SlideShare a Scribd company logo
Soumettre la recherche
Mettre en ligne
S’identifier
S’inscrire
Recurrence relations
Signaler
IIUM
Suivre
Student à IIUM
5 Mar 2015
•
0 j'aime
•
14,560 vues
1
sur
18
Recurrence relations
5 Mar 2015
•
0 j'aime
•
14,560 vues
Télécharger maintenant
Télécharger pour lire hors ligne
Signaler
Formation
discrete math
IIUM
Suivre
Student à IIUM
Recommandé
recurrence relations
Anurag Cheela
8.7K vues
•
21 diapositives
Recurrence relation
Ajay Chimmani
5.6K vues
•
5 diapositives
Generating function
Kongunadu College of Engineering and Technology
4.3K vues
•
15 diapositives
CMSC 56 | Lecture 8: Growth of Functions
allyn joy calcaben
421 vues
•
73 diapositives
3. recurrence relation
Rajandeep Gill
6K vues
•
32 diapositives
recurence solutions
soumya8396
2.6K vues
•
14 diapositives
Contenu connexe
Tendances
Solving linear homogeneous recurrence relations
Dr. Maamoun Ahmed
4.7K vues
•
11 diapositives
15 puzzle problem using branch and bound
Abhishek Singh
25.4K vues
•
8 diapositives
Pigeonhole Principle
nielsoli
10.1K vues
•
15 diapositives
Application of interpolation in CSE
Md. Tanvir Hossain
6.1K vues
•
31 diapositives
Strassen's matrix multiplication
Megha V
826 vues
•
12 diapositives
Power series
Dr. Nirav Vyas
5.6K vues
•
48 diapositives
Tendances
(20)
Solving linear homogeneous recurrence relations
Dr. Maamoun Ahmed
•
4.7K vues
15 puzzle problem using branch and bound
Abhishek Singh
•
25.4K vues
Pigeonhole Principle
nielsoli
•
10.1K vues
Application of interpolation in CSE
Md. Tanvir Hossain
•
6.1K vues
Strassen's matrix multiplication
Megha V
•
826 vues
Power series
Dr. Nirav Vyas
•
5.6K vues
Secant method
Nafiz Fuad
•
3K vues
Lesson 12: Linear Independence
Matthew Leingang
•
4.9K vues
Infinite sequence and series
Bhavik A Shah
•
13.5K vues
Asymptotic Notation
Protap Mondal
•
4K vues
Time and space complexity
Ankit Katiyar
•
98.5K vues
Relations in Discrete Math
Pearl Rose Cajenta
•
9.6K vues
Regular expressions
Ratnakar Mikkili
•
1.4K vues
Graphs - Discrete Math
Sikder Tahsin Al-Amin
•
12.8K vues
Principle of mathematical induction
Kriti Varshney
•
19K vues
02 order of growth
Hira Gul
•
8.8K vues
2D Array
Ehatsham Riaz
•
3.2K vues
Chapter 2: Relations
nszakir
•
23.3K vues
CONVERGENCE.ppt
Triveni Prabaakar
•
881 vues
Cs419 lec10 left recursion and left factoring
Arab Open University and Cairo University
•
18.5K vues
Similaire à Recurrence relations
Relations digraphs
IIUM
21.4K vues
•
32 diapositives
Integers and matrices (slides)
IIUM
2.3K vues
•
30 diapositives
Relations and Functions.pdf
GhanshyamGUPTA61
9 vues
•
239 diapositives
co.pptx
SalarBasheer
9 vues
•
27 diapositives
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Demetrio Ccesa Rayme
131 vues
•
18 diapositives
11.3 Geometric Sequences and Series
smiller5
444 vues
•
23 diapositives
Similaire à Recurrence relations
(20)
Relations digraphs
IIUM
•
21.4K vues
Integers and matrices (slides)
IIUM
•
2.3K vues
Relations and Functions.pdf
GhanshyamGUPTA61
•
9 vues
co.pptx
SalarBasheer
•
9 vues
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Demetrio Ccesa Rayme
