SlideShare une entreprise Scribd logo
1  sur  27
Télécharger pour lire hors ligne
5555 N.E. Moore Ct.  Hillsboro, Oregon 97124-6421  Phone (503) 268-8000  FAX (503) 268-8347
Internet: http://www.latticesemi.com
GAL®
20V8 Device Datasheet
September 2010
All Devices Discontinued!
Product Change Notifications (PCNs) have been issued to discontinue all devices in this
data sheet.
The original datasheet pages have not been modified and do not reflect those changes.
Please refer to the table below for reference PCN and current product status.
Product Line Ordering Part Number Product Status Reference PCN
GAL20V8B
GAL20V8B-7LP
Discontinued
PCN#06-07
GAL20V8B-7LP
GAL20V8B-10LP
PCN#09-10
GAL20V8B-10LPN
GAL20V8B-15LP
PCN#13-10
GAL20V8B-15LPN
GAL20V8B-25LP
GAL20V8B-25LPN
GAL20V8B-10LPI
PCN#06-07
GAL20V8B-10LPNI
GAL20V8B-15LPI
PCN#09-10
GAL20V8B-15LPNI
GAL20V8B-25LPI
PCN#13-10
GAL20V8B-25LPNI
GAL20V8B-15QP
GAL20V8B-15QPN
GAL20V8B-25QP
GAL20V8B-25QPN
GAL20V8B-20QPI
PCN#09-10
GAL20V8B-20QPNI
GAL20V8B-25QPI
PCN#13-10
GAL20V8B-25QPNI
GAL20V8B-15LJ
GAL20V8B-15LJN
GAL20V8B-25LJ
GAL20V8B-25LJN
GAL20V8B-15LJI
PCN#06-07
GAL20V8B-15LJNI
GAL20V8B-25LJI
PCN#13-10
GAL20V8B-25LJNI
GAL20V8B-15QJ
GAL20V8B-15QJN
5555 N.E. Moore Ct.  Hillsboro, Oregon 97124-6421  Phone (503) 268-8000  FAX (503) 268-8347
Internet: http://www.latticesemi.com
Product Line Ordering Part Number Product Status Reference PCN
GAL20V8B
(Cont’d)
GAL20V8B-25QJ
Discontinued
PCN#13-10
GAL20V8B-25QJN
GAL20V8B-20QJI
PCN#09-10
GAL20V8B-20QJNI
GAL20V8B-25QJI
PCN#13-10
GAL20V8B-25QJNI
GAL20V8C
GAL20V8C-5LJ
PCN#06-07
GAL20V8C-5LJN
GAL20V8C-7LJ
PCN#13-10
GAL20V8C-7LJN
GAL20V8C-10LJ
GAL20V8C-10LJN
GAL20V8C-10LJI
GAL20V8C-10LJNI
GAL20V8
High Performance E2
CMOS PLD
Generic Array Logic™
1
2 28
NC
I/CLK
I
I
I
I
I
I
I
NC NC
NC
GND
I
I
I/OE
I
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
Vcc
I/O/Q
I
I
4
5
7
9
11
12 14 16 18
19
21
23
25
26
PLCC
1
12 13
24I/CLK
I
I
I
I
I
I
I
I
I
I
GND
Vcc
I
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I
I/OE
6
18
GAL20V8
Top View
GAL
20V8
DIP
Copyright © 2006 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject
to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. August 2006
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
20v8_07
Features
• HIGH PERFORMANCE E2
CMOS®
TECHNOLOGY
— 5 ns Maximum Propagation Delay
— Fmax = 166 MHz
— 4 ns Maximum from Clock Input to Data Output
— UltraMOS®
Advanced CMOS Technology
• 50% to 75% REDUCTION IN POWER FROM BIPOLAR
— 75mA Typ Icc on Low Power Device
— 45mA Typ Icc on Quarter Power Device
• ACTIVE PULL-UPS ON ALL PINS
• E2
CELL TECHNOLOGY
— Reconfigurable Logic
— Reprogrammable Cells
— 100% Tested/100% Yields
— High Speed Electrical Erasure (<100ms)
— 20 Year Data Retention
• EIGHT OUTPUT LOGIC MACROCELLS
— Maximum Flexibility for Complex Logic Designs
— Programmable Output Polarity
— Also Emulates 24-pin PAL®
Devices with Full Function/
Fuse Map/Parametric Compatibility
• PRELOAD AND POWER-ON RESET OF ALL REGISTERS
— 100% Functional Testability
• APPLICATIONS INCLUDE:
— DMA Control
— State Machine Control
— High Speed Graphics Processing
— Standard Logic Speed Upgrade
• ELECTRONIC SIGNATURE FOR IDENTIFICATION
• LEAD-FREE PACKAGE OPTIONS
Description
The GAL20V8C, at 5ns maximum propagation delay time, com-
bines a high performance CMOS process with Electrically Eras-
able (E2
) floating gate technology to provide the highest speed
performance available in the PLD market. High speed erase times
(<100ms) allow the devices to be reprogrammed quickly and ef-
ficiently.
The generic architecture provides maximum design flexibility by
allowing the Output Logic Macrocell (OLMC) to be configured by
the user. An important subset of the many architecture configura-
tions possible with the GAL20V8 are the PAL architectures listed
in the table of the macrocell description section. GAL20V8 devices
are capable of emulating any of these PAL architectures with full
function/fuse map/parametric compatibility.
Unique test circuitry and reprogrammable cells allow completeAC,
DC, and functional testing during manufacture. As a result, Lattice
Semiconductor delivers 100% field programmability and function-
ality of all GAL products. In addition, 100 erase/write cycles and
data retention in excess of 20 years are specified.
Functional Block Diagram
Pin Configuration
CLKI
I
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I
I
I
I
I
I
I
I
I
I
I/OE
I/CLK
OE
8
8
8
8
8
8
8
8
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
IMUX
IMUX
PROGRAMMABLE
AND-ARRAY
(64X40)
OLMC
Lead-Free
Package
Options
Available!
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
2
Specifications GAL20V8
Industrial Grade Specifications
GAL20V8 Ordering Information
Conventional Packaging
Commercial Grade Specifications
)sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP
5 3 4 511 JL5-C8V02LAG 1
CCLPdaeL-82
5.7 7 5 511 8V02LAG C JL7- CCLPdaeL-82
511 PL7-B8V02LAG 1
PIDcitsalPniP-42
01 01 7 511 8V02LAG C JL01- CCLPdaeL-82
511 PL01-B8V02LAG PIDcitsalPniP-42
51 21 01 55 PQ51-B8V02LAG PIDcitsalPniP-42
55 JQ51-B8V02LAG CCLPdaeL-82
09 PL51-B8V02LAG PIDcitsalPniP-42
09 JL51-B8V02LAG CCLPdaeL-82
52 51 21 55 PQ52-B8V02LAG PIDcitsalPniP-42
55 JQ52-B8V02LAG CCLPdaeL-82
09 PL52-B8V02LAG PIDcitsalPniP-42
09 JL52-B8V02LAG CCLPdaeL-82
)sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP
01 01 7 031 8V02LAG C IJL01- CCLPdaeL-82
031 IPL01-B8V02LAG 1
PIDcitsalPniP-42
031 IJL01-B8V02LAG CCLPdaeL-82
51 21 01 031 IPL51-B8V02LAG PIDcitsalPniP-42
031 IJL51-B8V02LAG CCLPdaeL-82
02 31 11 56 IPQ02-B8V02LAG PIDcitsalPniP-42
56 IJQ02-B8V02LAG CCLPdaeL-82
52 51 21 56 IPQ52-B8V02LAG PIDcitsalPniP-42
56 IJQ52-B8V02LAG CCLPdaeL-82
031 IPL52-B8V02LAG PIDcitsalPniP-42
031 IJL52-B8V02LAG CCLPdaeL-82
1. Discontinued per PCN #06-07. Contact Rochester Electronics for available inventory.
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
3
Part Number Description
Industrial Grade Specifications
Lead-Free Packaging
Commercial Grade Specifications
Blank = Commercial
I = Industrial
Grade
PackagePowerL = Low Power
Q = Quarter Power
Speed (ns)
XXXXXXXX XX X XX X
Device Name
_
P = Plastic DIP
PN = Lead-free Plastic DIP
J = PLCC
JN = Lead-free PLCC
GAL20V8C
GAL20V8B
)sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP
5 3 4 511 NJL5-C8V02LAG 1
CCLPdaeL-82eerF-daeL
5.7 7 5 511 8V02LAG C NJL7- eerF-daeL CCLPdaeL-82
511 NPL7-B8V02LAG 1
PIDcitsalPniP-42eerF-daeL
01 01 7 511 8V02LAG C NJL01- eerF-daeL CCLPdaeL-82
511 NPL01-B8V02LAG PIDcitsalPniP-42eerF-daeL
51 21 01 55 NJQ51-B8V02LAG CCLPdaeL-82eerF-daeL
55 NPQ51-B8V02LAG PIDcitsalPniP-42eerF-daeL
09 NJL51-B8V02LAG CCLPdaeL-82eerF-daeL
09 NPL51-B8V02LAG PIDcitsalPniP-42eerF-daeL
52 51 21 55 NJQ52-B8V02LAG CCLPdaeL-82eerF-daeL
55 NPQ52-B8V02LAG PIDcitsalPniP-42eerF-daeL
09 NJL52-B8V02LAG eerF-daeL CCLPdaeL-82
09 NPL52-B8V02LAG PIDcitsalPniP-42eerF-daeL
)sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP
01 01 7 031 8V02LAG C INJL01- PIDcitsalPniP-82eerF-daeL
031 INPL01-B8V02LAG 1
PIDcitsalPniP-42eerF-daeL
51 21 01 031 INJL51-B8V02LAG CCLPdaeL-82eerF-daeL
031 INPL51-B8V02LAG PIDcitsalPniP-42eerF-daeL
02 31 11 56 INJQ02-B8V02LAG CCLPdaeL-82eerF-daeL
56 INPQ02-B8V02LAG PIDcitsalPniP-42eerF-daeL
52 51 21 56 INJQ52-B8V02LAG CCLPdaeL-82eerF-daeL
56 INPQ52-B8V02LAG PIDcitsalPniP-42eerF-daeL
031 INJL52-B8V02LAG CCLPdaeL-82eerF-daeL
031 INPL52-B8V02LAG PIDcitsalPniP-42eerF-daeL
1. Discontinued per PCN #06-07. Contact Rochester Electronics for available inventory.
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
4
Specifications GAL20V8
The following discussion pertains to configuring the output logic
macrocell. It should be noted that actual implementation is accom-
plished by development software/hardware and is completely trans-
parent to the user.
There are three global OLMC configuration modes possible:
simple, complex, and registered. Details of each of these modes
is illustrated in the following pages. Two global bits, SYN andAC0,
control the mode configuration for all macrocells. The XOR bit of
each macrocell controls the polarity of the output in any of the three
modes, while theAC1 bit of each of the macrocells controls the in-
put/output configuration. These two global and 16 individual archi-
tecture bits define all possible configurations in a GAL20V8 . The
information given on these architecture bits is only to give a bet-
ter understanding of the device. Compiler software will transpar-
ently set these architecture bits from the pin definitions, so the user
should not need to directly manipulate these architecture bits.
The following is a list of the PAL architectures that the GAL20V8
can emulate. It also shows the OLMC mode under which the
devices emulate the PAL architecture.
Software compilers support the three different global OLMC modes
as different device types. These device types are listed in the table
below. Most compilers have the ability to automatically select the
device type, generally based on the register usage and output
enable (OE) usage. Register usage on the device forces the soft-
ware to choose the registered mode. All combinatorial outputs with
OE controlled by the product term will force the software to choose
the complex mode. The software will choose the simple mode only
when all outputs are dedicated combinatorial without OE control.
The different device types listed in the table can be used to override
the automatic device selection by the software. For further details,
refer to the compiler software manuals.
When using compiler software to configure the device, the user
must pay special attention to the following restrictions in each mode.
In registered mode pin 1 and pin 13 (DIP pinout) are permanently
configured as clock and output enable, respectively. These pins
cannot be configured as dedicated inputs in the registered mode.
In complex mode pin 1 and pin 13 become dedicated inputs and
use the feedback paths of pin 22 and pin 15 respectively. Because
of this feedback path usage, pin 22 and pin 15 do not have the
feedback option in this mode.
In simple mode all feedback paths of the output pins are routed
via the adjacent pins. In doing so, the two inner most pins ( pins
18 and 19) will not have the feedback option as these pins are
always configured as dedicated combinatorial output.
Registered Complex Simple Auto Mode Select
ABEL P20V8R P20V8C P20V8AS P20V8
CUPL G20V8MS G20V8MA G20V8AS G20V8
LOG/iC GAL20V8_R GAL20V8_C7 GAL20V8_C8 GAL20V8
OrCAD-PLD "Registered"1
"Complex"1
"Simple"1
GAL20V8A
PLDesigner P20V8R2
P20V8C2
P20V8C2
P20V8A
TANGO-PLD G20V8R G20V8C G20V8AS3
G20V8
1) Used with Configuration keyword.
2) Prior to Version 2.0 support.
3) Supported on Version 1.20 or later.
PAL Architectures GAL20V8
Emulated by GAL20V8 Global OLMC Mode
20R8 Registered
20R6 Registered
20R4 Registered
20RP8 Registered
20RP6 Registered
20RP4 Registered
20L8 Complex
20H8 Complex
20P8 Complex
14L8 Simple
16L6 Simple
18L4 Simple
20L2 Simple
14H8 Simple
16H6 Simple
18H4 Simple
20H2 Simple
14P8 Simple
16P6 Simple
18P4 Simple
20P2 Simple
Output Logic Macrocell (OLMC)
Compiler Support for OLMC
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
5
In the Registered mode, macrocells are configured as dedicated
registered outputs or as I/O functions.
Architecture configurations available in this mode are similar to the
common 20R8 and 20RP4 devices with various permutations of
polarity, I/O and register placement.
All registered macrocells share common clock and output enable
control pins. Any macrocell can be configured as registered or I/
O. Up to eight registers or up to eight I/Os are possible in this mode.
Dedicated input or output functions can be implemented as sub-
sets of the I/O function.
Registered outputs have eight product terms per output. I/Os have
seven product terms per output.
The JEDEC fuse numbers, including the User Electronic Signature
(UES) fuses and the Product Term Disable (PTD) fuses, are shown
on the logic diagram on the following page.
Registered Configuration for Registered Mode
- SYN=0.
- AC0=1.
- XOR=0 defines Active Low Output.
- XOR=1 defines Active High Output.
- AC1=0 defines this output configuration.
- Pin 1 controls common CLK for the registered outputs.
- Pin 13 controls common OE for the registered outputs.
- Pin 1 & Pin 13 are permanently configured as CLK &
OE for registered output configuration.
Combinatorial Configuration for Registered Mode
- SYN=0.
- AC0=1.
- XOR=0 defines Active Low Output.
- XOR=1 defines Active High Output.
- AC1=1 defines this output configuration.
- Pin 1 & Pin 13 are permanently configured as CLK &
OE for registered output configuration..
Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.
D Q
Q
CLK
OE
XOR
XOR
Registered Mode
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
6
Specifications GAL20V8
DIP (PLCC) Package Pinouts
OE
0000
PTD
2640
0280
0320
0600
0640
0920
0960
1240
1280
1560
1600
1880
1920
2200
2240
2520
OLMC
OLMC
XOR-2567
