ScooterLab - Griffin.pptx

ScooterLab: Let’s think about our future
Dr. Greg Griffin, AICP
https://scooterlab.utsa.edu/
Think Science, 12Sept2023
Murtuza Jadliwala
(overall lead)
Sushil Prasad
Raveen Wijewickrama
Buddhi Ashan Mallika
Kankanamalage
Greg Griffin
Nico Molina
Anindya Maiti
Khoi Trinh
Acknowledgements
Investigators & Students
Research Collaborators
Origin—Street Noise & Bicycling Safety Correlated in
Washington, D.C., but not in Austin
Griffin, G. P., Hankey, S., Buehler, R., Dai, B., Le, H. T., & Simek, C.
(2019). Exploring Street Noise and Bicycle Safety: Initial Evidence from
Austin, TX and the Washington, DC Capital Area (No. 19-03944).
Origin—Crowdsensing Pedestrian Safety and E-scooters
Maiti, A., Vinayaga-Sureshkanth, N., Jadliwala, M.,
Wijewickrama, R., & Griffin, G. (2022, March). Impact of
e-scooters on pedestrian safety: A field study using
pedestrian crowd-sensing. In PerCom Workshops (pp.
799-805). IEEE.
Origin—Shared Micromobility Can Reduce Vehicle Traffic,
but not only e-scooters
Choi, K., Park, H. J., & Griffin, G. P. (2023).
Can shared micromobility replace auto travel?
Evidence from the US urbanized areas
between 2012 and 2019. International Journal
of Sustainable Transportation, 1-9.
What Now?
Do e-scooter rental term
lengths change travel
patterns?
Can machine
learning support
urban policy making?
What type of street-level features
may increase e-scooter crash risks?
How is ScooterLab different?
The ScooterLab testbed is envisioned as an instrument for the entire research
community—not just local teams.
Downtown + suburban contexts
No private company data agreements
Community data privacy and sharing platform
ScooterLab Operation
8
The ScooterLab Architecture
The ScooterLab testbed will
comprise of:
• Vehicles
• Fleet Controller
• Research Activities Management
Portal (RAMP)
Demo
10
Raw Data
• Accelerometer
11
Raw Data
• Gyroscope
12
Raw Data
• Orientation (via Accelerometer)
13
*No scooters or riders wereharmed in obtaining this data.
Raw Data
• Temperature
14
Raw Data
• GPS – Speed
15
Raw Data
• GPS – Route
16
Raw Data
• Camera
17
ScooterLab - Griffin.pptx
ScooterLab - Griffin.pptx
ScooterLab is building a new urban sensing
platform for improving cities.
Multi-disciplinary challenges require collaboration and sharing.
C O N T R I B U T I O N
Data science cannot solve all urban challenges
Urban planning addresses wicked problems with inclusiveness,
policy, design, and financing.
H O W E V E R
ScooterLab: Let’s think about our future
Dr. Greg Griffin, AICP
https://scooterlab.utsa.edu/
Think Science, 12Sept2023
1 sur 22

Recommandé

(Geo-) Daten für ein besseres Verständnis der Fahrradmobilität par
(Geo-) Daten für ein besseres Verständnis der Fahrradmobilität(Geo-) Daten für ein besseres Verständnis der Fahrradmobilität
(Geo-) Daten für ein besseres Verständnis der FahrradmobilitätMartin L
260 vues62 diapositives
Presentation at EnviroInfo 2014, Oldenburg par
Presentation at EnviroInfo 2014, OldenburgPresentation at EnviroInfo 2014, Oldenburg
Presentation at EnviroInfo 2014, OldenburgMartin L
470 vues20 diapositives
Big data: uncovering new mobility patterns and redefining planning practices par
Big data: uncovering new mobility patterns and redefining planning practicesBig data: uncovering new mobility patterns and redefining planning practices
Big data: uncovering new mobility patterns and redefining planning practicesMickael Pero
324 vues50 diapositives
Active modes and urban mobility: outcomes from the ALLEGRO project par
Active modes and urban mobility: outcomes from the ALLEGRO projectActive modes and urban mobility: outcomes from the ALLEGRO project
Active modes and urban mobility: outcomes from the ALLEGRO projectSerge Hoogendoorn
187 vues26 diapositives
Yinhai Wang - Smart Transportation: Research under Smart Cities Context - GCS16 par
Yinhai Wang - Smart Transportation: Research under Smart Cities Context - GCS16Yinhai Wang - Smart Transportation: Research under Smart Cities Context - GCS16
Yinhai Wang - Smart Transportation: Research under Smart Cities Context - GCS16KC Digital Drive
409 vues31 diapositives
Mina Lee - E-scooter demand model for NYC par
Mina Lee - E-scooter demand model for NYCMina Lee - E-scooter demand model for NYC
Mina Lee - E-scooter demand model for NYCJoseph Chow
427 vues13 diapositives

