SlideShare une entreprise Scribd logo
1  sur  28
Introduction to Quantum
Cryptography
Dr. Janusz Kowalik
IEEE talk
Seattle,
February 9,2005
Cryptography.
• Transmitting information with access
restricted to the intended recipient even if
the message is intercepted by others.
• Cryptography is of increasing importance
in our technological age using broadcast,
network communications, Internet ,e-mail,
cell phones which may transmit sensitive
information related to finances, politics,
business and private confidential matters.
The process
• Sender Plaintext
Cryptotext
Decryption
PlaintextRecipient
Message encryption
Key
Key ready for use
Secure key distribution
Encryption
Secure
transmission
Hard Problem for conventional
encryption
The classic cryptography
• Encryption algorithm and related key are kept
secret.
• Breaking the system is hard due to large
numbers of possible keys.
• For example: for a key 128 bits long
• there are
38128
102 ≈
keys to check using brute force.
The fundamental difficulty is key distribution to parties
who want to exchange messages.
PKC :the modern cryptography
• In 1970s the Public Key Cryptography
emerged.
• Each user has two mutually inverse
keys,
• The encryption key is published;
• The decryption key is kept secret.
• Anybody can send a message to Bob
but only Bob can read it.
RSA
• The most widely used PKC is the RSA
algorithm based on the difficulty of
• factoring a product ot two large primes.
• Easy Problem Hard Problem
Given two large
primes p and q
compute
qpn ×=
Given n
compute p and q.
Factoring a product of two large
primes
• The best known conventional algorithm
requires the solution time proportional to:
])ln(ln)(lnexp[)( 3/23/1
nncnT =
For p & q 65 digits long T(n) is approximately
one month using cluster of workstations.
For p&q 200 digits long T(n) is astronomical.
Quantum Computing algorithm for
factoring.
• In 1994 Peter Shor from the AT&T Bell
Laboratory showed that in principle a
quantum computer could factor a very long
product of primes in seconds.
• Shor’s algorithm time computational
complexity is
])[(ln)( 3
nOnT =
Once a quantum computer is built
the RSA method
would not be safe.
Elements of the Quantum Theory
• Light waves are propagated as discrete
quanta called photons.
• They are massless and have energy,
momentum and angular momentum called
spin.
• Spin carries the polarization.
• If on its way we put a polarization filter
a photon may pass through it or may not.
• We can use a detector to check of a photon
has passed through a filter.
Photon polarization
Heisenberg Uncertainty Principle
• Certain pairs of physical properties are related
in such a way that measuring one property
prevents the observer from knowing the value
of the other.
When measuring the polarization of a photon,
the choice of what direction to measure affects
all subsequent measurements.
• If a photon passes through a vertical filter
it will have the vertical orientation regardless of
its initial direction of polarization.
Photon Polarization
θ
Vertical
filter
Tilted filter at
the angle
The probability of a photon appearing after the second
filter depends on the angle and becomes 0 at
= 90 degrees.
The first filter randomizes the measurements of the
second filter.
θ
θ
Polarization by a filter
• A pair of orthogonal filters such as
vertical/horizontal is called a basis.
• A pair of bases is conjugate if the
measurement in the first basis
completely randomizes the
measurements in the second basis.
• As in the previous slide example for
=45deg.θ
Sender-receiver of photons
• Suppose Alice uses 0-deg/90-deg polarizer
sending photons to Bob. But she does not
reveal which.
• Bob can determine photons by using
filter aligned to the same basis.
• But if he uses 45deg/135 deg polarizer to
measure the photon he will not be able to
determine any information about the initial
polarization of the photon.
• The result of his measurement will be completely
random
Eavesdropper Eve
• If Eve uses the filter aligned with
Alice’s she can recover the original