AC1-2639
OLMC
XOR-2566
AC1-2638
OLMC
XOR-2565
AC1-2637
OLMC
XOR-2564
AC1-2636
XOR-2563
AC1-2635
OLMC
XOR-2562
AC1-2634
OLMC
OLMC
XOR-2561
AC1-2633
XOR-2560
AC1-2632
11(13)
10(12)
9(11)
8(10)
7(9)
6(7)
5(6)
4(5)
3(4)
2(3)
1(2)
23(27)
22(26)
21(25)
20(24)
19(23)
18(21)
17(20)
16(19)
15(18)
14(17)
13(16)
SYN-2704
AC0-2705
2703
2824 3632201612840
Registered Mode Logic Diagram
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
7
In the Complex mode, macrocells are configured as output only or
I/O functions.
Architecture configurations available in this mode are similar to the
common 20L8 and 20P8 devices with programmable polarity in
each macrocell.
Up to six I/Os are possible in this mode. Dedicated inputs or outputs
can be implemented as subsets of the I/O function. The two outer
most macrocells (pins 15 & 22) do not have input capability. De-
signs requiring eight I/Os can be implemented in the Registered
mode.
All macrocells have seven product terms per output. One product
term is used for programmable output enable control. Pins 1 and
13 are always available as data inputs into the AND array.
The JEDEC fuse numbers including the UES fuses and PTD fuses
are shown on the logic diagram on the following page.
Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.
Combinatorial I/O Configuration for Complex Mode
- SYN=1.
- AC0=1.
- XOR=0 defines Active Low Output.
- XOR=1 defines Active High Output.
- AC1=1.
- Pin 16 through Pin 21 are configured to this function.
Combinatorial Output Configuration for Complex Mode
- SYN=1.
- AC0=1.
- XOR=0 defines Active Low Output.
- XOR=1 defines Active High Output.
- AC1=1.
- Pin 15 and Pin 22 are configured to this function.
XOR
XOR
Complex Mode
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
8
Specifications GAL20V8
DIP (PLCC) Package Pinouts
0000
PTD
2640
0280
0320
0600
0640
0920
0960
1240
1280
1560
1600
1880
1920
2200
2240
2520
SYN-2704
AC0-2705
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
23(27)
22(26)
21(25)
20(24)
19(23)
18(21)
17(20)
16(19)
15(18)
14(17)
13(16)
11(13)
10(12)
9(11)
8(10)
7(9)
6(7)
5(6)
4(5)
3(4)
2(3)
1(2)
2703
XOR-2567
AC1-2639
XOR-2566
AC1-2638
XOR-2565
AC1-2637
XOR-2564
AC1-2636
XOR-2563
AC1-2635
XOR-2562
AC1-2634
XOR-2561
AC1-2633
XOR-2560
AC1-2632
2824 3632201612840
Complex Mode Logic Diagram
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
9
Combinatorial Output with Feedback Configuration
for Simple Mode
- SYN=1.
- AC0=0.
- XOR=0 defines Active Low Output.
- XOR=1 defines Active High Output.
- AC1=0 defines this configuration.
- All OLMC except pins 18 & 19 can be configured to
this function.
Combinatorial Output Configuration for Simple Mode
- SYN=1.
- AC0=0.
- XOR=0 defines Active Low Output.
- XOR=1 defines Active High Output.
- AC1=0 defines this configuration.
- Pins 18 & 19 are permanently configured to this
function.
Dedicated Input Configuration for Simple Mode
- SYN=1.
- AC0=0.
- XOR=0 defines Active Low Output.
- XOR=1 defines Active High Output.
- AC1=1 defines this configuration.
- All OLMC except pins 18 & 19 can be configured to
this function.
Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.
In the Simple mode, pins are configured as dedicated inputs or as
dedicated, always active, combinatorial outputs.
Architecture configurations available in this mode are similar to the
common 14L8 and 16P6 devices with many permutations of ge-
neric output polarity or input choices.
All outputs in the simple mode have a maximum of eight product
terms that can control the logic. In addition, each output has pro-
grammable polarity.
Pins 1 and 13 are always available as data inputs into the AND
array. The “center” two macrocells (pins 18 and 19) cannot be used
in the input configuration.
The JEDEC fuse numbers including the UES fuses and PTD fuses
are shown on the logic diagram on the following page.
Vcc
XOR
Vcc
XOR
Simple Mode
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
10
Specifications GAL20V8
DIP (PLCC) Package Pinouts
0000
PTD
2640
0280
0320
0600
0640
0920
0960
1240
1280
1560
1600
1880
1920
2200
2240
2520
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
XOR-2560
AC1-2632
OLMC
XOR-2561
AC1-2633
XOR-2562
AC1-2634
XOR-2563
AC1-2635
XOR-2564
AC1-2636
XOR-2565
AC1-2637
XOR-2566
AC1-2638
XOR-2567
AC1-2639
23(27)
22(26)
21(25)
20(24)
19(23)
18(21)
17(20)
16(19)
15(18)
14(17)
13(16)
SYN-2704
AC0-2705
2703
11(13)
10(12)
9(11)
8(10)
7(9)
6(7)
5(6)
4(5)
3(4)
2(3)
1(2)
2824 3632201612840
Simple Mode Logic Diagram
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
11
Specifications GAL20V8C
VIL Input Low Voltage Vss – 0.5 — 0.8 V
VIH Input High Voltage 2.0 — Vcc+1 V
IIL1
Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 μA
IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 μA
VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V
VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V
IOL Low Level Output Current — — 16 mA
IOH High Level Output Current — — –3.2 mA
IOS2
Output Short Circuit Current VCC = 5V VOUT = 0.5V TA
= 25°C –30 — –150 mA
Recommended Operating Conditions
Commercial Devices:
Ambient Temperature (TA
) ............................... 0 to 75°C
Supply voltage (VCC
)
with Respect to Ground ..................... +4.75 to +5.25V
Industrial Devices:
Ambient Temperature (TA
) ........................... –40 to 85°C
Supply voltage (VCC
)
with Respect to Ground ..................... +4.50 to +5.50V
SYMBOL PARAMETER CONDITION MIN. TYP.3
MAX. UNITS
COMMERCIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L -5/-7/-10 — 75 115 mA
Supply Current ftoggle = 15MHz Outputs Open
INDUSTRIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L-10 — 75 130 mA
Supply Current ftoggle = 15MHz Outputs Open
1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester
ground degradation. Characterized but not 100% tested.
3) Typical values are at Vcc = 5V and TA = 25 °C
Absolute Maximum Ratings(1)
Supply voltage VCC
...................................... –0.5 to +7V
Input voltage applied .......................... –2.5 to VCC
+1.0V
Off-state output voltage applied ......... –2.5 to VCC
+1.0V
Storage Temperature ................................ –65 to 150°C
Ambient Temperature with
Power Applied ........................................ –55 to 125°C
1.Stresses above those listed under the “Absolute Maximum
Ratings” may cause permanent damage to the device. These
are stress only ratings and functional operation of the device at
these or at any other conditions above those indicated in the
operational sections of this specification is not implied (while
programming, follow the programming specifications).
DC Electrical Characteristics
Over Recommended Operating Conditions (Unless Otherwise Specified)
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
12
Specifications GAL20V8Specifications GAL20V8C
-7
MIN. MAX.
-10
MIN. MAX.
tpd A Input or I/O to 8 outputs switching 1 5 3 7.5 3 10 ns
Comb. Output 1 output switching — — — 7 — — ns
tco A Clock to Output Delay 1 4 2 5 2 7 ns
tcf2
— Clock to Feedback Delay — 3 — 3 — 6 ns
tsu — Setup Time, Input or Feedback before Clock↑ 3 — 5 — 7.5 — ns
th — Hold Time, Input or Feedback after Clock↑ 0 — 0 — 0 — ns
A Maximum Clock Frequency with 142.8 — 100 — 66.7 — MHz
External Feedback, 1/(tsu + tco)
fmax3
A Maximum Clock Frequency with 166 — 125 — 71.4 — MHz
Internal Feedback, 1/(tsu + tcf)
A Maximum Clock Frequency with 166 — 125 — 83.3 — MHz
No Feedback
twh — Clock Pulse Duration, High 3 — 4 — 6 — ns
twl — Clock Pulse Duration, Low 3 — 4 — 6 — ns
ten B Input or I/O to Output Enabled 1 6 3 9 3 10 ns
B OE to Output Enabled 1 6 2 6 2 10 ns
tdis C Input or I/O to Output Disabled 1 5 2 9 2 10 ns
C OE to Output Disabled 1 5 1.5 6 1.5 10 ns
UNITSPARAMETER
TEST
COND1
.
DESCRIPTION
COM/INDCOMCOM
-5
MIN. MAX.
1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section. Characterized initially and after any design or process changes that may affect these
parameters.
SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS
CI
Input Capacitance 8 pF VCC
= 5.0V, VI
= 2.0V
CI/O
I/O Capacitance 8 pF VCC
= 5.0V, VI/O
= 2.0V
*Characterized but not 100% tested
AC Switching Characteristics
Over Recommended Operating Conditions
Capacitance (TA = 25°C, f = 1.0 MHz)
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
13
Specifications GAL20V8B
INDUSTRIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L -10/-15/-25 — 75 130 mA
Supply Current ftoggle = 15MHz Outputs Open Q -20/-25 — 45 65 mA
COMMERCIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L -7/-10 — 75 115 mA
Supply Current ftoggle = 15MHz Outputs Open L -15/-25 — 75 90 mA
Q -15/-25 — 45 55 mA
Recommended Operating Conditions
Commercial Devices:
Ambient Temperature (TA
) ............................... 0 to 75°C
Supply voltage (VCC
)
with Respect to Ground ..................... +4.75 to +5.25V
Industrial Devices:
Ambient Temperature (TA
) ........................... –40 to 85°C
Supply voltage (VCC
)
with Respect to Ground ..................... +4.50 to +5.50V
DC Electrical Characteristics
Over Recommended Operating Conditions (Unless Otherwise Specified)
SYMBOL PARAMETER CONDITION MIN. TYP.3
MAX. UNITS
VIL Input Low Voltage Vss – 0.5 — 0.8 V
VIH Input High Voltage 2.0 — Vcc+1 V
IIL1
Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 μA
IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 μA
VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V
VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V
IOL Low Level Output Current — — 24 mA
IOH High Level Output Current — — –3.2 mA
IOS2
Output Short Circuit Current VCC = 5V VOUT = 0.5V TA
= 25°C –30 — –150 mA
1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester
ground degradation. Characterized but not 100% tested.
3) Typical values are at Vcc = 5V and TA = 25 °C
Absolute Maximum Ratings(1)
Supply voltage VCC
...................................... –0.5 to +7V
Input voltage applied .......................... –2.5 to VCC
+1.0V
Off-state output voltage applied ......... –2.5 to VCC
+1.0V
Storage Temperature ................................ –65 to 150°C
Ambient Temperature with
Power Applied ........................................ –55 to 125°C
1.Stresses above those listed under the “Absolute Maximum
Ratings” may cause permanent damage to the device. These
are stress only ratings and functional operation of the device at
these or at any other conditions above those indicated in the
operational sections of this specification is not implied (while
programming, follow the programming specifications).
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
14
Specifications GAL20V8Specifications GAL20V8B
tpd A Input or I/O to 8 outputs switching 3 7.5 3 10 3 15 3 20 3 25 ns
Comb. Output 1 output switching — 7 — — — — — — — — ns
tco A Clock to Output Delay 2 5 2 7 2 10 2 11 2 12 ns
tcf2
— Clock to Feedback Delay — 3 — 6 — 8 — 9 — 10 ns
tsu — Setup Time, Input or Fdbk before Clk↑ 7 — 10 — 12 — 13 — 15 — ns
th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — ns
A Maximum Clock Frequency with 83.3 — 58.8 — 45.5 — 41.6 — 37 — MHz
External Feedback, 1/(tsu + tco)
fmax3
A Maximum Clock Frequency with 100 — 62.5 — 50 — 45.4 — 40 — MHz
Internal Feedback, 1/(tsu + tcf)
A Maximum Clock Frequency with 100 — 62.5 — 62.5 — 50 — 41.7 — MHz
No Feedback
twh — Clock Pulse Duration, High 5 — 8 — 8 — 10 — 12 — ns
twl — Clock Pulse Duration, Low 5 — 8 — 8 — 10 — 12 — ns
ten B Input or I/O to Output Enabled 3 9 3 10 — 15 — 18 — 25 ns
B OE to Output Enabled 2 6 2 10 — 15 — 18 — 20 ns
tdis C Input or I/O to Output Disabled 2 9 2 10 — 15 — 18 — 25 ns
C OE to Output Disabled 1.5 6 1.5 10 — 15 — 18 — 20 ns
UNITS
1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.
-25
MIN. MAX.
-20
MIN. MAX.
-15
MIN. MAX.
-10
MIN. MAX.
PARAM. DESCRIPTIONTEST
COND1
.
-7
MIN. MAX.
SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS
CI
Input Capacitance 8 pF VCC
= 5.0V, VI
= 2.0V
CI/O
I/O Capacitance 8 pF VCC
= 5.0V, VI/O
= 2.0V
*Characterized but not 100% tested.
COM COM / IND COM / IND IND COM / IND
AC Switching Characteristics
Over Recommended Operating Conditions
Capacitance (TA = 25°C, f = 1.0 MHz)
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
15
Registered OutputCombinatorial Output
OE to Output Enable/DisableInput or I/O to Output Enable/Disable
fmax with Feedback
Clock Width
COMBINATIONAL
OUTPUT
VALID INPUT
INPUT or
I/O FEEDBACK
tpd
CLK
(w/o fb)
1/fmax
twltwh
INPUT or
I/O FEEDBACK
REGISTERED
OUTPUT
CLK
VALID INPUT
(external fdbk)
tsu
tco
th
1/fmax
OE
REGISTERED
OUTPUT
tentdis
CLK
REGISTERED
FEEDBACK
tcf tsu
1/fmax (internal fdbk)
COMBINATIONAL
OUTPUT
INPUT or
I/O FEEDBACK
tentdis
Switching Waveforms
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
16
Specifications GAL20V8
fmax with Internal Feedback 1/(tsu+tcf)
Note: tcf is a calculated value, derived by subtracting tsu from
the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The
value of tcf is used primarily when calculating the delay from