Contenu connexe

Similaire à ScooterLab - Griffin.pptx

New Research Articles 2020 November Issue International Journal of Software E... par
New Research Articles 2020 November Issue International Journal of Software E...New Research Articles 2020 November Issue International Journal of Software E...
New Research Articles 2020 November Issue International Journal of Software E...ijseajournal
9 vues11 diapositives
Bicycle Infrastructure Improvement Study and Implementation Plan par
Bicycle Infrastructure Improvement Study and Implementation PlanBicycle Infrastructure Improvement Study and Implementation Plan
Bicycle Infrastructure Improvement Study and Implementation PlanZack Lofton, AICP, CNU-A
78 vues4 diapositives
Tutorial on AI-based Analytics in Traffic Management par
Tutorial on AI-based Analytics in Traffic ManagementTutorial on AI-based Analytics in Traffic Management
Tutorial on AI-based Analytics in Traffic ManagementBiplav Srivastava
3.8K vues165 diapositives
Katja leyendecker - presentation to APPCG 29 Dec 2016 par
Katja leyendecker - presentation to APPCG 29 Dec 2016Katja leyendecker - presentation to APPCG 29 Dec 2016
Katja leyendecker - presentation to APPCG 29 Dec 2016Northumbria University
761 vues13 diapositives
Intro to Big Data in Urban GIS Research par
Intro to Big Data in Urban GIS ResearchIntro to Big Data in Urban GIS Research
Intro to Big Data in Urban GIS ResearchRobert Goodspeed
1.5K vues19 diapositives
City of Chicago Tech Plan 18 Month Progress Update par
City of Chicago Tech Plan 18 Month Progress UpdateCity of Chicago Tech Plan 18 Month Progress Update
City of Chicago Tech Plan 18 Month Progress UpdateDaniel X. O'Neil
545 vues48 diapositives

Similaire à ScooterLab - Griffin.pptx(20)

New Research Articles 2020 November Issue International Journal of Software E... par ijseajournal
New Research Articles 2020 November Issue International Journal of Software E...New Research Articles 2020 November Issue International Journal of Software E...
New Research Articles 2020 November Issue International Journal of Software E...
ijseajournal9 vues
Tutorial on AI-based Analytics in Traffic Management par Biplav Srivastava
Tutorial on AI-based Analytics in Traffic ManagementTutorial on AI-based Analytics in Traffic Management
Tutorial on AI-based Analytics in Traffic Management
Biplav Srivastava3.8K vues
Intro to Big Data in Urban GIS Research par Robert Goodspeed
Intro to Big Data in Urban GIS ResearchIntro to Big Data in Urban GIS Research
Intro to Big Data in Urban GIS Research
Robert Goodspeed1.5K vues
City of Chicago Tech Plan 18 Month Progress Update par Daniel X. O'Neil
City of Chicago Tech Plan 18 Month Progress UpdateCity of Chicago Tech Plan 18 Month Progress Update
City of Chicago Tech Plan 18 Month Progress Update
Daniel X. O'Neil545 vues
What makes smart cities “Smart”? par PayamBarnaghi
What makes smart cities “Smart”? What makes smart cities “Smart”?
What makes smart cities “Smart”?
PayamBarnaghi1.2K vues
Smart city- services and technologies par Sabidur Rahman
Smart city- services and technologiesSmart city- services and technologies
Smart city- services and technologies
Sabidur Rahman443 vues
Using gamification to generate citizen input for public transport planning par Marius Rohde Johannessen
Using gamification to generate citizen input for public transport planningUsing gamification to generate citizen input for public transport planning
Using gamification to generate citizen input for public transport planning
The role of open data in driving sustainable mobility in nine smart cities par Piyush Yadav
The role of open data in driving sustainable mobility in nine smart citiesThe role of open data in driving sustainable mobility in nine smart cities
The role of open data in driving sustainable mobility in nine smart cities
Piyush Yadav74 vues
Katja Leyendecker @ Cycling & Society Symposium Manchester Sep2015 par Northumbria University
Katja Leyendecker @ Cycling & Society Symposium Manchester Sep2015Katja Leyendecker @ Cycling & Society Symposium Manchester Sep2015
Katja Leyendecker @ Cycling & Society Symposium Manchester Sep2015
A review of current online bicycle routing portals and their potential role i... par Martin L
A review of current online bicycle routing portals and their potential role i...A review of current online bicycle routing portals and their potential role i...
A review of current online bicycle routing portals and their potential role i...
Martin L596 vues
Big Data & Smart City Applications par Amit Sheth
Big Data & Smart City ApplicationsBig Data & Smart City Applications
Big Data & Smart City Applications
Amit Sheth130 vues
Invest Bavaria Maifest Keynote par William Riggs
Invest Bavaria Maifest KeynoteInvest Bavaria Maifest Keynote
Invest Bavaria Maifest Keynote
William Riggs346 vues
Qing TRB Poster 16 par Qing Li
Qing TRB Poster 16Qing TRB Poster 16
Qing TRB Poster 16
Qing Li127 vues

