it slightly differently, in terms of conditional density operators Trace Preser ving ρY |X ∼ EY |X : B(HX ) → B(HY ) = Completely Positive TPCP = ρ+ |j k|X ⊗ |j k|X Let |X X jk EY |X → ρY |X direction ρY |X = IX ⊗ EY |X ρ+ |X X ρY |X → EY |X direction EY |X (σX ) = TrXX ρ+ ⊗ ρY |X |X σX X
  11. 11. 3. Choi-Jamiolkowsi Revisited What does it all mean? ρXY ∼ ρX , ρY |X ∼ ρX , EY |X = = Cases 2. and 3. from the intro are already unified in QM, i.e. both experiments Time evolution EY |X Prepare ρXY Prepare ρX can be described simply by specifying a joint state ρXY . Do expressions like Tr (MX ⊗ NY ρXY ) , where MX , NY are POVM elements have any meaning in the time-evolution case?
  12. 12. 3. Choi-Jamiolkowski Revisited Lemma: ρ = pj ρj is an ensemble decomposition of a j density matrix ρ iff there is a POVM M = M (j) s.t. √ (j) √ ρM ρ ρj = pj = Tr M (j) and ρ Tr M (j) ρ −1 −1 = pj ρ (j) Proof sketch: Set M ρj ρ 2 2
  13. 13. 3. Choi-Jamiolkowski Revisited M M-measurement of ρ Input: ρ P (M = j) = Tr M (j) ρ Measurement probabilities: ρ M-preparation of ρ ρ Input: Generate a classical r.v. with p.d.f P (M = j) = Tr M (j) ρ M Prepare the corresponding state: √ (j) √ ρM ρ ρj = Tr M (j) ρ
  14. 14. 3. Choi-Jamiolkowski revisited measurement measurement N N measurement measurement Y Y M N X Y ρXY EY |X ρX ρT X X ρXY X P (M, N ) is the same for any POVMs measurement preparation MT M M and N .
  15. 15. 4. Applications Relations bet ween different concepts/protocols in quantum information, e.g. broadcasting and monogamy of entanglement. Simplified definition of quantum sufficient statistics. Quantum State Pooling. Re-examination of quantum generalizations of Markov chains, Bayesian Net works, etc.
  16. 16. 5. Open Questions Is there a hierarchy of conditional independence relations? Operational meaning of conditional density operator and conditional independence for general n? Temporal joint measurements, i.e. Tr (MXY ρXY ) ? The general quantum conditional probability question. Further applications in quantum information?

×