clocking a register to a combinatorial output (through registered
feedback), as shown above. For example, the timing from clock
to a combinatorial output is equal to tcf + tpd.
fmax with No Feedback
Note: fmax with no feedback may be less than 1/(twh + twl). This
is to allow for a clock duty cycle of other than 50%.
GAL20V8C Output Load Conditions (see figure)
Test Condition R1 R2 CL
A 200Ω 200Ω 50pF
B Active High ∞ 200Ω 50pF
Active Low 200Ω 200Ω 50pF
C Active High ∞ 200Ω 5pF
Active Low 200Ω 200Ω 5pF
TEST POINT
C *L
FROM OUTPUT (O/Q)
UNDER TEST
+5V
*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE
R2
R1
GAL20V8B Output Load Conditions (see figure)
Test Condition R1 R2 CL
A 200Ω 390Ω 50pF
B Active High ∞ 390Ω 50pF
Active Low 200Ω 390Ω 50pF
C Active High ∞ 390Ω 5pF
Active Low 200Ω 390Ω 5pF
CLK
REGISTER
LOGIC
ARRAY
tcf
tpd
fmax with External Feedback 1/(tsu+tco)
Note: fmax with external feedback is calculated from measured
tsu and tco.
REGISTER
LOGIC
ARRAY
tcotsu
CL K
Input Pulse Levels GND to 3.0V
Input Rise and GAL20V8B 2 – 3ns 10% – 90%
Fall Times GAL20V8C 1.5ns 10% – 90%
Input Timing Reference Levels 1.5V
Output Timing Reference Levels 1.5V
Output Load See Figure
3-state levels are measured 0.5V from steady-state active
level.
REGISTER
LOGIC
ARRAY
CLK
tsu + th
fmax Descriptions
Switching Test Conditions
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
17
1 . 0 2 . 0 3 . 0 4 . 0 5 . 0
- 6 0
0
- 2 0
- 4 0
0
Input Voltage (Volts)
InputCurrent(uA)
Electronic Signature
An electronic signature is provided in every GAL20V8 device. It
contains 64 bits of reprogrammable memory that can contain user
defined data. Some uses include user ID codes, revision numbers,
or inventory control. The signature data is always available to the
user independent of the state of the security cell.
NOTE: The electronic signature is included in checksum calcula-
tions. Changing the electronic signature will alter the checksum.
Security Cell
A security cell is provided in the GAL20V8 devices to prevent un-
authorized copying of the array patterns. Once programmed, this
cell prevents further read access to the functional bits in the device.
This cell can only be erased by re-programming the device, so the
original configuration can never be examined once this cell is pro-
grammed. The Electronic Signature is always available to the user,
regardless of the state of this control cell.
Latch-Up Protection
GAL20V8 devices are designed with an on-board charge pump
to negatively bias the substrate. The negative bias minimizes the
potential of latch-up caused by negative input undershoots. Ad-
ditionally, outputs are designed with n-channel pull-ups instead of
the traditional p-channel pull-ups in order to eliminate latch-up due
to output overshoots.
Device Programming
GAL devices are programmed using a Lattice Semiconductor-
approved Logic Programmer, available from a number of manu-
facturers. Complete programming of the device takes only a few
seconds. Erasing of the device is transparent to the user, and is
done automatically as part of the programming cycle.
Typical Input Pull-up Characteristic
Output Register Preload
When testing state machine designs, all possible states and state
transitions must be verified in the design, not just those required
in the normal machine operations. This is because, in system
operation, certain events occur that may throw the logic into an
illegal state (power-up, line voltage glitches, brown-outs, etc.). To
test a design for proper treatment of these conditions, a way must
be provided to break the feedback paths, and force any desired (i.e.,
illegal) state into the registers. Then the machine can be sequenced
and the outputs tested for correct next state conditions.
GAL20V8 devices include circuitry that allows each registered
output to be synchronously set either high or low. Thus, any present
state condition can be forced for test sequencing. If necessary,
approved GAL programmers capable of executing text vectors
perform output register preload automatically.
Input Buffers
GAL20V8 devices are designed with TTL level compatible input
buffers. These buffers have a characteristically high impedance,
and present a much lighter load to the driving logic than bipolar TTL
devices.
The GAL20V8 input and I/O pins have built-in active pull-ups. As
a result, unused inputs and I/O's will float to a TTL "high" (logical
"1"). Lattice Semiconductor recommends that all unused inputs
and tri-stated I/O pins be connected to another active input, VCC,
or Ground. Doing this will tend to improve noise immunity and re-
duce ICC for the device.
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
18
Specifications GAL20V8
Typ. Vref = 3.2V
Typical Output
Typ. Vref = 3.2V
Typical Input
Vcc
PIN
Vcc Vref
Active Pull-up
Circuit
ESD
Protection
Circuit
ESD
Protection
Circuit
Vcc
PIN
Vcc
PIN
VrefTri-State
Control
Active Pull-up
Circuit
Feedback
(To Input Buffer)
PIN
Feedback
Data
Output
Circuitry within the GAL20V8 provides a reset signal to all registers
during power-up. All internal registers will have their Q outputs set
low after a specified time (tpr, 1μs MAX). As a result, the state on
the registered output pins (if they are enabled) will always be high
on power-up, regardless of the programmed polarity of the output
pins. This feature can greatly simplify state machine design by pro-
viding a known state on power-up. Because of the asynchronous
nature of system power-up, some conditions must be met to provide
Vcc
CLK
INTERNAL REGISTER
Q - OUTPUT
FEEDBACK/EXTERNAL
OUTPUT REGISTER
Vcc (min.)
tpr
Internal Register
Reset to Logic "0"
Device Pin
Reset to Logic "1"
twl
tsu
a valid power-up reset of the device. First, the VCC rise must be
monotonic. Second, the clock input must be at static TTL level as
shown in the diagram during power up. The registers will reset
within a maximum of tpr time.As in normal system operation, avoid
clocking the device until all input and feedback path setup times
have been met. The clock must also meet the minimum pulse width
requirements.
Power-Up Reset
Input/Output Equivalent Schematics
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
19
Delta Tpd vs # of Outputs
Switching
Number of Outputs Switching
DeltaTpd(ns)
-1
-0.75
-0.5
-0.25
0
1 2 3 4 5 6 7 8
RISE
FALL
Delta Tco vs # of Outputs
Switching
Number of Outputs Switching
DeltaTco(ns)
-1
-0.75
-0.5
-0.25
0
1 2 3 4 5 6 7 8
RISE
FALL
Delta Tpd vs Output Loading
Output Loading (pF)
DeltaTpd(ns)
-2
0
2
4
6
8
0 50 100 150 200 250 300
RISE
FALL
Delta Tco vs Output Loading
Output Loading (pF)
DeltaTco(ns)
-2
0
2
4
6
8
0 50 100 150 200 250 300
RISE
FALL
Normalized Tpd vs Vcc
Supply Voltage (V)
NormalizedTpd
0.8
0.9
1
1.1
1.2
4.50 4.75 5.00 5.25 5.50
PT H->L
PT L->H
Normalized Tco vs Vcc
Supply Voltage (V)
NormalizedTco
0.8
0.9
1
1.1
1.2
4.50 4.75 5.00 5.25 5.50
RISE
FALL
Normalized Tsu vs Vcc
Supply Voltage (V)
NormalizedTsu
0.8
0.9
1
1.1
1.2
4.50 4.75 5.00 5.25 5.50
PT H->L
PT L->H
Normalized Tpd vs Temp
Temperature (deg. C)
NormalizedTpd
0.7
0.8
0.9
1
1.1
1.2
1.3
-55
-25
0
25
50
75
100
125
PT H->L
PT L->H
Normalized Tco vs Temp
Temperature (deg. C)
NormalizedTco
0.7
0.8
0.9
1
1.1
1.2
1.3
-55
-25
0
25
50
75
100
125
RISE
FALL
Normalized Tsu vs Temp
Temperature (deg. C)
NormalizedTsu
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
-55
-25
0
25
50
75
100
125
PT H->L
PT L->H
GAL20V8C: Typical AC and DC Characteristic Diagrams
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
20
Specifications GAL20V8
Vol vs Iol
Iol (mA)
Vol(V)
0
0.5
1
1.5
2
0.00 20.00 40.00 60.00 80.00
Voh vs Ioh
Ioh(mA)
Voh(V)
0
1
2
3
4
5
0.00 10.00 20.00 30.00 40.00 50.00
Voh vs Ioh
Ioh(mA)
Voh(V)
3.25
3.5
3.75
4
4.25
0.00 1.00 2.00 3.00 4.00
Normalized Icc vs Vcc
Supply Voltage (V)
NormalizedIcc
0.80
0.90
1.00
1.10
1.20
4.50 4.75 5.00 5.25 5.50
Normalized Icc vs Temp
Temperature (deg. C)
NormalizedIcc
0.8
0.9
1
1.1
1.2
1.3
-55 -25 0 25 50 75 100 125
Normalized Icc vs Freq.
Frequency (MHz)NormalizedIcc
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
0 25 50 75 100
Delta Icc vs Vin (1 input)
Vin (V)
DeltaIcc(mA)
0
2
4
6
8
10
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Input Clamp (Vik)
Vik (V)
Iik(mA)
0
5
10
15
20
25
30
35
40
45
-2.00 -1.50 -1.00 -0.50 0.00
GAL20V8C: Typical AC and DC Characteristic Diagrams
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
21
Normalized Tpd vs Vcc
Supply Voltage (V)
NormalizedTpd
0.8
0.9
1
1.1
1.2
4.50 4.75 5.00 5.25 5.50
PT H->L
PT L->H
Normalized Tco vs Vcc
Supply Voltage (V)
NormalizedTco
0.8
0.9
1
1.1
1.2
4.50 4.75 5.00 5.25 5.50
RISE
FALL
Normalized Tsu vs Vcc
Supply Voltage (V)
NormalizedTsu
0.8
0.9
1
1.1
1.2
4.50 4.75 5.00 5.25 5.50
PT H->L
PT L->H
Normalized Tpd vs Temp
Temperature (deg. C)
NormalizedTpd
0.7
0.8
0.9
1
1.1
1.2
1.3
-55
-25
0
25
50
75
100
125
PT H->L
PT L->H
Normalized Tco vs Temp
Temperature (deg. C)
NormalizedTco
0.7
0.8
0.9
1
1.1
1.2
1.3
-55
-25
0
25
50
75
100
125
RISE
FALL
Normalized Tsu vs Temp
Temperature (deg. C)
NormalizedTsu
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
-55
-25
0
25
50
75
100
125
PT H->L
PT L->H
Delta Tpd vs # of Outputs
Switching
Number of Outputs Switching
DeltaTpd(ns)
-2
-1.5
-1
-0.5
0
1 2 3 4 5 6 7 8
RISE
FALL
Delta Tco vs # of Outputs
Switching
Number of Outputs Switching
DeltaTco(ns)
-2
-1.5
-1
-0.5
0
1 2 3 4 5 6 7 8
RISE
FALL
Delta Tpd vs Output Loading
Output Loading (pF)
DeltaTpd(ns)
-2
0
2
4
6
8
10
0 50 100 150 200 250 300
RISE
FALL
Delta Tco vs Output Loading
Output Loading (pF)
DeltaTco(ns)
-2
0
2
4
6
8
10
0 50 100 150 200 250 300
RISE
FALL
GAL20V8B-7/-10: Typical AC and DC Characteristic Diagrams
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
22
Specifications GAL20V8
Vol vs Iol
Iol (mA)
Vol(V)
0
0.25
0.5
0.75
1
0.00 20.00 40.00 60.00 80.00 100.00
Voh vs Ioh
Ioh(mA)
Voh(V)
0
1
2
3
4
5
0.00 10.00 20.00 30.00 40.00 50.00 60.00
Voh vs Ioh
Ioh(mA)
Voh(V)
3.5
3.75
4
4.25
4.5
0.00 1.00 2.00 3.00 4.00
Normalized Icc vs Vcc
Supply Voltage (V)
NormalizedIcc
0.80
0.90
1.00
1.10
1.20
4.50 4.75 5.00 5.25 5.50
Normalized Icc vs Temp
Temperature (deg. C)
NormalizedIcc
0.8
0.9
1
1.1
1.2
-55 -25 0 25 50 75 100 125
Normalized Icc vs Freq.
Frequency (MHz)NormalizedIcc
0.80
0.90
1.00
1.10
1.20
1.30
0 25 50 75 100
Delta Icc vs Vin (1 input)
Vin (V)
DeltaIcc(mA)
0
2
4
6
8
10
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Input Clamp (Vik)
Vik (V)
Iik(mA)
0
10
20
30
40
50
60
70
80
90
100
-2.00 -1.50 -1.00 -0.50 0.00
GAL20V8B-7/-10: Typical AC and DC Characteristic Diagrams
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
23
Normalized Tpd vs Vcc
Supply Voltage (V)
NormalizedTpd
0.8
0.9
1
1.1
1.2
4.50 4.75 5.00 5.25 5.50
PT H->L
PT L->H
Normalized Tco vs Vcc
Supply Voltage (V)
NormalizedTco
0.8
0.9
1
1.1
1.2
4.50 4.75 5.00 5.25 5.50
RISE
FALL
Normalized Tsu vs Vcc
Supply Voltage (V)
NormalizedTsu
0.8
0.9
1
1.1
1.2
4.50 4.75 5.00 5.25 5.50
PT H->L
PT L->H
Normalized Tpd vs Temp
Temperature (deg. C)
NormalizedTpd
0.7
0.8
0.9
1
1.1
1.2
1.3
-55 -25 0 25 50 75 100 125
PT H->L
PT L->H
Normalized Tco vs Temp
Temperature (deg. C)
NormalizedTco
0.7
0.8
0.9
1
1.1
1.2
1.3
-55 -25 0 25 50 75 100 125
RISE
FALL
Normalized Tsu vs Temp
Temperature (deg. C)
NormalizedTsu
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
-55 -25 0 25 50 75 100 125
PT H->L
PT L->H
Delta Tpd vs # of Outputs
Switching
Number of Outputs Switching
DeltaTpd(ns)
-2
-1.5
-1
-0.5
0
1 2 3 4 5 6 7 8
RISE
FALL
Delta Tco vs # of Outputs
Switching
Number of Outputs Switching
DeltaTco(ns)
-2
-1.5
-1
-0.5
0
1 2 3 4 5 6 7 8
RISE
FALL
Delta Tpd vs Output Loading
Output Loading (pF)
DeltaTpd(ns)
-4
-2
0
2
4
6
8
10
0 50 100 150 200 250 300
RISE
FALL
Delta Tco vs Output Loading
Output Loading (pF)
DeltaTco(ns)
-4
-2
0
2
4
6
8
10
0 50 100 150 200 250 300
RISE
FALL
GAL20V8B-15/-25: Typical AC and DC Characteristic Diagrams
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
24
Specifications GAL20V8
Vol vs Iol
Iol (mA)
Vol(V)
0
0.5
1
1.5
2
0.00 20.00 40.00 60.00 80.00 100.00
Voh vs Ioh
Ioh(mA)
Voh(V)
0
1
2
3
4
5
0.00 10.00 20.00 30.00 40.00 50.00 60.00
Voh vs Ioh
Ioh(mA)
Voh(V)
3.25
3.5
3.75
4
4.25
0.00 1.00 2.00 3.00 4.00
Normalized Icc vs Vcc
Supply Voltage (V)
NormalizedIcc
0.80
0.90
1.00
1.10
1.20
4.50 4.75 5.00 5.25 5.50
Normalized Icc vs Temp
Temperature (deg. C)
NormalizedIcc
0.8
0.9
1
1.1
1.2
-55 -25 0 25 50 75 100 125
Normalized Icc vs Freq.
Frequency (MHz)
NormalizedIcc
0.80
0.90
1.00
1.10
1.20
1.30
1.40
0 25 50 75 100
Delta Icc vs Vin (1 input)
Vin (V)
DeltaIcc(mA)
0
2
4
6
8
10
12
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Input Clamp (Vik)
Vik (V)
Iik(mA)
0
10
20
30
40
50
60
70
80
90
100
-2.00 -1.50 -1.00 -0.50 0.00
GAL20V8B-15/-25: Typical AC and DC Characteristic Diagrams
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED
Specifications GAL20V8
25
Revision History
Date Version Change Summary
- 20v8_06 Previous Lattice release.
August 2006 20v8_07 Updated for lead-free package options.
A
LL
D
EVIC
ES
D
ISC
O
N
TIN
U
ED