polarization of the photon.
• If she uses the misaligned filter she
will receive no information about the
photon .
• Also she will influence the original
photon and be unable to retransmit it
with the original polarization.
• Bob will be able to deduce Ave’s
presence.
Binary information
• Each photon carries one qubit of information
• Polarization can be used to represent a 0 or 1.
• In quantum computation this is called
qubit.
To determine photon’s polarization the
recipient must measure the polarization by
,for example, passing it through a filter.
Binary information
• A user can suggest a key by sending a
stream of randomly polarized photons.
• This sequence can be converted to a
binary key.
• If the key was intercepted it could be
discarded and a new stream of
randomly polarized photons sent.
The Main contribution of Quantum
Cryptography.
• It solved the key distribution problem.
• Unconditionally secure key distribution
method proposed by:
• Charles Bennett and Gilles Brassard in
1984.
• The method is called BB84.
• Once key is securely received it can be
used to encrypt messages transmitted
by conventional channels.
Quantum key distribution
• (a)Alice communicates with Bob via a
quantum channel sending him photons.
• (b) Then they discuss results using a
public channel.
• (c) After getting an encryption key Bob can
encrypt his messages and send them by
any public channel.
Quantum key distribution
• Both Alice and Bob have two polarizers
each.
• One with the 0-90 degree basis (+) and one
with 45-135 degree basis ( )
• (a) Alice uses her polarizers to send
randomly photons to Bob in one of the four
possible polarizations 0,45,90,135 degree.
• (b)
××××
b) Bob uses his polarizers to measure each
polarization of photons he receives.
He can use the( + )basis or the ( ) but not both
simultaneously.
××
×
Example of key distribution
Security of quantum key
distribution
• Quantum cryptography obtains its
fundamental security from the fact that
each qubit is carried by a single
photon, and each photon will be altered
as soon as it is read.
• This makes impossible to intercept
message without being detected.
Noise
• The presence of noise can impact
detecting attacks.
• Eavesdropper and noise on the
quantum channel are
indistinguishable.
• (1) Malicious eavesdropper can
prevent communication.
• (2) Detecting eavesdropper in the
presence of noise is hard.
State of the Quantum
Cryptography technology.
• Experimental implementations have
existed since 1990.
• Current (2004) QC is performed over
distances of 30-40 kilometers using
optical fiber.
In general we need two capabilities.
(1) Single photon gun.
(2) Being able to measure single
photons.
State of the QC technology.
• Efforts are being made to use Pulsed
Laser Beam with low intensity for firing
single photons.
• Detecting and measuring photons is hard.
• The most common method is exploiting
Avalanche Photodiodes in the Geiger
mode where single photon triggers a
detectable electron avalanche.
State of the QC technology.
• Key transmissions can be achieved for
about 80 km distance ( Univ of Geneva
2001).
• (2)For longer distances we can use
repeaters. But practical repeaters are a
long way in the future.
• Another option is using satellites.
• Richard Hughes at LOS ALAMOS NAT
LAB (USA) works in this direction.
• The satellites distance from earth is in
hundreds of kilometers.
NIST System
• Uses an infrared laser to generate
photons
• and telescopes with 8-inch mirrors to
send and receive photons over the air.
• Using the quantum transmitted key
messages were encrypted at the rate
1 million bits per second.
The speed was impressive but the distance
between two NIST buildings was only 730
meters.
Commercial QC providers
• id Quantique, Geneva Switzerland
• Optical fiber based system
• Tens of kilometers distances
• MagiQ Technologies, NY City
• Optical fiber-glass
• Up to 100 kilometers distances
• NEC Tokyo 150 kilometers
• QinetiQ Farnborough, England
• Through the air 10 kilometers.
• Supplied system to BBN in Cambridge Mass.