•
131 vues
11.3 Geometric Sequences and Series
smiller5
•
444 vues
Counting i (slides)
IIUM
•
1.6K vues
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Vladimir Godovalov
•
592 vues
Lesson 1a_Sequence.pptx
BaldonMarcelo1
•
6 vues
MT102 Лекц 10
ssuser184df1
•
60 vues
Lecture 3
RajKumar382958
•
95 vues
Lecture 3
RajKumar382958
•
192 vues
Arithmetic sequences and arithmetic means
Denmar Marasigan
•
35K vues
Sistemas de ecuaciones lineales
RokiFernandez1
•
90 vues
Cauchy-Euler Equation.pptx
SalarBasheer
•
710 vues
Semana 29 sucesiones reales álgebra uni ccesa007
Demetrio Ccesa Rayme
•
502 vues
Binary Operations.pptx
SoyaMathew1
•
46 vues
ePortfolio- Mathematics
readsw346
•
351 vues
Section 9: Equivalence Relations & Cosets
Kevin Johnson
•
280 vues
MAT-314 Relations and Functions
Kevin Johnson
•
94 vues
Plus de IIUM
How to use_000webhost
IIUM
1.3K vues
•
7 diapositives
Chapter 2
IIUM
4.4K vues
•
50 diapositives
Chapter 1
IIUM
478 vues
•
20 diapositives
Kreydle internship-multimedia
IIUM
367 vues
•
13 diapositives
03phpbldgblock
IIUM
262 vues
•
28 diapositives
Chap2 practice key
IIUM
1.9K vues
•
1 diapositive
Plus de IIUM
(20)
How to use_000webhost
IIUM
•
1.3K vues
Chapter 2
IIUM
•
4.4K vues
Chapter 1
IIUM
•
478 vues
Kreydle internship-multimedia
IIUM
•
367 vues
03phpbldgblock
IIUM
•
262 vues
Chap2 practice key
IIUM
•
1.9K vues
Group p1
IIUM
•
153 vues
Tutorial import n auto pilot blogspot friendly seo
IIUM
•
512 vues
Visual sceneperception encycloperception-sage-oliva2009
IIUM
•
106 vues
03 the htm_lforms
IIUM
•
370 vues
Exercise on algo analysis answer
IIUM
•
130 vues
Redo midterm
IIUM
•
638 vues
Heaps
IIUM
•
1.3K vues
Report format
IIUM
•
1.6K vues
Edpuzzle guidelines
IIUM
•
393 vues
Final Exam Paper
IIUM
•
246 vues
Final Exam Paper
IIUM
•
229 vues
Group assignment 1 s21516
IIUM
•
179 vues
Avl tree-rotations
IIUM
•
273 vues
Week12 graph
IIUM
•
111 vues
Dernier
10 Years of World Heutagogy Day
London Knowledge Lab
140 vues
•
33 diapositives
PROFIL SEKOLAH ISLAM SHAFTA 2023.pdf
SHAFTA Surabaya
400 vues
•
16 diapositives
Listen to the mountain 2.pptx
AncyTEnglish
193 vues
•
15 diapositives
ChatGPT Multi Modal.pptx
ScottOrtes
48 vues
•
10 diapositives
Untubing AI in Assessment: A Primer for Future’s Sake
Mark Brown
71 vues
•
33 diapositives
Nonprofit Law 101 for Black-led NPOs.pptx.pdf
TechSoup
95 vues
•
18 diapositives
Dernier
(20)
10 Years of World Heutagogy Day
London Knowledge Lab
•
140 vues
PROFIL SEKOLAH ISLAM SHAFTA 2023.pdf
SHAFTA Surabaya
•
400 vues
Listen to the mountain 2.pptx
AncyTEnglish
•
193 vues
ChatGPT Multi Modal.pptx
ScottOrtes
•
48 vues
Untubing AI in Assessment: A Primer for Future’s Sake
Mark Brown
•
71 vues
Nonprofit Law 101 for Black-led NPOs.pptx.pdf
TechSoup
•
95 vues
Chemical Thermodynamics II
Dr. Aqeela Sattar
•
181 vues
Year 12 Information Evening 2023
WestHatch
•
107 vues
Acting Guidelines.pptx
Angelica Guevara
•
305 vues
Verb phrase and adverbs.pptx
AncyTEnglish
•
192 vues
UH 1.docx
nisrinamadani2
•
77 vues
Expectation from Being a Postgraduate Student and Life Strategy as A Research...