Contenu connexe

Tendances

GPMQ8005A Datasheet PDF
GPMQ8005A Datasheet PDFGPMQ8005A Datasheet PDF
GPMQ8005A Datasheet PDFDatasheet Bank
 
Frdm k64 f-sch
Frdm k64 f-schFrdm k64 f-sch
Frdm k64 f-schFernando
 
I phone 5 full Schematic Diagram 820 3141-b
I phone 5 full Schematic Diagram 820 3141-bI phone 5 full Schematic Diagram 820 3141-b
I phone 5 full Schematic Diagram 820 3141-bdiyfix phone
 
8051 microcontroller
8051 microcontroller8051 microcontroller
8051 microcontrollerchirag patil
 
Advanced motion controls dr100ee15a40ldc
Advanced motion controls dr100ee15a40ldcAdvanced motion controls dr100ee15a40ldc
Advanced motion controls dr100ee15a40ldcElectromate
 
4 bit lcd_interfacing_with_arm7_primer
4 bit lcd_interfacing_with_arm7_primer4 bit lcd_interfacing_with_arm7_primer
4 bit lcd_interfacing_with_arm7_primerpvmistary
 
LE1201-XJLink2
LE1201-XJLink2LE1201-XJLink2
LE1201-XJLink2Mark Chien
 
8051 development board project report
8051 development board project report8051 development board project report
8051 development board project reportNt Arvind
 
LG master k10-S1 wiring conection cable
LG master k10-S1 wiring conection cableLG master k10-S1 wiring conection cable
LG master k10-S1 wiring conection cablequanglocbp
 
Galil ioc7007 catalog
Galil ioc7007 catalogGalil ioc7007 catalog
Galil ioc7007 catalogElectromate
 
Advanced motion controls dr100ee20a8bdc qd1
Advanced motion controls dr100ee20a8bdc qd1Advanced motion controls dr100ee20a8bdc qd1
Advanced motion controls dr100ee20a8bdc qd1Electromate
 
Advanced motion controls dr100ee40a8bdc
Advanced motion controls dr100ee40a8bdcAdvanced motion controls dr100ee40a8bdc
Advanced motion controls dr100ee40a8bdcElectromate
 
Advanced motion controls dr100ee30a40ndc
Advanced motion controls dr100ee30a40ndcAdvanced motion controls dr100ee30a40ndc
Advanced motion controls dr100ee30a40ndcElectromate
 
Advanced motion controls dr100ee25a20nac
Advanced motion controls dr100ee25a20nacAdvanced motion controls dr100ee25a20nac
Advanced motion controls dr100ee25a20nacElectromate
 
VD-680-PS acf bondig machine user manual
VD-680-PS acf bondig machine user manualVD-680-PS acf bondig machine user manual
VD-680-PS acf bondig machine user manualVikas Deoarshi
 
Advanced motion controls dr100ee15a40nac
Advanced motion controls dr100ee15a40nacAdvanced motion controls dr100ee15a40nac
Advanced motion controls dr100ee15a40nacElectromate
 

Tendances (20)

GPMQ8005A Datasheet PDF
GPMQ8005A Datasheet PDFGPMQ8005A Datasheet PDF
GPMQ8005A Datasheet PDF
 
Industrial Automation Using B&R PLC.
Industrial Automation Using B&R PLC.Industrial Automation Using B&R PLC.
Industrial Automation Using B&R PLC.
 