Contenu connexe

Tendances

Naman quantum cryptography
Naman quantum cryptographyNaman quantum cryptography
Naman quantum cryptographynamanthakur
 
Quantum Cryptography
Quantum CryptographyQuantum Cryptography
Quantum CryptographySwasat Dutta
 
The security of quantum cryptography
The security of quantum cryptographyThe security of quantum cryptography
The security of quantum cryptographywtyru1989
 
Cryptopresentationfinal
CryptopresentationfinalCryptopresentationfinal
Cryptopresentationfinalskadyan1
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptographyAnisur Rahman
 
Quantum Key Distribution
Quantum Key DistributionQuantum Key Distribution
Quantum Key DistributionShahrikh Khan
 
Ieeep By Quantum Abbasi
Ieeep By Quantum AbbasiIeeep By Quantum Abbasi
Ieeep By Quantum AbbasiIEEEP Karachi
 
Quantum Cryptography - Quantum Coin Tossing
Quantum Cryptography - Quantum Coin TossingQuantum Cryptography - Quantum Coin Tossing
Quantum Cryptography - Quantum Coin TossingRuwan Ranganath
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptographySukhdeep Kaur
 
Quantum Cryptography
Quantum CryptographyQuantum Cryptography
Quantum Cryptographypixiejen
 
Quantum Cryptography presentation
Quantum Cryptography presentationQuantum Cryptography presentation
Quantum Cryptography presentationKalluri Madhuri
 
Post Quantum Cryptography: Technical Overview
Post Quantum Cryptography: Technical OverviewPost Quantum Cryptography: Technical Overview
Post Quantum Cryptography: Technical OverviewRamesh Nagappan
 
Quantum cryptography a modern cryptographic security
Quantum cryptography a modern cryptographic securityQuantum cryptography a modern cryptographic security
Quantum cryptography a modern cryptographic securityKamal Diwakar
 
Post quantum cryptography
Post quantum cryptographyPost quantum cryptography
Post quantum cryptographyMartins Okoi
 

Tendances (20)

Naman quantum cryptography
Naman quantum cryptographyNaman quantum cryptography
Naman quantum cryptography
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptography
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptography
 
Quantum Cryptography
Quantum CryptographyQuantum Cryptography
Quantum Cryptography
 
The security of quantum cryptography
The security of quantum cryptographyThe security of quantum cryptography
The security of quantum cryptography
 
Hacking Quantum Cryptography
Hacking Quantum CryptographyHacking Quantum Cryptography
Hacking Quantum Cryptography
 
Cryptopresentationfinal
CryptopresentationfinalCryptopresentationfinal
Cryptopresentationfinal
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptography
 
Quantum Key Distribution
Quantum Key DistributionQuantum Key Distribution
Quantum Key Distribution
 
Ieeep By Quantum Abbasi
Ieeep By Quantum AbbasiIeeep By Quantum Abbasi
Ieeep By Quantum Abbasi
 
quantum cryptography
quantum cryptographyquantum cryptography
quantum cryptography
 
Quantum Cryptography - Quantum Coin Tossing
Quantum Cryptography - Quantum Coin TossingQuantum Cryptography - Quantum Coin Tossing
Quantum Cryptography - Quantum Coin Tossing
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptography
 
Quantum Cryptography
Quantum CryptographyQuantum Cryptography
Quantum Cryptography
 
quantum cryptography
quantum cryptographyquantum cryptography
quantum cryptography
 
Quantum Cryptography presentation
Quantum Cryptography presentationQuantum Cryptography presentation
Quantum Cryptography presentation
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptography
 
Post Quantum Cryptography: Technical Overview
Post Quantum Cryptography: Technical OverviewPost Quantum Cryptography: Technical Overview
Post Quantum Cryptography: Technical Overview
 
Quantum cryptography a modern cryptographic security
Quantum cryptography a modern cryptographic securityQuantum cryptography a modern cryptographic security
Quantum cryptography a modern cryptographic security
 
Post quantum cryptography
Post quantum cryptographyPost quantum cryptography
Post quantum cryptography
 

Similaire à Janusz Kowalik: quantum cryptography

Advances In Cryptography
Advances In CryptographyAdvances In Cryptography
Advances In CryptographyRare Input
 
