La strada verso il successo con i database a grafo, la Graph Data Science e l’AI generativa

Neo4j
Neo4jOpen Source NOSQL Graph Database à Neo4j
La strada verso il successo
con i database a grafo, la
Graph Data Science e l’AI
generativa
Marco Bessi, PreSale Engineer
Neo4j Inc. All rights reserved 2023
Your friendly instructor
Neo4j
Italy
PreSale
Engineer
PhD
@PoliMI
Neo4j Inc. All rights reserved 2023
Neo4j
Neo4j Inc. All rights reserved 2023
Pioneered the
graph database
in 2002
4 Neo4j Inc. All rights reserved 2023
Neo4j is a DB
Causal
clustering
ACID
transactions
High
availability
Binary
& HTTP
protocol
Official
drivers
5 Neo4j Inc. All rights reserved 2023
Neo4j is a GRAPH DB
Causal
clustering
ACID
transactions
High
availability
Binary
& HTTP
protocol
Official
drivers
Native
graph DB
Property
graph
model
Schema
free
Index-free
adjacency
Cypher
6 Neo4j Inc. All rights reserved 2023
Labeled property graph
model components
• Nodes
- Represent objects in the graph
• Relationships
- Relate nodes by type and direction
• Properties
- Name-value pairs that can go
on nodes and relationships
- Can have indexes and composite
indexes
• Labels
- Group nodes & shape the domain
7 Neo4j Inc. All rights reserved 2023
Hybrid workload duality
Intelligent
Operational
Systems
Graph Transactions,
Storage & Querying
Built for operational and analytical workloads
Better
Predictions
for Analytics
Graph Analytics, ML,
& Data Science
8 Neo4j Inc. All rights reserved 2023
Graph Data Science
Neo4j Inc. All rights reserved 2023
GDS evolution
Local
Matching
Use embeddings to learn
the features in your
graph that you don’t even
know are important yet.
Train in-graph supervise
ML models to predict
links, labels and missing
data.
Global
Patterns
Graph
Representations
Use unsupervised
machine learning
techniques to identify
associations, anomalies,
and trends.
Graph analytics
Graph feature
engineering
Find the patterns
you’re looking for in
connected data.
Knowledge graphs
10 Neo4j Inc. All rights reserved 2023
65+ Graph Data Science Techniques in Neo4j
Pathfinding &
Search
• Shortest Path
• Single-Source Shortest Path
• All Pairs Shortest Path
• A* Shortest Path
• Yen’s K Shortest Path
• Minimum Weight Spanning Tree
• K-Spanning Tree (MST)
• Random Walk
• Breadth & Depth First Search
Centrality &
Importance
• Degree Centrality
• Closeness Centrality
• Harmonic Centrality
• Betweenness Centrality & Approx.
• PageRank
• Personalized PageRank
• ArticleRank
• Eigenvector Centrality
• Hyperlink Induced Topic Search (HITS)
• Influence Maximization (Greedy, CELF)
Community
Detection
• Triangle Count
• Local Clustering Coefficient
• Connected Components (Union Find)
• Strongly Connected Components
• Label Propagation
• Louvain Modularity
• K-1 Coloring
• Modularity Optimization
• Speaker Listener Label Propagation
Supervised
Machine Learning
• Node Classification
• Link Prediction
… and more!
Heuristic Link
Prediction
• Adamic Adar
• Common Neighbors
• Preferential Attachment
• Resource Allocations
• Same Community
• Total Neighbors
Similarity
• Node Similarity
• K-Nearest Neighbors (KNN)
• Jaccard Similarity
• Cosine Similarity
• Pearson Similarity
• Euclidean Distance
• Approximate Nearest Neighbors (ANN)
Graph
Embeddings
• Node2Vec
• FastRP
• FastRPExtended
• GraphSAGE
• Synthetic Graph Generation
• Scale Properties
• Collapse Paths
• One Hot Encoding
• Split Relationships
• Graph Export
• Pregel API (write your own algos)
11 Neo4j Inc. All rights reserved 2023
Where is graph data science applied
Predictive
Maintenance
Churn
Prediction
Fraud
Detection
Life Sciences
Personalized
Recommendations
Cybersecurity
Disambiguation &
Segmentation
GenAI and KG
12 Neo4j Inc. All rights reserved 2023
Generative AI &
Knowledge Graphs
Neo4j Inc. All rights reserved 2023
In a world of infinite
content, knowledge
becomes valuable
Denny
Vrandečić
[WikiData]
[Semantic MediaWiki]
[Wikifunctions]
14 Neo4j Inc. All rights reserved 2023
$6.6 Trillion
In Economic Value
Generative AI is Predicted to Unlock
Up to 3.3% productivity improvement annually
15 Neo4j Inc. All rights reserved 2023
Generative AI
A branch of artificial intelligence that
focuses on creating models and
algorithms capable of generating new
and original content.