2014 ii c08t-sbc pic para ecg
2014 ii c08t-sbc pic para ecg 2014 ii c08t-sbc pic para ecg
2014 ii c08t-sbc pic para ecg
 
Frdm k64 f-sch
Frdm k64 f-schFrdm k64 f-sch
Frdm k64 f-sch
 
I phone 5 full Schematic Diagram 820 3141-b
I phone 5 full Schematic Diagram 820 3141-bI phone 5 full Schematic Diagram 820 3141-b
I phone 5 full Schematic Diagram 820 3141-b
 
LG Cable
LG CableLG Cable
LG Cable
 
8051 microcontroller
8051 microcontroller8051 microcontroller
8051 microcontroller
 
Advanced motion controls dr100ee15a40ldc
Advanced motion controls dr100ee15a40ldcAdvanced motion controls dr100ee15a40ldc
Advanced motion controls dr100ee15a40ldc
 
4 bit lcd_interfacing_with_arm7_primer
4 bit lcd_interfacing_with_arm7_primer4 bit lcd_interfacing_with_arm7_primer
4 bit lcd_interfacing_with_arm7_primer
 
LE1201-XJLink2
LE1201-XJLink2LE1201-XJLink2
LE1201-XJLink2
 
8051 development board project report
8051 development board project report8051 development board project report
8051 development board project report
 
LG master k10-S1 wiring conection cable
LG master k10-S1 wiring conection cableLG master k10-S1 wiring conection cable
LG master k10-S1 wiring conection cable
 
Galil ioc7007 catalog
Galil ioc7007 catalogGalil ioc7007 catalog
Galil ioc7007 catalog
 
Advanced motion controls dr100ee20a8bdc qd1
Advanced motion controls dr100ee20a8bdc qd1Advanced motion controls dr100ee20a8bdc qd1
Advanced motion controls dr100ee20a8bdc qd1
 
Advanced motion controls dr100ee40a8bdc
Advanced motion controls dr100ee40a8bdcAdvanced motion controls dr100ee40a8bdc
Advanced motion controls dr100ee40a8bdc
 
Advanced motion controls dr100ee30a40ndc
Advanced motion controls dr100ee30a40ndcAdvanced motion controls dr100ee30a40ndc
Advanced motion controls dr100ee30a40ndc
 
89 v51rd2bn
89 v51rd2bn89 v51rd2bn
89 v51rd2bn
 
Advanced motion controls dr100ee25a20nac
Advanced motion controls dr100ee25a20nacAdvanced motion controls dr100ee25a20nac
Advanced motion controls dr100ee25a20nac
 
VD-680-PS acf bondig machine user manual
VD-680-PS acf bondig machine user manualVD-680-PS acf bondig machine user manual
VD-680-PS acf bondig machine user manual
 
Advanced motion controls dr100ee15a40nac
Advanced motion controls dr100ee15a40nacAdvanced motion controls dr100ee15a40nac
Advanced motion controls dr100ee15a40nac
 

Similaire à GAL20V8 datasheet outlines discontinued devices

Dienhathe.com lv72 k-en_xx_2005
Dienhathe.com lv72 k-en_xx_2005Dienhathe.com lv72 k-en_xx_2005
Dienhathe.com lv72 k-en_xx_2005Dien Ha The
 
Solution on Portable Blood Pressure Monitor System
Solution on Portable Blood Pressure Monitor SystemSolution on Portable Blood Pressure Monitor System
Solution on Portable Blood Pressure Monitor SystemPremier Farnell
 
Basics of PLC
Basics of PLCBasics of PLC
Basics of PLCmohit oza
 
MICROPROCESSOR-LAB-VI-SEM.pdf
MICROPROCESSOR-LAB-VI-SEM.pdfMICROPROCESSOR-LAB-VI-SEM.pdf
MICROPROCESSOR-LAB-VI-SEM.pdfbhattparthiv23
 
Arauco ServoSistemas Presentation
Arauco ServoSistemas PresentationArauco ServoSistemas Presentation
Arauco ServoSistemas PresentationEduardo Condemarin
 
plc_training_manual.pdf
plc_training_manual.pdfplc_training_manual.pdf
plc_training_manual.pdfMarioHaguila
 
TechShanghai2016 - Reliable automotive-grade Isolators for new energy vehicles
TechShanghai2016 - Reliable automotive-grade Isolators for new energy vehiclesTechShanghai2016 - Reliable automotive-grade Isolators for new energy vehicles
TechShanghai2016 - Reliable automotive-grade Isolators for new energy vehiclesHardway Hou
 
At89 c2051 (3)
At89 c2051 (3)At89 c2051 (3)
At89 c2051 (3)angiey y
 
LM358 dual operational amplifier
LM358 dual operational amplifierLM358 dual operational amplifier
LM358 dual operational amplifierEasonchenng
 
PowerMate15 Technical Specification
PowerMate15 Technical SpecificationPowerMate15 Technical Specification
PowerMate15 Technical SpecificationRimsky Cheng
 
Cataloge ge 1.residential components_and_enclosures_dienhathe.com-2_red_line_...
Cataloge ge 1.residential components_and_enclosures_dienhathe.com-2_red_line_...Cataloge ge 1.residential components_and_enclosures_dienhathe.com-2_red_line_...
Cataloge ge 1.residential components_and_enclosures_dienhathe.com-2_red_line_...Dien Ha The
 
PIC16F877A C Programming.ppt
PIC16F877A C Programming.pptPIC16F877A C Programming.ppt
PIC16F877A C Programming.pptIlaiyarajaS1
 
Repair lexia 3 pcb to avoid activation relay, connection failure etc
Repair lexia 3 pcb to avoid activation relay, connection failure etcRepair lexia 3 pcb to avoid activation relay, connection failure etc
Repair lexia 3 pcb to avoid activation relay, connection failure etcspobd2
 
Siemens catalog tong hop gamma
Siemens catalog tong hop gammaSiemens catalog tong hop gamma
Siemens catalog tong hop gammaDien Ha The
 
INDUSTRIAL AUTOMATION ( SHUBHAM KURDIYA)
INDUSTRIAL AUTOMATION ( SHUBHAM KURDIYA)INDUSTRIAL AUTOMATION ( SHUBHAM KURDIYA)
INDUSTRIAL AUTOMATION ( SHUBHAM KURDIYA)Řőmĕő Šhűbhąm
 

Similaire à GAL20V8 datasheet outlines discontinued devices (20)

Dienhathe.com lv72 k-en_xx_2005
Dienhathe.com lv72 k-en_xx_2005Dienhathe.com lv72 k-en_xx_2005
Dienhathe.com lv72 k-en_xx_2005
 
Solution on Portable Blood Pressure Monitor System
Solution on Portable Blood Pressure Monitor SystemSolution on Portable Blood Pressure Monitor System
Solution on Portable Blood Pressure Monitor System
 
Basics of PLC
Basics of PLCBasics of PLC
Basics of PLC
 
MICROPROCESSOR-LAB-VI-SEM.pdf
MICROPROCESSOR-LAB-VI-SEM.pdfMICROPROCESSOR-LAB-VI-SEM.pdf
MICROPROCESSOR-LAB-VI-SEM.pdf
 
Arauco ServoSistemas Presentation
Arauco ServoSistemas PresentationArauco ServoSistemas Presentation
Arauco ServoSistemas Presentation
 
plc_training_manual.pdf
plc_training_manual.pdfplc_training_manual.pdf
plc_training_manual.pdf
 
Lexe1653 1
Lexe1653 1Lexe1653 1
Lexe1653 1
 
TechShanghai2016 - Reliable automotive-grade Isolators for new energy vehicles
TechShanghai2016 - Reliable automotive-grade Isolators for new energy vehiclesTechShanghai2016 - Reliable automotive-grade Isolators for new energy vehicles
TechShanghai2016 - Reliable automotive-grade Isolators for new energy vehicles
 
At89 c2051 (3)
At89 c2051 (3)At89 c2051 (3)
At89 c2051 (3)
 
89 c2051
89 c205189 c2051
89 c2051
 
LM358 dual operational amplifier
LM358 dual operational amplifierLM358 dual operational amplifier
LM358 dual operational amplifier
 
Hcpl2631 d
Hcpl2631 dHcpl2631 d
Hcpl2631 d
 
PowerMate15 Technical Specification
PowerMate15 Technical SpecificationPowerMate15 Technical Specification
PowerMate15 Technical Specification
 
z61ae.pdf
z61ae.pdfz61ae.pdf
z61ae.pdf
 
K9F1G08U0D
K9F1G08U0DK9F1G08U0D
K9F1G08U0D
 
Cataloge ge 1.residential components_and_enclosures_dienhathe.com-2_red_line_...
Cataloge ge 1.residential components_and_enclosures_dienhathe.com-2_red_line_...Cataloge ge 1.residential components_and_enclosures_dienhathe.com-2_red_line_...
Cataloge ge 1.residential components_and_enclosures_dienhathe.com-2_red_line_...
 
PIC16F877A C Programming.ppt
PIC16F877A C Programming.pptPIC16F877A C Programming.ppt
PIC16F877A C Programming.ppt
 
Repair lexia 3 pcb to avoid activation relay, connection failure etc
Repair lexia 3 pcb to avoid activation relay, connection failure etcRepair lexia 3 pcb to avoid activation relay, connection failure etc
Repair lexia 3 pcb to avoid activation relay, connection failure etc
 
Siemens catalog tong hop gamma
Siemens catalog tong hop gammaSiemens catalog tong hop gamma
Siemens catalog tong hop gamma
 
INDUSTRIAL AUTOMATION ( SHUBHAM KURDIYA)
INDUSTRIAL AUTOMATION ( SHUBHAM KURDIYA)INDUSTRIAL AUTOMATION ( SHUBHAM KURDIYA)
INDUSTRIAL AUTOMATION ( SHUBHAM KURDIYA)
 

Dernier

Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Kaya Weers
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...Karmanjay Verma
 
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...amber724300
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024TopCSSGallery
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructureitnewsafrica
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integrationmarketing932765
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkPixlogix Infotech
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...itnewsafrica
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...Wes McKinney
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesThousandEyes
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Nikki Chapple
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...BookNet Canada
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 

Dernier (20)

Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
 
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App Framework
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 