Quantum Cryptography
Quantum  CryptographyQuantum  Cryptography
Quantum CryptographyBise Mond
 
quantumcryptography-180425230158.pdf
quantumcryptography-180425230158.pdfquantumcryptography-180425230158.pdf
quantumcryptography-180425230158.pdfsasasas14
 
Quantum Cryptography - Seminar report
Quantum Cryptography - Seminar reportQuantum Cryptography - Seminar report
Quantum Cryptography - Seminar reportShyam Mohan
 
quantum cryptography introduction for understanding
quantum cryptography introduction for understandingquantum cryptography introduction for understanding
quantum cryptography introduction for understandingSuriaRao2
 
SWITCH FROM TRADITIONAL TO MODERN CRYPTOGRAPHY
SWITCH FROM TRADITIONAL TO MODERN CRYPTOGRAPHYSWITCH FROM TRADITIONAL TO MODERN CRYPTOGRAPHY
SWITCH FROM TRADITIONAL TO MODERN CRYPTOGRAPHYHimanshu Shekhar
 
quantum computing and Quantum Communications
quantum computing and Quantum Communicationsquantum computing and Quantum Communications
quantum computing and Quantum CommunicationsSrinivas Bukkuru
 
Quantum Cryptography and Possible Attacks-slide
Quantum Cryptography and Possible Attacks-slideQuantum Cryptography and Possible Attacks-slide
Quantum Cryptography and Possible Attacks-slideArinto Murdopo
 
B03250609
B03250609B03250609
B03250609theijes
 
Quantum Cryptography & Key Distribution.pptx
Quantum Cryptography & Key Distribution.pptxQuantum Cryptography & Key Distribution.pptx
Quantum Cryptography & Key Distribution.pptxDaniel938043
 
Quantum Cryptography: from Theory to Practice
 Quantum Cryptography: from Theory to Practice Quantum Cryptography: from Theory to Practice
Quantum Cryptography: from Theory to PracticeXequeMateShannon
 
20111107 g4g-com-mad
20111107 g4g-com-mad20111107 g4g-com-mad
20111107 g4g-com-madMiquel Duran
 
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili SaghafiQuantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili SaghafiProfessor Lili Saghafi
 

Similaire à Janusz Kowalik: quantum cryptography (20)

Introduction to quantum cryptography Dr. Janusz Kowalik
Introduction to quantum cryptography Dr. Janusz KowalikIntroduction to quantum cryptography Dr. Janusz Kowalik
Introduction to quantum cryptography Dr. Janusz Kowalik
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptography
 
Advances In Cryptography
Advances In CryptographyAdvances In Cryptography
Advances In Cryptography
 
Quantum Cryptography/QKD
Quantum Cryptography/QKDQuantum Cryptography/QKD
Quantum Cryptography/QKD
 
Quantum Cryptography
Quantum  CryptographyQuantum  Cryptography
Quantum Cryptography
 
quantumcryptography-180425230158.pdf
quantumcryptography-180425230158.pdfquantumcryptography-180425230158.pdf
quantumcryptography-180425230158.pdf
 
Quantum Cryptography - Seminar report
Quantum Cryptography - Seminar reportQuantum Cryptography - Seminar report
Quantum Cryptography - Seminar report
 
quantum cryptography introduction for understanding
quantum cryptography introduction for understandingquantum cryptography introduction for understanding
quantum cryptography introduction for understanding
 
SWITCH FROM TRADITIONAL TO MODERN CRYPTOGRAPHY
SWITCH FROM TRADITIONAL TO MODERN CRYPTOGRAPHYSWITCH FROM TRADITIONAL TO MODERN CRYPTOGRAPHY
SWITCH FROM TRADITIONAL TO MODERN CRYPTOGRAPHY
 
Quantum crypto system
Quantum crypto systemQuantum crypto system
Quantum crypto system
 
quantum computing and Quantum Communications
quantum computing and Quantum Communicationsquantum computing and Quantum Communications
quantum computing and Quantum Communications
 