BC Chew
•
1.1K vues
Induction Session - 2023.pdf
GDSCBanasthaliVidyap
•
267 vues
Food Hygiene 1 - Intro to food hygiene.pptx
CJMcErlean
•
124 vues
Basic Assessment Concepts
AliAlZurfi
•
269 vues
GenAI Cloud Jam.pdf
JAISHANABINDHUPRIYAJ
•
59 vues
Veer Gatha - Multimedia presentation (1).pptx
Michael Wilson
•
143 vues
SHEYA DEY - 23COMD18 & 33 & 57 ACCOUNTING WITH DRONES.pptx
Kumarasamy Dr.PK
•
107 vues
listen to the mountain 1.pptx
AncyTEnglish
•
198 vues
ACTIVITY BOOK key 00.pptx
Mar Caston Palacio
•
248 vues
Recurrence relations
1.
Counting
2.
Recurrence Relations Sequences
are ordered lists of elements. • 1, 2, 3, 5, 8 • 1, 3, 9, 27, 81, … Sequences arise throughout mathematics, computer science, and in many other disciplines, ranging from botany to music. We will introduce the terminology to represent sequences. © S. Turaev, CSC 1700 Discrete Mathematics 2
3.
Recurrence Relations Definition: A
sequence is a function from a subset of the integers (usually either the set 0, 1, 2, 3, 4, … or 1, 2, 3, 4, … ) to a set 𝑆𝑆. The notation 𝑎𝑎𝑛𝑛 is used to denote the image of the integer 𝑛𝑛. We can think of 𝑎𝑎𝑛𝑛 as the equivalent of 𝑓𝑓 𝑛𝑛 where 𝑓𝑓 is a function from 0,1,2, … to 𝑆𝑆. We call 𝑎𝑎𝑛𝑛 a term of the sequence. Example: Consider the sequence 𝑎𝑎𝑛𝑛 where 𝑎𝑎𝑛𝑛 = 1/𝑛𝑛. Then 1, 1 2 , 1 3 , 1 4 , … © S. Turaev, CSC 1700 Discrete Mathematics 3
4.
Recurrence Relations Definition: A
recurrence relation for the sequence 𝑎𝑎𝑛𝑛 is an equation that expresses 𝑎𝑎𝑛𝑛 in terms of one or more of the previous terms of the sequence, namely, 𝑎𝑎0, 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛−1, for all integers 𝑛𝑛 with 𝑛𝑛 ≥ 𝑛𝑛0, where 𝑛𝑛0 is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation. The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect. © S. Turaev, CSC 1700 Discrete Mathematics 4
5.
Recurrence Relations Example: Let
𝑎𝑎𝑛𝑛 be a sequence that satisfies the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 3 for 𝑛𝑛 = 1, 2, 3, 4, … and suppose that 𝑎𝑎0 = 2. What are 𝑎𝑎1, 𝑎𝑎2 and 𝑎𝑎3? [Here the initial condition is 𝑎𝑎0 = 2.] Example: Let 𝑎𝑎𝑛𝑛 be a sequence that satisfies the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 − 𝑎𝑎𝑛𝑛−2 for 𝑛𝑛 = 2, 3, 4, … and suppose that 𝑎𝑎0 = 3 and 𝑎𝑎1 = 5. What are 𝑎𝑎2 and 𝑎𝑎3? [Here the initial conditions are 𝑎𝑎0 = 3 and 𝑎𝑎1 = 5.] © S. Turaev, CSC 1700 Discrete Mathematics 5
6.
Fibonacci Numbers Definition: the
Fibonacci sequence, 𝑓𝑓0, 𝑓𝑓1, 𝑓𝑓2, … , is defined by: Initial Conditions: 𝑓𝑓0 = 0, 𝑓𝑓1 = 1 Recurrence Relation: 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2 Example: Find 𝑓𝑓4, 𝑓𝑓5, 𝑓𝑓6, 𝑓𝑓7 and 𝑓𝑓8. © S. Turaev, CSC 1700 Discrete Mathematics 6
7.