GAL20V8 datasheet outlines discontinued devices

  • 1. 5555 N.E. Moore Ct.  Hillsboro, Oregon 97124-6421  Phone (503) 268-8000  FAX (503) 268-8347 Internet: http://www.latticesemi.com GAL® 20V8 Device Datasheet September 2010 All Devices Discontinued! Product Change Notifications (PCNs) have been issued to discontinue all devices in this data sheet. The original datasheet pages have not been modified and do not reflect those changes. Please refer to the table below for reference PCN and current product status. Product Line Ordering Part Number Product Status Reference PCN GAL20V8B GAL20V8B-7LP Discontinued PCN#06-07 GAL20V8B-7LP GAL20V8B-10LP PCN#09-10 GAL20V8B-10LPN GAL20V8B-15LP PCN#13-10 GAL20V8B-15LPN GAL20V8B-25LP GAL20V8B-25LPN GAL20V8B-10LPI PCN#06-07 GAL20V8B-10LPNI GAL20V8B-15LPI PCN#09-10 GAL20V8B-15LPNI GAL20V8B-25LPI PCN#13-10 GAL20V8B-25LPNI GAL20V8B-15QP GAL20V8B-15QPN GAL20V8B-25QP GAL20V8B-25QPN GAL20V8B-20QPI PCN#09-10 GAL20V8B-20QPNI GAL20V8B-25QPI PCN#13-10 GAL20V8B-25QPNI GAL20V8B-15LJ GAL20V8B-15LJN GAL20V8B-25LJ GAL20V8B-25LJN GAL20V8B-15LJI PCN#06-07 GAL20V8B-15LJNI GAL20V8B-25LJI PCN#13-10 GAL20V8B-25LJNI GAL20V8B-15QJ GAL20V8B-15QJN
  • 2. 5555 N.E. Moore Ct.  Hillsboro, Oregon 97124-6421  Phone (503) 268-8000  FAX (503) 268-8347 Internet: http://www.latticesemi.com Product Line Ordering Part Number Product Status Reference PCN GAL20V8B (Cont’d) GAL20V8B-25QJ Discontinued PCN#13-10 GAL20V8B-25QJN GAL20V8B-20QJI PCN#09-10 GAL20V8B-20QJNI GAL20V8B-25QJI PCN#13-10 GAL20V8B-25QJNI GAL20V8C GAL20V8C-5LJ PCN#06-07 GAL20V8C-5LJN GAL20V8C-7LJ PCN#13-10 GAL20V8C-7LJN GAL20V8C-10LJ GAL20V8C-10LJN GAL20V8C-10LJI GAL20V8C-10LJNI
  • 3. GAL20V8 High Performance E2 CMOS PLD Generic Array Logic™ 1 2 28 NC I/CLK I I I I I I I NC NC NC GND I I I/OE I I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q Vcc I/O/Q I I 4 5 7 9 11 12 14 16 18 19 21 23 25 26 PLCC 1 12 13 24I/CLK I I I I I I I I I I GND Vcc I I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I I/OE 6 18 GAL20V8 Top View GAL 20V8 DIP Copyright © 2006 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. August 2006 Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com 20v8_07 Features • HIGH PERFORMANCE E2 CMOS® TECHNOLOGY — 5 ns Maximum Propagation Delay — Fmax = 166 MHz — 4 ns Maximum from Clock Input to Data Output — UltraMOS® Advanced CMOS Technology • 50% to 75% REDUCTION IN POWER FROM BIPOLAR — 75mA Typ Icc on Low Power Device — 45mA Typ Icc on Quarter Power Device • ACTIVE PULL-UPS ON ALL PINS • E2 CELL TECHNOLOGY — Reconfigurable Logic — Reprogrammable Cells — 100% Tested/100% Yields — High Speed Electrical Erasure (<100ms) — 20 Year Data Retention • EIGHT OUTPUT LOGIC MACROCELLS — Maximum Flexibility for Complex Logic Designs — Programmable Output Polarity — Also Emulates 24-pin PAL® Devices with Full Function/ Fuse Map/Parametric Compatibility • PRELOAD AND POWER-ON RESET OF ALL REGISTERS — 100% Functional Testability • APPLICATIONS INCLUDE: — DMA Control — State Machine Control — High Speed Graphics Processing — Standard Logic Speed Upgrade • ELECTRONIC SIGNATURE FOR IDENTIFICATION • LEAD-FREE PACKAGE OPTIONS Description The GAL20V8C, at 5ns maximum propagation delay time, com- bines a high performance CMOS process with Electrically Eras- able (E2 ) floating gate technology to provide the highest speed performance available in the PLD market. High speed erase times (<100ms) allow the devices to be reprogrammed quickly and ef- ficiently. The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. An important subset of the many architecture configura- tions possible with the GAL20V8 are the PAL architectures listed in the table of the macrocell description section. GAL20V8 devices are capable of emulating any of these PAL architectures with full function/fuse map/parametric compatibility. Unique test circuitry and reprogrammable cells allow completeAC, DC, and functional testing during manufacture. As a result, Lattice Semiconductor delivers 100% field programmability and function- ality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are specified. Functional Block Diagram Pin Configuration CLKI I I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I I I I I I I I I I I/OE I/CLK OE 8 8 8 8 8 8 8 8 OLMC OLMC OLMC OLMC OLMC OLMC OLMC IMUX IMUX PROGRAMMABLE AND-ARRAY (64X40) OLMC Lead-Free Package Options Available! A LL D EVIC ES D ISC O N TIN U ED
  • 4. 2 Specifications GAL20V8 Industrial Grade Specifications GAL20V8 Ordering Information Conventional Packaging Commercial Grade Specifications )sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP 5 3 4 511 JL5-C8V02LAG 1 CCLPdaeL-82 5.7 7 5 511 8V02LAG C JL7- CCLPdaeL-82 511 PL7-B8V02LAG 1 PIDcitsalPniP-42 01 01 7 511 8V02LAG C JL01- CCLPdaeL-82 511 PL01-B8V02LAG PIDcitsalPniP-42 51 21 01 55 PQ51-B8V02LAG PIDcitsalPniP-42 55 JQ51-B8V02LAG CCLPdaeL-82 09 PL51-B8V02LAG PIDcitsalPniP-42 09 JL51-B8V02LAG CCLPdaeL-82 52 51 21 55 PQ52-B8V02LAG PIDcitsalPniP-42 55 JQ52-B8V02LAG CCLPdaeL-82 09 PL52-B8V02LAG PIDcitsalPniP-42 09 JL52-B8V02LAG CCLPdaeL-82 )sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP 01 01 7 031 8V02LAG C IJL01- CCLPdaeL-82 031 IPL01-B8V02LAG 1 PIDcitsalPniP-42 031 IJL01-B8V02LAG CCLPdaeL-82 51 21 01 031 IPL51-B8V02LAG PIDcitsalPniP-42 031 IJL51-B8V02LAG CCLPdaeL-82 02 31 11 56 IPQ02-B8V02LAG PIDcitsalPniP-42 56 IJQ02-B8V02LAG CCLPdaeL-82 52 51 21 56 IPQ52-B8V02LAG PIDcitsalPniP-42 56 IJQ52-B8V02LAG CCLPdaeL-82 031 IPL52-B8V02LAG PIDcitsalPniP-42 031 IJL52-B8V02LAG CCLPdaeL-82 1. Discontinued per PCN #06-07. Contact Rochester Electronics for available inventory. A LL D EVIC ES D ISC O N TIN U ED
  • 5. Specifications GAL20V8 3 Part Number Description Industrial Grade Specifications Lead-Free Packaging Commercial Grade Specifications Blank = Commercial I = Industrial Grade PackagePowerL = Low Power Q = Quarter Power Speed (ns) XXXXXXXX XX X XX X Device Name _ P = Plastic DIP PN = Lead-free Plastic DIP J = PLCC JN = Lead-free PLCC GAL20V8C GAL20V8B )sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP 5 3 4 511 NJL5-C8V02LAG 1 CCLPdaeL-82eerF-daeL 5.7 7 5 511 8V02LAG C NJL7- eerF-daeL CCLPdaeL-82 511 NPL7-B8V02LAG 1 PIDcitsalPniP-42eerF-daeL 01 01 7 511 8V02LAG C NJL01- eerF-daeL CCLPdaeL-82 511 NPL01-B8V02LAG PIDcitsalPniP-42eerF-daeL 51 21 01 55 NJQ51-B8V02LAG CCLPdaeL-82eerF-daeL 55 NPQ51-B8V02LAG PIDcitsalPniP-42eerF-daeL 09 NJL51-B8V02LAG CCLPdaeL-82eerF-daeL 09 NPL51-B8V02LAG PIDcitsalPniP-42eerF-daeL 52 51 21 55 NJQ52-B8V02LAG CCLPdaeL-82eerF-daeL 55 NPQ52-B8V02LAG PIDcitsalPniP-42eerF-daeL 09 NJL52-B8V02LAG eerF-daeL CCLPdaeL-82 09 NPL52-B8V02LAG PIDcitsalPniP-42eerF-daeL )sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP 01 01 7 031 8V02LAG C INJL01- PIDcitsalPniP-82eerF-daeL 031 INPL01-B8V02LAG 1 PIDcitsalPniP-42eerF-daeL 51 21 01 031 INJL51-B8V02LAG CCLPdaeL-82eerF-daeL 031 INPL51-B8V02LAG PIDcitsalPniP-42eerF-daeL 02 31 11 56 INJQ02-B8V02LAG CCLPdaeL-82eerF-daeL 56 INPQ02-B8V02LAG PIDcitsalPniP-42eerF-daeL 52 51 21 56 INJQ52-B8V02LAG CCLPdaeL-82eerF-daeL 56 INPQ52-B8V02LAG PIDcitsalPniP-42eerF-daeL 031 INJL52-B8V02LAG CCLPdaeL-82eerF-daeL 031 INPL52-B8V02LAG PIDcitsalPniP-42eerF-daeL 1. Discontinued per PCN #06-07. Contact Rochester Electronics for available inventory. A LL D EVIC ES D ISC O N TIN U ED
  • 6. 4 Specifications GAL20V8 The following discussion pertains to configuring the output logic macrocell. It should be noted that actual implementation is accom- plished by development software/hardware and is completely trans- parent to the user. There are three global OLMC configuration modes possible: simple, complex, and registered. Details of each of these modes is illustrated in the following pages. Two global bits, SYN andAC0, control the mode configuration for all macrocells. The XOR bit of each macrocell controls the polarity of the output in any of the three modes, while theAC1 bit of each of the macrocells controls the in- put/output configuration. These two global and 16 individual archi- tecture bits define all possible configurations in a GAL20V8 . The information given on these architecture bits is only to give a bet- ter understanding of the device. Compiler software will transpar- ently set these architecture bits from the pin definitions, so the user should not need to directly manipulate these architecture bits. The following is a list of the PAL architectures that the GAL20V8 can emulate. It also shows the OLMC mode under which the devices emulate the PAL architecture. Software compilers support the three different global OLMC modes as different device types. These device types are listed in the table below. Most compilers have the ability to automatically select the device type, generally based on the register usage and output enable (OE) usage. Register usage on the device forces the soft- ware to choose the registered mode. All combinatorial outputs with OE controlled by the product term will force the software to choose the complex mode. The software will choose the simple mode only when all outputs are dedicated combinatorial without OE control. The different device types listed in the table can be used to override the automatic device selection by the software. For further details, refer to the compiler software manuals. When using compiler software to configure the device, the user must pay special attention to the following restrictions in each mode. In registered mode pin 1 and pin 13 (DIP pinout) are permanently configured as clock and output enable, respectively. These pins cannot be configured as dedicated inputs in the registered mode. In complex mode pin 1 and pin 13 become dedicated inputs and use the feedback paths of pin 22 and pin 15 respectively. Because of this feedback path usage, pin 22 and pin 15 do not have the feedback option in this mode. In simple mode all feedback paths of the output pins are routed via the adjacent pins. In doing so, the two inner most pins ( pins 18 and 19) will not have the feedback option as these pins are always configured as dedicated combinatorial output. Registered Complex Simple Auto Mode Select ABEL P20V8R P20V8C P20V8AS P20V8 CUPL G20V8MS G20V8MA G20V8AS G20V8 LOG/iC GAL20V8_R GAL20V8_C7 GAL20V8_C8 GAL20V8 OrCAD-PLD "Registered"1 "Complex"1 "Simple"1 GAL20V8A PLDesigner P20V8R2 P20V8C2 P20V8C2 P20V8A TANGO-PLD G20V8R G20V8C G20V8AS3 G20V8 1) Used with Configuration keyword. 2) Prior to Version 2.0 support. 3) Supported on Version 1.20 or later. PAL Architectures GAL20V8 Emulated by GAL20V8 Global OLMC Mode 20R8 Registered 20R6 Registered 20R4 Registered 20RP8 Registered 20RP6 Registered 20RP4 Registered 20L8 Complex 20H8 Complex 20P8 Complex 14L8 Simple 16L6 Simple 18L4 Simple 20L2 Simple 14H8 Simple 16H6 Simple 18H4 Simple 20H2 Simple 14P8 Simple 16P6 Simple 18P4 Simple 20P2 Simple Output Logic Macrocell (OLMC) Compiler Support for OLMC A LL D EVIC ES D ISC O N TIN U ED
  • 7. Specifications GAL20V8 5 In the Registered mode, macrocells are configured as dedicated registered outputs or as I/O functions. Architecture configurations available in this mode are similar to the common 20R8 and 20RP4 devices with various permutations of polarity, I/O and register placement. All registered macrocells share common clock and output enable control pins. Any macrocell can be configured as registered or I/ O. Up to eight registers or up to eight I/Os are possible in this mode. Dedicated input or output functions can be implemented as sub- sets of the I/O function. Registered outputs have eight product terms per output. I/Os have seven product terms per output. The JEDEC fuse numbers, including the User Electronic Signature (UES) fuses and the Product Term Disable (PTD) fuses, are shown on the logic diagram on the following page. Registered Configuration for Registered Mode - SYN=0. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=0 defines this output configuration. - Pin 1 controls common CLK for the registered outputs. - Pin 13 controls common OE for the registered outputs. - Pin 1 & Pin 13 are permanently configured as CLK & OE for registered output configuration. Combinatorial Configuration for Registered Mode - SYN=0. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1 defines this output configuration. - Pin 1 & Pin 13 are permanently configured as CLK & OE for registered output configuration.. Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically. D Q Q CLK OE XOR XOR Registered Mode A LL D EVIC ES D ISC O N TIN U ED