Quantum
QuantumQuantum
Quantum
 
Quantum Cryptography and Possible Attacks-slide
Quantum Cryptography and Possible Attacks-slideQuantum Cryptography and Possible Attacks-slide
Quantum Cryptography and Possible Attacks-slide
 
Quantum crypto
Quantum cryptoQuantum crypto
Quantum crypto
 
B03250609
B03250609B03250609
B03250609
 
Quantum Cryptography & Key Distribution.pptx
Quantum Cryptography & Key Distribution.pptxQuantum Cryptography & Key Distribution.pptx
Quantum Cryptography & Key Distribution.pptx
 
Quantum Cryptography: from Theory to Practice
 Quantum Cryptography: from Theory to Practice Quantum Cryptography: from Theory to Practice
Quantum Cryptography: from Theory to Practice
 
H0324143
H0324143H0324143
H0324143
 
20111107 g4g-com-mad
20111107 g4g-com-mad20111107 g4g-com-mad
20111107 g4g-com-mad
 
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili SaghafiQuantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
 

Plus de Information Security Awareness Group

Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...Information Security Awareness Group
 
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
 Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf... Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...Information Security Awareness Group
 
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...Information Security Awareness Group
 
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...Information Security Awareness Group
 
Big data analysis concepts and references by Cloud Security Alliance
Big data analysis concepts and references by Cloud Security AllianceBig data analysis concepts and references by Cloud Security Alliance
Big data analysis concepts and references by Cloud Security AllianceInformation Security Awareness Group
 
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...
 Authorization Policy in a PKI Environment  Mary Thompson Srilekha Mudumbai A... Authorization Policy in a PKI Environment  Mary Thompson Srilekha Mudumbai A...
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...Information Security Awareness Group
 
Introduction to distributed security concepts and public key infrastructure m...
Introduction to distributed security concepts and public key infrastructure m...Introduction to distributed security concepts and public key infrastructure m...
Introduction to distributed security concepts and public key infrastructure m...Information Security Awareness Group
 
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...Information Security Awareness Group
 
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...Information Security Awareness Group
 

Plus de Information Security Awareness Group (20)

Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
 
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
 Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf... Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
 
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
 
IBM Security Strategy Intelligence,
IBM Security Strategy Intelligence,IBM Security Strategy Intelligence,
IBM Security Strategy Intelligence,
 
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
 
Big data analysis concepts and references by Cloud Security Alliance
Big data analysis concepts and references by Cloud Security AllianceBig data analysis concepts and references by Cloud Security Alliance
Big data analysis concepts and references by Cloud Security Alliance
 
Big data analysis concepts and references
Big data analysis concepts and referencesBig data analysis concepts and references
Big data analysis concepts and references
 
PKI by Tim Polk
PKI by Tim PolkPKI by Tim Polk
PKI by Tim Polk
 
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...
 Authorization Policy in a PKI Environment  Mary Thompson Srilekha Mudumbai A... Authorization Policy in a PKI Environment  Mary Thompson Srilekha Mudumbai A...
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...
 
Pki by Steve Lamb
Pki by Steve LambPki by Steve Lamb
Pki by Steve Lamb
 
PKI by Gene Itkis
PKI by Gene ItkisPKI by Gene Itkis
PKI by Gene Itkis
 
Introduction to distributed security concepts and public key infrastructure m...
Introduction to distributed security concepts and public key infrastructure m...Introduction to distributed security concepts and public key infrastructure m...
Introduction to distributed security concepts and public key infrastructure m...
 