Recurrence Relations Finding
a formula for the 𝑛𝑛th term of the sequence generated by a recurrence relation is called solving the recurrence relation. Such a formula is called a explicit (closed) formula. One technique for finding an explicit formula for the sequence defined by a recurrence relation is backtracking. © S. Turaev, CSC 1700 Discrete Mathematics 7
8.
Recurrence Relations Example: Let
𝑎𝑎𝑛𝑛 be a sequence that satisfies the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 3 for 𝑛𝑛 = 2, 3, 4, … and suppose that 𝑎𝑎1 = 2. Find an explicit formula for the sequence. 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 3 = 𝑎𝑎𝑛𝑛−2 + 3 + 3 = 𝑎𝑎𝑛𝑛−2 + 2 ⋅ 3 = 𝑎𝑎𝑛𝑛−3 + 3 + 2 ⋅ 3 = 𝑎𝑎𝑛𝑛−3 + 3 ⋅ 3 ⋯ = 𝑎𝑎2 + 𝑛𝑛 − 2 ⋅ 3 = 𝑎𝑎1 + 3 + 𝑛𝑛 − 2 ⋅ 3 = 𝑎𝑎1 + 𝑛𝑛 − 1 ⋅ 3 = 2 + 𝑛𝑛 − 1 ⋅ 3 = 3 ⋅ 𝑛𝑛 − 1 © S. Turaev, CSC 1700 Discrete Mathematics 8
9.
Recurrence Relations :
Backtracking Example 1: 𝑏𝑏𝑛𝑛 = 5𝑏𝑏𝑛𝑛−1 + 3, 𝑏𝑏1 = 3. Example 2: 𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑛𝑛−1 + 𝑛𝑛, 𝑏𝑏1 = 4. Example 3: 𝑑𝑑𝑛𝑛 = 𝑛𝑛 ⋅ 𝑑𝑑𝑛𝑛−1, 𝑑𝑑1 = 6. © S. Turaev, CSC 1700 Discrete Mathematics 9
10.
Fibonacci Numbers Definition: the
Fibonacci sequence, 𝑓𝑓0, 𝑓𝑓1, 𝑓𝑓2, … , is defined by: Initial Conditions: 𝑓𝑓0 = 0, 𝑓𝑓1 = 1 Recurrence Relation: 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2 Example: Find 𝑓𝑓4, 𝑓𝑓5, 𝑓𝑓6, 𝑓𝑓7 and 𝑓𝑓8. © S. Turaev, CSC 1700 Discrete Mathematics 10
11.
Linear Homogeneous Recurrence
Relations Definition: A linear homogeneous recurrence relation of degree 𝑘𝑘 with constant coefficients is a recurrence relation of the form 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 + ⋯ + 𝑟𝑟𝑘𝑘 𝑎𝑎𝑛𝑛−𝑘𝑘 where 𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘 are real numbers, and 𝑟𝑟𝑘𝑘 ≠ 0. © S. Turaev, CSC 1700 Discrete Mathematics • it is linear because the right-hand side is a sum of the previous terms of the sequence each multiplied by a function of 𝑛𝑛. • it is homogeneous because no terms occur that are not multiples of the 𝑎𝑎𝑗𝑗s. Each coefficient is a constant. • the degree is 𝑘𝑘 because 𝑎𝑎𝑛𝑛 is expressed in terms of the previous 𝑘𝑘 terms of the sequence. 11
12.
Linear Homogeneous Recurrence
Relations 𝑝𝑝𝑛𝑛 = 1.11 𝑝𝑝𝑛𝑛−1 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−2 2 ℎ𝑛𝑛 = 2ℎ𝑛𝑛−1 + 1 𝑏𝑏𝑛𝑛 = 𝑛𝑛𝑏𝑏𝑛𝑛−1 © S. Turaev, CSC 1700 Discrete Mathematics 12
13.