  • 8. 6 Specifications GAL20V8 DIP (PLCC) Package Pinouts OE 0000 PTD 2640 0280 0320 0600 0640 0920 0960 1240 1280 1560 1600 1880 1920 2200 2240 2520 OLMC OLMC XOR-2567 AC1-2639 OLMC XOR-2566 AC1-2638 OLMC XOR-2565 AC1-2637 OLMC XOR-2564 AC1-2636 XOR-2563 AC1-2635 OLMC XOR-2562 AC1-2634 OLMC OLMC XOR-2561 AC1-2633 XOR-2560 AC1-2632 11(13) 10(12) 9(11) 8(10) 7(9) 6(7) 5(6) 4(5) 3(4) 2(3) 1(2) 23(27) 22(26) 21(25) 20(24) 19(23) 18(21) 17(20) 16(19) 15(18) 14(17) 13(16) SYN-2704 AC0-2705 2703 2824 3632201612840 Registered Mode Logic Diagram A LL D EVIC ES D ISC O N TIN U ED
  • 9. Specifications GAL20V8 7 In the Complex mode, macrocells are configured as output only or I/O functions. Architecture configurations available in this mode are similar to the common 20L8 and 20P8 devices with programmable polarity in each macrocell. Up to six I/Os are possible in this mode. Dedicated inputs or outputs can be implemented as subsets of the I/O function. The two outer most macrocells (pins 15 & 22) do not have input capability. De- signs requiring eight I/Os can be implemented in the Registered mode. All macrocells have seven product terms per output. One product term is used for programmable output enable control. Pins 1 and 13 are always available as data inputs into the AND array. The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page. Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically. Combinatorial I/O Configuration for Complex Mode - SYN=1. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1. - Pin 16 through Pin 21 are configured to this function. Combinatorial Output Configuration for Complex Mode - SYN=1. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1. - Pin 15 and Pin 22 are configured to this function. XOR XOR Complex Mode A LL D EVIC ES D ISC O N TIN U ED
  • 10. 8 Specifications GAL20V8 DIP (PLCC) Package Pinouts 0000 PTD 2640 0280 0320 0600 0640 0920 0960 1240 1280 1560 1600 1880 1920 2200 2240 2520 SYN-2704 AC0-2705 OLMC OLMC OLMC OLMC OLMC OLMC OLMC OLMC 23(27) 22(26) 21(25) 20(24) 19(23) 18(21) 17(20) 16(19) 15(18) 14(17) 13(16) 11(13) 10(12) 9(11) 8(10) 7(9) 6(7) 5(6) 4(5) 3(4) 2(3) 1(2) 2703 XOR-2567 AC1-2639 XOR-2566 AC1-2638 XOR-2565 AC1-2637 XOR-2564 AC1-2636 XOR-2563 AC1-2635 XOR-2562 AC1-2634 XOR-2561 AC1-2633 XOR-2560 AC1-2632 2824 3632201612840 Complex Mode Logic Diagram A LL D EVIC ES D ISC O N TIN U ED
  • 11. Specifications GAL20V8 9 Combinatorial Output with Feedback Configuration for Simple Mode - SYN=1. - AC0=0. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=0 defines this configuration. - All OLMC except pins 18 & 19 can be configured to this function. Combinatorial Output Configuration for Simple Mode - SYN=1. - AC0=0. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=0 defines this configuration. - Pins 18 & 19 are permanently configured to this function. Dedicated Input Configuration for Simple Mode - SYN=1. - AC0=0. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1 defines this configuration. - All OLMC except pins 18 & 19 can be configured to this function. Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically. In the Simple mode, pins are configured as dedicated inputs or as dedicated, always active, combinatorial outputs. Architecture configurations available in this mode are similar to the common 14L8 and 16P6 devices with many permutations of ge- neric output polarity or input choices. All outputs in the simple mode have a maximum of eight product terms that can control the logic. In addition, each output has pro- grammable polarity. Pins 1 and 13 are always available as data inputs into the AND array. The “center” two macrocells (pins 18 and 19) cannot be used in the input configuration. The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page. Vcc XOR Vcc XOR Simple Mode A LL D EVIC ES D ISC O N TIN U ED
  • 12. 10 Specifications GAL20V8 DIP (PLCC) Package Pinouts 0000 PTD 2640 0280 0320 0600 0640 0920 0960 1240 1280 1560 1600 1880 1920 2200 2240 2520 OLMC OLMC OLMC OLMC OLMC OLMC OLMC XOR-2560 AC1-2632 OLMC XOR-2561 AC1-2633 XOR-2562 AC1-2634 XOR-2563 AC1-2635 XOR-2564 AC1-2636 XOR-2565 AC1-2637 XOR-2566 AC1-2638 XOR-2567 AC1-2639 23(27) 22(26) 21(25) 20(24) 19(23) 18(21) 17(20) 16(19) 15(18) 14(17) 13(16) SYN-2704 AC0-2705 2703 11(13) 10(12) 9(11) 8(10) 7(9) 6(7) 5(6) 4(5) 3(4) 2(3) 1(2) 2824 3632201612840 Simple Mode Logic Diagram A LL D EVIC ES D ISC O N TIN U ED
  • 13. Specifications GAL20V8 11 Specifications GAL20V8C VIL Input Low Voltage Vss – 0.5 — 0.8 V VIH Input High Voltage 2.0 — Vcc+1 V IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 μA IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 μA VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V IOL Low Level Output Current — — 16 mA IOH High Level Output Current — — –3.2 mA IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 — –150 mA Recommended Operating Conditions Commercial Devices: Ambient Temperature (TA ) ............................... 0 to 75°C Supply voltage (VCC ) with Respect to Ground ..................... +4.75 to +5.25V Industrial Devices: Ambient Temperature (TA ) ........................... –40 to 85°C Supply voltage (VCC ) with Respect to Ground ..................... +4.50 to +5.50V SYMBOL PARAMETER CONDITION MIN. TYP.3 MAX. UNITS COMMERCIAL ICC Operating Power VIL = 0.5V VIH = 3.0V L -5/-7/-10 — 75 115 mA Supply Current ftoggle = 15MHz Outputs Open INDUSTRIAL ICC Operating Power VIL = 0.5V VIH = 3.0V L-10 — 75 130 mA Supply Current ftoggle = 15MHz Outputs Open 1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 °C Absolute Maximum Ratings(1) Supply voltage VCC ...................................... –0.5 to +7V Input voltage applied .......................... –2.5 to VCC +1.0V Off-state output voltage applied ......... –2.5 to VCC +1.0V Storage Temperature ................................ –65 to 150°C Ambient Temperature with Power Applied ........................................ –55 to 125°C 1.Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). DC Electrical Characteristics Over Recommended Operating Conditions (Unless Otherwise Specified) A LL D EVIC ES D ISC O N TIN U ED
  • 14. 12 Specifications GAL20V8Specifications GAL20V8C -7 MIN. MAX. -10 MIN. MAX. tpd A Input or I/O to 8 outputs switching 1 5 3 7.5 3 10 ns Comb. Output 1 output switching — — — 7 — — ns tco A Clock to Output Delay 1 4 2 5 2 7 ns tcf2 — Clock to Feedback Delay — 3 — 3 — 6 ns tsu — Setup Time, Input or Feedback before Clock↑ 3 — 5 — 7.5 — ns th — Hold Time, Input or Feedback after Clock↑ 0 — 0 — 0 — ns A Maximum Clock Frequency with 142.8 — 100 — 66.7 — MHz External Feedback, 1/(tsu + tco) fmax3 A Maximum Clock Frequency with 166 — 125 — 71.4 — MHz Internal Feedback, 1/(tsu + tcf) A Maximum Clock Frequency with 166 — 125 — 83.3 — MHz No Feedback twh — Clock Pulse Duration, High 3 — 4 — 6 — ns twl — Clock Pulse Duration, Low 3 — 4 — 6 — ns ten B Input or I/O to Output Enabled 1 6 3 9 3 10 ns B OE to Output Enabled 1 6 2 6 2 10 ns tdis C Input or I/O to Output Disabled 1 5 2 9 2 10 ns C OE to Output Disabled 1 5 1.5 6 1.5 10 ns UNITSPARAMETER TEST COND1 . DESCRIPTION COM/INDCOMCOM -5 MIN. MAX. 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section. 3) Refer to fmax Descriptions section. Characterized initially and after any design or process changes that may affect these parameters. SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V *Characterized but not 100% tested AC Switching Characteristics Over Recommended Operating Conditions Capacitance (TA = 25°C, f = 1.0 MHz) A LL D EVIC ES D ISC O N TIN U ED
  • 15. Specifications GAL20V8 13 Specifications GAL20V8B INDUSTRIAL ICC Operating Power VIL = 0.5V VIH = 3.0V L -10/-15/-25 — 75 130 mA Supply Current ftoggle = 15MHz Outputs Open Q -20/-25 — 45 65 mA COMMERCIAL ICC Operating Power VIL = 0.5V VIH = 3.0V L -7/-10 — 75 115 mA Supply Current ftoggle = 15MHz Outputs Open L -15/-25 — 75 90 mA Q -15/-25 — 45 55 mA Recommended Operating Conditions Commercial Devices: Ambient Temperature (TA ) ............................... 0 to 75°C Supply voltage (VCC ) with Respect to Ground ..................... +4.75 to +5.25V Industrial Devices: Ambient Temperature (TA ) ........................... –40 to 85°C Supply voltage (VCC ) with Respect to Ground ..................... +4.50 to +5.50V DC Electrical Characteristics Over Recommended Operating Conditions (Unless Otherwise Specified) SYMBOL PARAMETER CONDITION MIN. TYP.3 MAX. UNITS VIL Input Low Voltage Vss – 0.5 — 0.8 V VIH Input High Voltage 2.0 — Vcc+1 V IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 μA IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 μA VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V IOL Low Level Output Current — — 24 mA IOH High Level Output Current — — –3.2 mA IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 — –150 mA 1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 °C Absolute Maximum Ratings(1) Supply voltage VCC ...................................... –0.5 to +7V Input voltage applied .......................... –2.5 to VCC +1.0V Off-state output voltage applied ......... –2.5 to VCC +1.0V Storage Temperature ................................ –65 to 150°C Ambient Temperature with Power Applied ........................................ –55 to 125°C 1.Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). A LL D EVIC ES D ISC O N TIN U ED
  • 16. 14 Specifications GAL20V8Specifications GAL20V8B tpd A Input or I/O to 8 outputs switching 3 7.5 3 10 3 15 3 20 3 25 ns Comb. Output 1 output switching — 7 — — — — — — — — ns tco A Clock to Output Delay 2 5 2 7 2 10 2 11 2 12 ns tcf2 — Clock to Feedback Delay — 3 — 6 — 8 — 9 — 10 ns tsu — Setup Time, Input or Fdbk before Clk↑ 7 — 10 — 12 — 13 — 15 — ns th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — ns A Maximum Clock Frequency with 83.3 — 58.8 — 45.5 — 41.6 — 37 — MHz External Feedback, 1/(tsu + tco) fmax3 A Maximum Clock Frequency with 100 — 62.5 — 50 — 45.4 — 40 — MHz Internal Feedback, 1/(tsu + tcf) A Maximum Clock Frequency with 100 — 62.5 — 62.5 — 50 — 41.7 — MHz No Feedback twh — Clock Pulse Duration, High 5 — 8 — 8 — 10 — 12 — ns twl — Clock Pulse Duration, Low 5 — 8 — 8 — 10 — 12 — ns ten B Input or I/O to Output Enabled 3 9 3 10 — 15 — 18 — 25 ns B OE to Output Enabled 2 6 2 10 — 15 — 18 — 20 ns tdis C Input or I/O to Output Disabled 2 9 2 10 — 15 — 18 — 25 ns C OE to Output Disabled 1.5 6 1.5 10 — 15 — 18 — 20 ns UNITS 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section. 3) Refer to fmax Descriptions section. -25 MIN. MAX. -20 MIN. MAX. -15 MIN. MAX. -10 MIN. MAX. PARAM. DESCRIPTIONTEST COND1 . -7 MIN. MAX. SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V *Characterized but not 100% tested. COM COM / IND COM / IND IND COM / IND AC Switching Characteristics Over Recommended Operating Conditions Capacitance (TA = 25°C, f = 1.0 MHz) A LL D EVIC ES D ISC O N TIN U ED