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
 
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
 
THE OPEN SCIENCE GRID Ruth Pordes
THE OPEN SCIENCE GRID Ruth PordesTHE OPEN SCIENCE GRID Ruth Pordes
THE OPEN SCIENCE GRID Ruth Pordes
 
Open Science Grid security-atlas-t2 Bob Cowles
Open Science Grid security-atlas-t2 Bob CowlesOpen Science Grid security-atlas-t2 Bob Cowles
Open Science Grid security-atlas-t2 Bob Cowles
 
Security Open Science Grid Doug Olson
Security Open Science Grid Doug OlsonSecurity Open Science Grid Doug Olson
Security Open Science Grid Doug Olson
 
Open Science Group Security Kevin Hill
Open Science Group Security Kevin HillOpen Science Group Security Kevin Hill
Open Science Group Security Kevin Hill
 
Xrootd proxies Andrew Hanushevsky
Xrootd proxies Andrew HanushevskyXrootd proxies Andrew Hanushevsky
Xrootd proxies Andrew Hanushevsky
 
Privilege Project Vikram Andem
Privilege Project Vikram AndemPrivilege Project Vikram Andem
Privilege Project Vikram Andem
 

Dernier

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 

Dernier (20)

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 

Janusz Kowalik: quantum cryptography

  • 1. Introduction to Quantum Cryptography Dr. Janusz Kowalik IEEE talk Seattle, February 9,2005
  • 2. Cryptography. • Transmitting information with access restricted to the intended recipient even if the message is intercepted by others. • Cryptography is of increasing importance in our technological age using broadcast, network communications, Internet ,e-mail, cell phones which may transmit sensitive information related to finances, politics, business and private confidential matters.
  • 3. The process • Sender Plaintext Cryptotext Decryption PlaintextRecipient Message encryption Key Key ready for use Secure key distribution Encryption Secure transmission Hard Problem for conventional encryption
  • 4. The classic cryptography • Encryption algorithm and related key are kept secret. • Breaking the system is hard due to large numbers of possible keys. • For example: for a key 128 bits long • there are 38128 102 ≈ keys to check using brute force. The fundamental difficulty is key distribution to parties who want to exchange messages.
  • 5. PKC :the modern cryptography • In 1970s the Public Key Cryptography emerged. • Each user has two mutually inverse keys, • The encryption key is published; • The decryption key is kept secret. • Anybody can send a message to Bob but only Bob can read it.
  • 6. RSA • The most widely used PKC is the RSA algorithm based on the difficulty of • factoring a product ot two large primes. • Easy Problem Hard Problem Given two large primes p and q compute qpn ×= Given n compute p and q.
  • 7. Factoring a product of two large primes • The best known conventional algorithm requires the solution time proportional to: ])ln(ln)(lnexp[)( 3/23/1 nncnT = For p & q 65 digits long T(n) is approximately one month using cluster of workstations. For p&q 200 digits long T(n) is astronomical.
  • 8. Quantum Computing algorithm for factoring. • In 1994 Peter Shor from the AT&T Bell Laboratory showed that in principle a quantum computer could factor a very long product of primes in seconds. • Shor’s algorithm time computational complexity is ])[(ln)( 3 nOnT = Once a quantum computer is built the RSA method would not be safe.
  • 9. Elements of the Quantum Theory • Light waves are propagated as discrete quanta called photons. • They are massless and have energy, momentum and angular momentum called spin. • Spin carries the polarization. • If on its way we put a polarization filter a photon may pass through it or may not. • We can use a detector to check of a photon has passed through a filter.
  • 11. Heisenberg Uncertainty Principle • Certain pairs of physical properties are related in such a way that measuring one property prevents the observer from knowing the value of the other. When measuring the polarization of a photon, the choice of what direction to measure affects all subsequent measurements. • If a photon passes through a vertical filter it will have the vertical orientation regardless of its initial direction of polarization.
  • 12. Photon Polarization θ Vertical filter Tilted filter at the angle The probability of a photon appearing after the second filter depends on the angle and becomes 0 at = 90 degrees. The first filter randomizes the measurements of the second filter. θ θ
  • 13. Polarization by a filter • A pair of orthogonal filters such as vertical/horizontal is called a basis. • A pair of bases is conjugate if the measurement in the first basis completely randomizes the measurements in the second basis. • As in the previous slide example for =45deg.θ