Linear Homogeneous Recurrence
Relations 𝑝𝑝𝑛𝑛 = 1.11 𝑝𝑝𝑛𝑛−1 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−2 2 ℎ𝑛𝑛 = 2ℎ𝑛𝑛−1 + 1 𝑏𝑏𝑛𝑛 = 𝑛𝑛𝑏𝑏𝑛𝑛−1 © S. Turaev, CSC 1700 Discrete Mathematics linear homogeneous recurrence relation of degree 1 linear homogeneous recurrence relation of degree 2 not linear not homogeneous coefficients are not constants 13
14.
Linear Homogeneous Recurrence
Relations The basic approach is to look for solutions of the form 𝑎𝑎𝑛𝑛 = 𝑥𝑥 𝑛𝑛 , where 𝑥𝑥 is a constant. Note that 𝑎𝑎𝑛𝑛 = 𝑥𝑥 𝑛𝑛 is a solution to the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 + ⋯ + 𝑟𝑟𝑘𝑘 𝑎𝑎𝑛𝑛−𝑘𝑘 if and only if 𝑥𝑥 𝑛𝑛 = 𝑟𝑟1 𝑥𝑥 𝑛𝑛−1 + 𝑟𝑟2 𝑥𝑥 𝑛𝑛−2 + ⋯ + 𝑟𝑟𝑘𝑘 𝑥𝑥 𝑛𝑛−𝑘𝑘 . © S. Turaev, CSC 1700 Discrete Mathematics 14
15.
Linear Homogeneous Recurrence
Relations Algebraic manipulation yields the characteristic equation: 𝑥𝑥 𝑘𝑘 − 𝑟𝑟1 𝑥𝑥 𝑘𝑘−1 − 𝑟𝑟2 𝑥𝑥 𝑘𝑘−2 − ⋯ − 𝑟𝑟𝑘𝑘 = 0 The sequence 𝑎𝑎𝑛𝑛 with 𝑎𝑎𝑛𝑛 = 𝑥𝑥 𝑛𝑛 is a solution if and only if 𝑥𝑥 is a solution to the characteristic equation. © S. Turaev, CSC 1700 Discrete Mathematics 15
16.
Linear Homogeneous Recurrence
Relations Theorem: If the characteristic equation 𝑥𝑥2 − 𝑟𝑟1 𝑥𝑥 − 𝑟𝑟2 = 0 of the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 has two distinct roots, 𝑥𝑥1 and 𝑥𝑥2, then 𝑎𝑎𝑛𝑛 = 𝑝𝑝𝑥𝑥1 𝑛𝑛 + 𝑞𝑞𝑥𝑥2 𝑛𝑛 where 𝑝𝑝 and 𝑞𝑞 depend on the initial conditions, is the explicit formula for the sequence. © S. Turaev, CSC 1700 Discrete Mathematics 16
17.
Linear Homogeneous Recurrence
Relations Theorem: If the characteristic equation 𝑥𝑥2 − 𝑟𝑟1 𝑥𝑥 − 𝑟𝑟2 = 0 of the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 has a single root, 𝑥𝑥, then 𝑎𝑎𝑛𝑛 = 𝑝𝑝𝑥𝑥 𝑛𝑛 + 𝑞𝑞𝑞𝑞𝑥𝑥 𝑛𝑛 where 𝑝𝑝 and 𝑞𝑞 depend on the initial conditions, is the explicit formula for the sequence. © S. Turaev, CSC 1700 Discrete Mathematics 17
18.
Linear Homogeneous Recurrence
Relations Example 1: Find an explicit formula for the sequence defined by 𝑎𝑎𝑛𝑛 = 4𝑎𝑎𝑛𝑛−1 + 5𝑎𝑎𝑛𝑛−2 with the initial conditions 𝑎𝑎1 = 2 and 𝑎𝑎2 = 6. Example 2: Find an explicit formula for the sequence defined by 𝑏𝑏𝑛𝑛 = −6𝑏𝑏𝑛𝑛−1 − 9𝑏𝑏𝑛𝑛−2 with the initial conditions 𝑏𝑏1 = 2.5 and 𝑏𝑏2 = 4.7. Example 3 (Fibonacci sequence): Find an explicit formula for the sequence defined by 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2 with the initial conditions 𝑓𝑓0 = 0 and 𝑓𝑓1 = 1. © S. Turaev, CSC 1700 Discrete Mathematics 18