ChatGPT is a well known example of a
generative AI.
A type of Generative AI that is trained on
vast amounts of content.
Currently seen as the “GenAI for
language/text”.
ChatGPT is a Large Language Model.
Large Language Model
LLMs give us an amazing opportunity to:
Automate data
retrieval tasks 1
3
2
4
Expedite reading,
understanding, &
summarizing
Improve customer
service experiences
Generate content
& code
17 Neo4j Inc. All rights reserved 2023
Save time and money
Improve growth and retention:
Customer
Operations 1
3
2
4
Software Engineering
Marketing & Sales
R&D
75% of GenAI value will come from four areas
18 Neo4j Inc. All rights reserved 2023
But there are challenges:
1
3
2
4
5
Knowledge
cut-off
Can inherit bias
through training data
Reasonable answers,
not always accurate
Lack of enterprise
domain knowledge
Inability to verify or
attribute sources
19 Neo4j Inc. All rights reserved 2023
In summary
Learns random sentences from
random people
Talks like a person but doesn’t
really understand what it’s saying
Occasionally speaks absolute
non sense
Is a cute little bird
20 Neo4j Inc. All rights reserved 2023
How can you take advantage of
this massive opportunity while
overcoming these challenges?
21 Neo4j Inc. All rights reserved 2023
LLM + Graphs
I want to use
LLM’s in my
Graph for…
22 Neo4j Inc. All rights reserved 2023
LLM + Graphs
Front-end
Natural language
to cypher
I want to use
LLM’s in my
Graph for…
23 Neo4j Inc. All rights reserved 2023
LLM + Graphs
Back-end
KG-enhanced
LLMs
Front-end
Natural language
to cypher
I want to use
LLM’s in my
Graph for…
24 Neo4j Inc. All rights reserved 2023
How to help LLM do better?
Fine tuning
Few-shot
learning
Grounding
Provide additional
training data to better
tune GenAI to your
use case
Provide completed
examples “shots” to
the AI as context in
prompts. a.k.a
In-Context Learning
Provide AI with the
information to use for
generating responses
Neo4j as the data
source for Grounding
25 Neo4j Inc. All rights reserved 2023
Ground LLMs in Neo4j’s Knowledge Graph
26 Neo4j Inc. All rights reserved 2023
Retrieval Augmented
Generation (RAG):
retrieve data from outside a
foundation model and augment
your prompts by adding the
relevant retrieved data in
context
Neo4j’s Knowledge Graph
LLM + Neo4j’s
Knowledge
Graph
Improve
accuracy
Deploy with
confidence
Unlock
innovation
27 Neo4j Inc. All rights reserved 2023
Combine the power of LLM with the stored data of
your knowledge graph for more accurate responses
and to reduce hallucinations.
Improve Accuracy
Neo4j Inc. All rights reserved 2023
LLMs can help generate more accurate responses by considering the connections
and dependencies within the graph and mapping new links as new data is identified.
Flexible schema means it is
easy to grow your knowledge
base whenever new
information is available
Relationships are data that is
used to return explicit results
Accuracy
Vector search adds implicit
results showcasing similar
responses
29 Neo4j Inc. All rights reserved 2023
Knowledge retrieval with Neo4j
30 Neo4j Inc. All rights reserved 2023
CALL db.index.vector.queryNodes('products', 5, $embedding)
CALL apoc.ml.openai.embedding([$question], $apiKey)
CALL apoc.ml.openai.chat([{role:'system', content: $system},
{role:'user', content: $user}], $apiKey)
1
2
3
Add a layer of context
over your LLM for
accuracy and
specificity
Neo4j knowledge graphs supply the LLM with information about your company so answers
are specific to your business, giving more context for more accurate responses.