  • 14. Sender-receiver of photons • Suppose Alice uses 0-deg/90-deg polarizer sending photons to Bob. But she does not reveal which. • Bob can determine photons by using filter aligned to the same basis. • But if he uses 45deg/135 deg polarizer to measure the photon he will not be able to determine any information about the initial polarization of the photon. • The result of his measurement will be completely random
  • 15. Eavesdropper Eve • If Eve uses the filter aligned with Alice’s she can recover the original polarization of the photon. • If she uses the misaligned filter she will receive no information about the photon . • Also she will influence the original photon and be unable to retransmit it with the original polarization. • Bob will be able to deduce Ave’s presence.
  • 16. Binary information • Each photon carries one qubit of information • Polarization can be used to represent a 0 or 1. • In quantum computation this is called qubit. To determine photon’s polarization the recipient must measure the polarization by ,for example, passing it through a filter.
  • 17. Binary information • A user can suggest a key by sending a stream of randomly polarized photons. • This sequence can be converted to a binary key. • If the key was intercepted it could be discarded and a new stream of randomly polarized photons sent.
  • 18. The Main contribution of Quantum Cryptography. • It solved the key distribution problem. • Unconditionally secure key distribution method proposed by: • Charles Bennett and Gilles Brassard in 1984. • The method is called BB84. • Once key is securely received it can be used to encrypt messages transmitted by conventional channels.
  • 19. Quantum key distribution • (a)Alice communicates with Bob via a quantum channel sending him photons. • (b) Then they discuss results using a public channel. • (c) After getting an encryption key Bob can encrypt his messages and send them by any public channel.
  • 20. Quantum key distribution • Both Alice and Bob have two polarizers each. • One with the 0-90 degree basis (+) and one with 45-135 degree basis ( ) • (a) Alice uses her polarizers to send randomly photons to Bob in one of the four possible polarizations 0,45,90,135 degree. • (b) ×××× b) Bob uses his polarizers to measure each polarization of photons he receives. He can use the( + )basis or the ( ) but not both simultaneously. ×× ×
  • 21. Example of key distribution
  • 22. Security of quantum key distribution • Quantum cryptography obtains its fundamental security from the fact that each qubit is carried by a single photon, and each photon will be altered as soon as it is read. • This makes impossible to intercept message without being detected.
  • 23. Noise • The presence of noise can impact detecting attacks. • Eavesdropper and noise on the quantum channel are indistinguishable. • (1) Malicious eavesdropper can prevent communication. • (2) Detecting eavesdropper in the presence of noise is hard.
  • 24. State of the Quantum Cryptography technology. • Experimental implementations have existed since 1990. • Current (2004) QC is performed over distances of 30-40 kilometers using optical fiber. In general we need two capabilities. (1) Single photon gun. (2) Being able to measure single photons.
  • 25. State of the QC technology. • Efforts are being made to use Pulsed Laser Beam with low intensity for firing single photons. • Detecting and measuring photons is hard. • The most common method is exploiting Avalanche Photodiodes in the Geiger mode where single photon triggers a detectable electron avalanche.
  • 26. State of the QC technology. • Key transmissions can be achieved for about 80 km distance ( Univ of Geneva 2001). • (2)For longer distances we can use repeaters. But practical repeaters are a long way in the future. • Another option is using satellites. • Richard Hughes at LOS ALAMOS NAT LAB (USA) works in this direction. • The satellites distance from earth is in hundreds of kilometers.
  • 27. NIST System • Uses an infrared laser to generate photons • and telescopes with 8-inch mirrors to send and receive photons over the air. • Using the quantum transmitted key messages were encrypted at the rate 1 million bits per second. The speed was impressive but the distance between two NIST buildings was only 730 meters.
  • 28. Commercial QC providers • id Quantique, Geneva Switzerland • Optical fiber based system • Tens of kilometers distances • MagiQ Technologies, NY City • Optical fiber-glass • Up to 100 kilometers distances • NEC Tokyo 150 kilometers • QinetiQ Farnborough, England • Through the air 10 kilometers. • Supplied system to BBN in Cambridge Mass.