Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Chapter 6 Review (Geo) (2009)

1 146 vues

Publié le

Publié dans : Sports, Technologie
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Chapter 6 Review (Geo) (2009)

  1. 2. LAST NIGHT’S HW
  2. 3. Back to Clock Home 01 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 Classroom Timer 00 2 Minutes
  3. 4. Back to Clock Home 00 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 Classroom Timer 00 1 Minute
  4. 14. Chapter 6 Review Need: -Notes -Conjecture List
  5. 15. © POLYGON SUM CONJECTURE The sum of all the angles in an n -gon (any polygon) is (n–2)180.
  6. 16. © EQUIANGULAR POLYGON CONJECTURE The measure of one angle in any equiangular polygon can be found with the expression:
  7. 17. © POLYGON EXTERIOR ANGLE CONJECTURE The sum of the exterior angles in any polygon is 360 degrees
  8. 18. Review KITE A quadrilateral with exactly 2 pairs of distinct congruent consecutive sides Vertex Angles Non-vertex Angles NO PARALLEL SIDES!!!
  9. 19. OBSERVATIONS © KITE DIAGONALS CONJECTURE Diagonals of a kite are perpendicular
  10. 20. OBSERVATIONS © KITE DIAGONAL BISECTOR CONJ. The diagonal connecting the vertex angles bisectors the non-vertex angle diagonal
  11. 21. OBSERVATIONS © KITE ANGLES CONJECTURE Non-vertex angles of a kite are congruent
  12. 22. OBSERVATIONS © KITE ANGLE BISECTOR CONJECTURE The vertex angles of a kite are bisected by the vertex diagonal
  13. 23. Review TRAPEZOID A quadrilateral with exactly one pair of parallel sides Base Angles Base Angles Base 1 Base 2
  14. 24. Review TRAPEZOID A quadrilateral with exactly one pair of parallel sides
  15. 25. OBSERVATIONS © TRAPEZOID CONSECUTIVE ANGLE CONJECTURE Consecutive angles between bases are supplementary
  16. 26. OBSERVATIONS © ISOSCELES TRAPEZOID CONJECTURE Base angles in an isosceles trapezoid are congruent
  17. 27. OBSERVATIONS © ISOSCELES TRAPEZOID DIAGONAL CONJECTURE Diagonals in an isosceles trapezoid are congruent
  18. 28. OBSERVATIONS © TRIANGLE MIDSEGMENT CONJECTURE The midsegment is parallel to the third side and half the length of the third.
  19. 29. OBSERVATIONS © TRAPEZOID MIDSEGMENT CONJECTURE The midsegment of a trapezoid is parallel to the bases and its length is the average of the two bases.
  20. 30. Review PARALLELOGRAM A quadrilateral with 2 pairs of opposite sides that are parallel. Opposites sides are parallel
  21. 31. Review PARALLELOGRAM A quadrilateral with 2 pairs of opposite sides that are parallel. Opposites sides are congruent
  22. 32. Review PARALLELOGRAM A quadrilateral with 2 pairs of opposite sides that are parallel. Opposites angles are congruent
  23. 33. Review PARALLELOGRAM A quadrilateral with 2 pairs of opposite sides that are parallel. Consecutive angles are supplementary
  24. 34. Review PARALLELOGRAM A quadrilateral with 2 pairs of opposite sides that are parallel. Diagonals bisect each other
  25. 35. What is a Parallelogram? <ul><li>Opposite sides are parallel </li></ul><ul><li>Opposite sides are congruent </li></ul><ul><li>Opposite angles are equal </li></ul><ul><li>Consecutive angles supplementary </li></ul><ul><li>Diagonals bisect eachother </li></ul>
  26. 36. What is a Rectangle? <ul><li>Rectangles are special parallelograms </li></ul><ul><ul><li>Has all the properties of a parallelogram </li></ul></ul><ul><li>All angles are congruent </li></ul><ul><ul><li>Each angle is 90 ° </li></ul></ul>
  27. 37. What is a Rhombus? <ul><li>Rectangles are special parallelograms </li></ul><ul><ul><li>Has all the properties of a parallelogram </li></ul></ul><ul><li>Has four congruent sides </li></ul><ul><li>Sometimes called a diamond </li></ul>
  28. 38. What is a Square? <ul><li>Squares are special parallelograms </li></ul><ul><ul><li>Has all the properties of a parallelogram </li></ul></ul><ul><li>A square is a kind of rectangle </li></ul><ul><ul><li>Each angle is 90 ° </li></ul></ul><ul><li>A square is also a special rhombus </li></ul><ul><ul><li>All sides are congruent </li></ul></ul>
  29. 39. What is a Square? <ul><li>A square is an equilateral rectangle </li></ul><ul><li>A square is an equiangular rhombus </li></ul><ul><li>A regular quadrilateral </li></ul>
  30. 41. HOMEWORK Packet

×