  • 17. Specifications GAL20V8 15 Registered OutputCombinatorial Output OE to Output Enable/DisableInput or I/O to Output Enable/Disable fmax with Feedback Clock Width COMBINATIONAL OUTPUT VALID INPUT INPUT or I/O FEEDBACK tpd CLK (w/o fb) 1/fmax twltwh INPUT or I/O FEEDBACK REGISTERED OUTPUT CLK VALID INPUT (external fdbk) tsu tco th 1/fmax OE REGISTERED OUTPUT tentdis CLK REGISTERED FEEDBACK tcf tsu 1/fmax (internal fdbk) COMBINATIONAL OUTPUT INPUT or I/O FEEDBACK tentdis Switching Waveforms A LL D EVIC ES D ISC O N TIN U ED
  • 18. 16 Specifications GAL20V8 fmax with Internal Feedback 1/(tsu+tcf) Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd. fmax with No Feedback Note: fmax with no feedback may be less than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%. GAL20V8C Output Load Conditions (see figure) Test Condition R1 R2 CL A 200Ω 200Ω 50pF B Active High ∞ 200Ω 50pF Active Low 200Ω 200Ω 50pF C Active High ∞ 200Ω 5pF Active Low 200Ω 200Ω 5pF TEST POINT C *L FROM OUTPUT (O/Q) UNDER TEST +5V *C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE R2 R1 GAL20V8B Output Load Conditions (see figure) Test Condition R1 R2 CL A 200Ω 390Ω 50pF B Active High ∞ 390Ω 50pF Active Low 200Ω 390Ω 50pF C Active High ∞ 390Ω 5pF Active Low 200Ω 390Ω 5pF CLK REGISTER LOGIC ARRAY tcf tpd fmax with External Feedback 1/(tsu+tco) Note: fmax with external feedback is calculated from measured tsu and tco. REGISTER LOGIC ARRAY tcotsu CL K Input Pulse Levels GND to 3.0V Input Rise and GAL20V8B 2 – 3ns 10% – 90% Fall Times GAL20V8C 1.5ns 10% – 90% Input Timing Reference Levels 1.5V Output Timing Reference Levels 1.5V Output Load See Figure 3-state levels are measured 0.5V from steady-state active level. REGISTER LOGIC ARRAY CLK tsu + th fmax Descriptions Switching Test Conditions A LL D EVIC ES D ISC O N TIN U ED
  • 19. Specifications GAL20V8 17 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 - 6 0 0 - 2 0 - 4 0 0 Input Voltage (Volts) InputCurrent(uA) Electronic Signature An electronic signature is provided in every GAL20V8 device. It contains 64 bits of reprogrammable memory that can contain user defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell. NOTE: The electronic signature is included in checksum calcula- tions. Changing the electronic signature will alter the checksum. Security Cell A security cell is provided in the GAL20V8 devices to prevent un- authorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is pro- grammed. The Electronic Signature is always available to the user, regardless of the state of this control cell. Latch-Up Protection GAL20V8 devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias minimizes the potential of latch-up caused by negative input undershoots. Ad- ditionally, outputs are designed with n-channel pull-ups instead of the traditional p-channel pull-ups in order to eliminate latch-up due to output overshoots. Device Programming GAL devices are programmed using a Lattice Semiconductor- approved Logic Programmer, available from a number of manu- facturers. Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle. Typical Input Pull-up Characteristic Output Register Preload When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because, in system operation, certain events occur that may throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions. GAL20V8 devices include circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing text vectors perform output register preload automatically. Input Buffers GAL20V8 devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices. The GAL20V8 input and I/O pins have built-in active pull-ups. As a result, unused inputs and I/O's will float to a TTL "high" (logical "1"). Lattice Semiconductor recommends that all unused inputs and tri-stated I/O pins be connected to another active input, VCC, or Ground. Doing this will tend to improve noise immunity and re- duce ICC for the device. A LL D EVIC ES D ISC O N TIN U ED
  • 20. 18 Specifications GAL20V8 Typ. Vref = 3.2V Typical Output Typ. Vref = 3.2V Typical Input Vcc PIN Vcc Vref Active Pull-up Circuit ESD Protection Circuit ESD Protection Circuit Vcc PIN Vcc PIN VrefTri-State Control Active Pull-up Circuit Feedback (To Input Buffer) PIN Feedback Data Output Circuitry within the GAL20V8 provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, 1μs MAX). As a result, the state on the registered output pins (if they are enabled) will always be high on power-up, regardless of the programmed polarity of the output pins. This feature can greatly simplify state machine design by pro- viding a known state on power-up. Because of the asynchronous nature of system power-up, some conditions must be met to provide Vcc CLK INTERNAL REGISTER Q - OUTPUT FEEDBACK/EXTERNAL OUTPUT REGISTER Vcc (min.) tpr Internal Register Reset to Logic "0" Device Pin Reset to Logic "1" twl tsu a valid power-up reset of the device. First, the VCC rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time.As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements. Power-Up Reset Input/Output Equivalent Schematics A LL D EVIC ES D ISC O N TIN U ED
  • 21. Specifications GAL20V8 19 Delta Tpd vs # of Outputs Switching Number of Outputs Switching DeltaTpd(ns) -1 -0.75 -0.5 -0.25 0 1 2 3 4 5 6 7 8 RISE FALL Delta Tco vs # of Outputs Switching Number of Outputs Switching DeltaTco(ns) -1 -0.75 -0.5 -0.25 0 1 2 3 4 5 6 7 8 RISE FALL Delta Tpd vs Output Loading Output Loading (pF) DeltaTpd(ns) -2 0 2 4 6 8 0 50 100 150 200 250 300 RISE FALL Delta Tco vs Output Loading Output Loading (pF) DeltaTco(ns) -2 0 2 4 6 8 0 50 100 150 200 250 300 RISE FALL Normalized Tpd vs Vcc Supply Voltage (V) NormalizedTpd 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tco vs Vcc Supply Voltage (V) NormalizedTco 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 RISE FALL Normalized Tsu vs Vcc Supply Voltage (V) NormalizedTsu 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tpd vs Temp Temperature (deg. C) NormalizedTpd 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Normalized Tco vs Temp Temperature (deg. C) NormalizedTco 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 RISE FALL Normalized Tsu vs Temp Temperature (deg. C) NormalizedTsu 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 -55 -25 0 25 50 75 100 125 PT H->L PT L->H GAL20V8C: Typical AC and DC Characteristic Diagrams A LL D EVIC ES D ISC O N TIN U ED
  • 22. 20 Specifications GAL20V8 Vol vs Iol Iol (mA) Vol(V) 0 0.5 1 1.5 2 0.00 20.00 40.00 60.00 80.00 Voh vs Ioh Ioh(mA) Voh(V) 0 1 2 3 4 5 0.00 10.00 20.00 30.00 40.00 50.00 Voh vs Ioh Ioh(mA) Voh(V) 3.25 3.5 3.75 4 4.25 0.00 1.00 2.00 3.00 4.00 Normalized Icc vs Vcc Supply Voltage (V) NormalizedIcc 0.80 0.90 1.00 1.10 1.20 4.50 4.75 5.00 5.25 5.50 Normalized Icc vs Temp Temperature (deg. C) NormalizedIcc 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 Normalized Icc vs Freq. Frequency (MHz)NormalizedIcc 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 0 25 50 75 100 Delta Icc vs Vin (1 input) Vin (V) DeltaIcc(mA) 0 2 4 6 8 10 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Input Clamp (Vik) Vik (V) Iik(mA) 0 5 10 15 20 25 30 35 40 45 -2.00 -1.50 -1.00 -0.50 0.00 GAL20V8C: Typical AC and DC Characteristic Diagrams A LL D EVIC ES D ISC O N TIN U ED
  • 23. Specifications GAL20V8 21 Normalized Tpd vs Vcc Supply Voltage (V) NormalizedTpd 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tco vs Vcc Supply Voltage (V) NormalizedTco 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 RISE FALL Normalized Tsu vs Vcc Supply Voltage (V) NormalizedTsu 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tpd vs Temp Temperature (deg. C) NormalizedTpd 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Normalized Tco vs Temp Temperature (deg. C) NormalizedTco 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 RISE FALL Normalized Tsu vs Temp Temperature (deg. C) NormalizedTsu 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Delta Tpd vs # of Outputs Switching Number of Outputs Switching DeltaTpd(ns) -2 -1.5 -1 -0.5 0 1 2 3 4 5 6 7 8 RISE FALL Delta Tco vs # of Outputs Switching Number of Outputs Switching DeltaTco(ns) -2 -1.5 -1 -0.5 0 1 2 3 4 5 6 7 8 RISE FALL Delta Tpd vs Output Loading Output Loading (pF) DeltaTpd(ns) -2 0 2 4 6 8 10 0 50 100 150 200 250 300 RISE FALL Delta Tco vs Output Loading Output Loading (pF) DeltaTco(ns) -2 0 2 4 6 8 10 0 50 100 150 200 250 300 RISE FALL GAL20V8B-7/-10: Typical AC and DC Characteristic Diagrams A LL D EVIC ES D ISC O N TIN U ED
  • 24. 22 Specifications GAL20V8 Vol vs Iol Iol (mA) Vol(V) 0 0.25 0.5 0.75 1 0.00 20.00 40.00 60.00 80.00 100.00 Voh vs Ioh Ioh(mA) Voh(V) 0 1 2 3 4 5 0.00 10.00 20.00 30.00 40.00 50.00 60.00 Voh vs Ioh Ioh(mA) Voh(V) 3.5 3.75 4 4.25 4.5 0.00 1.00 2.00 3.00 4.00 Normalized Icc vs Vcc Supply Voltage (V) NormalizedIcc 0.80 0.90 1.00 1.10 1.20 4.50 4.75 5.00 5.25 5.50 Normalized Icc vs Temp Temperature (deg. C) NormalizedIcc 0.8 0.9 1 1.1 1.2 -55 -25 0 25 50 75 100 125 Normalized Icc vs Freq. Frequency (MHz)NormalizedIcc 0.80 0.90 1.00 1.10 1.20 1.30 0 25 50 75 100 Delta Icc vs Vin (1 input) Vin (V) DeltaIcc(mA) 0 2 4 6 8 10 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Input Clamp (Vik) Vik (V) Iik(mA) 0 10 20 30 40 50 60 70 80 90 100 -2.00 -1.50 -1.00 -0.50 0.00 GAL20V8B-7/-10: Typical AC and DC Characteristic Diagrams A LL D EVIC ES D ISC O N TIN U ED
  • 25. Specifications GAL20V8 23 Normalized Tpd vs Vcc Supply Voltage (V) NormalizedTpd 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tco vs Vcc Supply Voltage (V) NormalizedTco 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 RISE FALL Normalized Tsu vs Vcc Supply Voltage (V) NormalizedTsu 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tpd vs Temp Temperature (deg. C) NormalizedTpd 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Normalized Tco vs Temp Temperature (deg. C) NormalizedTco 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 RISE FALL Normalized Tsu vs Temp Temperature (deg. C) NormalizedTsu 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Delta Tpd vs # of Outputs Switching Number of Outputs Switching DeltaTpd(ns) -2 -1.5 -1 -0.5 0 1 2 3 4 5 6 7 8 RISE FALL Delta Tco vs # of Outputs Switching Number of Outputs Switching DeltaTco(ns) -2 -1.5 -1 -0.5 0 1 2 3 4 5 6 7 8 RISE FALL Delta Tpd vs Output Loading Output Loading (pF) DeltaTpd(ns) -4 -2 0 2 4 6 8 10 0 50 100 150 200 250 300 RISE FALL Delta Tco vs Output Loading Output Loading (pF) DeltaTco(ns) -4 -2 0 2 4 6 8 10 0 50 100 150 200 250 300 RISE FALL GAL20V8B-15/-25: Typical AC and DC Characteristic Diagrams A LL D EVIC ES D ISC O N TIN U ED
  • 26. 24 Specifications GAL20V8 Vol vs Iol Iol (mA) Vol(V) 0 0.5 1 1.5 2 0.00 20.00 40.00 60.00 80.00 100.00 Voh vs Ioh Ioh(mA) Voh(V) 0 1 2 3 4 5 0.00 10.00 20.00 30.00 40.00 50.00 60.00 Voh vs Ioh Ioh(mA) Voh(V) 3.25 3.5 3.75 4 4.25 0.00 1.00 2.00 3.00 4.00 Normalized Icc vs Vcc Supply Voltage (V) NormalizedIcc 0.80 0.90 1.00 1.10 1.20 4.50 4.75 5.00 5.25 5.50 Normalized Icc vs Temp Temperature (deg. C) NormalizedIcc 0.8 0.9 1 1.1 1.2 -55 -25 0 25 50 75 100 125 Normalized Icc vs Freq. Frequency (MHz) NormalizedIcc 0.80 0.90 1.00 1.10 1.20 1.30 1.40 0 25 50 75 100 Delta Icc vs Vin (1 input) Vin (V) DeltaIcc(mA) 0 2 4 6 8 10 12 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Input Clamp (Vik) Vik (V) Iik(mA) 0 10 20 30 40 50 60 70 80 90 100 -2.00 -1.50 -1.00 -0.50 0.00 GAL20V8B-15/-25: Typical AC and DC Characteristic Diagrams A LL D EVIC ES D ISC O N TIN U ED
  • 27. Specifications GAL20V8 25 Revision History Date Version Change Summary - 20v8_06 Previous Lattice release. August 2006 20v8_07 Updated for lead-free package options. A LL D EVIC ES D ISC O N TIN U ED