Dernier

How to be(come) a successful PhD student par
How to be(come) a successful PhD studentHow to be(come) a successful PhD student
How to be(come) a successful PhD studentTom Mens
513 vues62 diapositives
scopus cited journals.pdf par
scopus cited journals.pdfscopus cited journals.pdf
scopus cited journals.pdfKSAravindSrivastava
9 vues15 diapositives
POSTER IV LAWCN_ROVER_IUE.pdf par
POSTER IV LAWCN_ROVER_IUE.pdfPOSTER IV LAWCN_ROVER_IUE.pdf
POSTER IV LAWCN_ROVER_IUE.pdfSOCIEDAD JULIO GARAVITO
11 vues1 diapositive
Ecology par
Ecology Ecology
Ecology Abhijith Raj.R
10 vues10 diapositives
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf par
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfMODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfKerryNuez1
26 vues5 diapositives
1978 NASA News Release Log par
1978 NASA News Release Log1978 NASA News Release Log
1978 NASA News Release Logpurrterminator
11 vues146 diapositives

Dernier(20)

How to be(come) a successful PhD student par Tom Mens
How to be(come) a successful PhD studentHow to be(come) a successful PhD student
How to be(come) a successful PhD student
Tom Mens513 vues
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf par KerryNuez1
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfMODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
KerryNuez126 vues
Conventional and non-conventional methods for improvement of cucurbits.pptx par gandhi976
Conventional and non-conventional methods for improvement of cucurbits.pptxConventional and non-conventional methods for improvement of cucurbits.pptx
Conventional and non-conventional methods for improvement of cucurbits.pptx
gandhi97620 vues
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl... par GIFT KIISI NKIN
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...
GIFT KIISI NKIN28 vues
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... par ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 vues
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana... par jahnviarora989
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...
Metatheoretical Panda-Samaneh Borji.pdf par samanehborji
Metatheoretical Panda-Samaneh Borji.pdfMetatheoretical Panda-Samaneh Borji.pdf
Metatheoretical Panda-Samaneh Borji.pdf
samanehborji16 vues
CSF -SHEEBA.D presentation.pptx par SheebaD7
CSF -SHEEBA.D presentation.pptxCSF -SHEEBA.D presentation.pptx
CSF -SHEEBA.D presentation.pptx
SheebaD714 vues
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy... par Anmol Vishnu Gupta
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...

ScooterLab - Griffin.pptx

  • 1. ScooterLab: Let’s think about our future Dr. Greg Griffin, AICP https://scooterlab.utsa.edu/ Think Science, 12Sept2023
  • 2. Murtuza Jadliwala (overall lead) Sushil Prasad Raveen Wijewickrama Buddhi Ashan Mallika Kankanamalage Greg Griffin Nico Molina Anindya Maiti Khoi Trinh Acknowledgements Investigators & Students Research Collaborators
  • 3. Origin—Street Noise & Bicycling Safety Correlated in Washington, D.C., but not in Austin Griffin, G. P., Hankey, S., Buehler, R., Dai, B., Le, H. T., & Simek, C. (2019). Exploring Street Noise and Bicycle Safety: Initial Evidence from Austin, TX and the Washington, DC Capital Area (No. 19-03944).
  • 4. Origin—Crowdsensing Pedestrian Safety and E-scooters Maiti, A., Vinayaga-Sureshkanth, N., Jadliwala, M., Wijewickrama, R., & Griffin, G. (2022, March). Impact of e-scooters on pedestrian safety: A field study using pedestrian crowd-sensing. In PerCom Workshops (pp. 799-805). IEEE.
  • 5. Origin—Shared Micromobility Can Reduce Vehicle Traffic, but not only e-scooters Choi, K., Park, H. J., & Griffin, G. P. (2023). Can shared micromobility replace auto travel? Evidence from the US urbanized areas between 2012 and 2019. International Journal of Sustainable Transportation, 1-9.
  • 6. What Now? Do e-scooter rental term lengths change travel patterns? Can machine learning support urban policy making? What type of street-level features may increase e-scooter crash risks?
  • 7. How is ScooterLab different? The ScooterLab testbed is envisioned as an instrument for the entire research community—not just local teams. Downtown + suburban contexts No private company data agreements Community data privacy and sharing platform
  • 9. The ScooterLab Architecture The ScooterLab testbed will comprise of: • Vehicles • Fleet Controller • Research Activities Management Portal (RAMP)
  • 13. Raw Data • Orientation (via Accelerometer) 13 *No scooters or riders wereharmed in obtaining this data.
  • 15. Raw Data • GPS – Speed 15
  • 16. Raw Data • GPS – Route 16
  • 20. ScooterLab is building a new urban sensing platform for improving cities. Multi-disciplinary challenges require collaboration and sharing. C O N T R I B U T I O N
  • 21. Data science cannot solve all urban challenges Urban planning addresses wicked problems with inclusiveness, policy, design, and financing. H O W E V E R
  • 22. ScooterLab: Let’s think about our future Dr. Greg Griffin, AICP https://scooterlab.utsa.edu/ Think Science, 12Sept2023

Notes de l'éditeur

  1. What type of data e.g.: time series. Don’t go too much in to details of examples
  2. Angular Velocity