Specificity
31 Neo4j Inc. All rights reserved 2023
Ensure your grounding-partner meets security,
scalability, and regulatory requirements so you
can deploy enterprise-wide with confidence.
Deploy with Confidence
Neo4j Inc. All rights reserved 2023
Define policies by role or identity
Integrates with identity and access
management provider with SSO
LLM retrieves and returns information governed by your enterprise security and
access control policies-down to the node level.
Security & Privacy
Build constraints on nodes, labels,
relationships, properties, specific
parts of the graph, and even
traversal depth
33 Neo4j Inc. All rights reserved 2023
Easily scale with autonomous
clustering
Reliability
Neo4j knowledge graphs scale and are battle-tested to thousands of concurrent users,
get answers quickly with incredibly fast query speeds.
Incredibly fast traversals with index
free adjacency
34 Neo4j Inc. All rights reserved 2023
Add metadata or annotations
Map relationships between
search results and data source
nodes
Represent data sources as nodes
Verify the enriched responses from your LLM because each piece of information is
linked to its sources and origins.
Explainability
35 Neo4j Inc. All rights reserved 2023
Adopt innovation and iterate as your LLM
implementations evolve with full interoperability
across all cloud and data providers.
Unlock Innovation
Neo4j Inc. All rights reserved 2023
Any cloud, any data provider
Graph Data Science
BI & VISUALIZATIONS
INGEST
STORE
PROCESS
Apache
Kafka
MACHINE LEARNING
Cloud
Functions
Neo4j Bloom
PubSub
DataProc
Analytics
Feature
Engineering
Data
Exploration
Graph
Data
Science
Business
Applications &
Existing Systems
Files (unstructured,
structured)
TensorFlow
KNIME Python
Cloud Storage
AWS
Lambda
Graph Database
37 Neo4j Inc. All rights reserved 2023
Ground LLMs to improve accuracy and explainability with Neo4j’s
enterprise-ready knowledge graph built on a flexible schema that
integrates seamlessly with your GenAI tech platform.
Stay Grounded with Neo4j
Improve Accuracy Deploy with Confidence Unlock Innovation
Neo4j Inc. All rights reserved 2023
Nhow Milano
Via Tortona 35, Milano
Graph Talk Milano
Giovedi, 5 Ottobre 2023
9.00-13.30
Thank you
Marco Bessi, PreSale Engineer, marco.bessi@neo4j.com
Neo4j Inc. All rights reserved 2023
Support
41 Neo4j Inc. All rights reserved 2023
Better predictions with data you already have
● Traditional ML ignore network structure because it’s difficult to extract
● Add graphy data to existing ML pipelines to increase accuracy, or
● Graphs use relationships to unlock otherwise unattainable predictions
Machine Learning Pipeline
42 Neo4j Inc. All rights reserved 2023
Why do data science in Neo4j (VS Python/R )?
1
2
3
Performance: Specialized data structure; Good concurrency;
In-memory optimization & compression productions-ready.
Easy of use: Consistent syntax, including Cypher;
Comprehensive library (65+ vetted algorithms);
Persistence, every stage of the data science process
can be stored/not stored.
Product support: GDS / AuraDS is supported
by Neo4j, well documented, with a large
team of support engineers, and a sizeable
user community.
43 Neo4j Inc. All rights reserved 2023
Neo4j should be the database for Grounding
44 Neo4j Inc. All rights reserved 2023
Vector DB Limitations
Knowledge Graph
Strengths
Neo4j Differentiators
Similarity ≠ Relevance or
Accuracy
Black-Box (Sub-Symbolic)
Duplicate & incomplete
results
Missing reference information
Challenging to answer
multi-hop questions
Difficult for SME to correct
Relevancy beyond just
similarity
Transparent symbolic
representation
Condensed information
storage
References between
documents calculated before
query time
Enables human correction
LLMs understand Cypher
Vectors + Cypher
Index for many data types
(numeric, geopoints, dates)
Fine-grained security and
access control
ACID transactions,
high-availability, and scale
Ecosystem integration
Available on all clouds
Graph Data Science for
enhanced ML
New Neo4j features
From Neo4j v5.11
1
2
APOC OpenAI API:
CALL apoc.ml.openai.embedding(['Some Text'], $apiKey, {})
CALL apoc.ml.openai.completion('Question', $apiKey, {config}) yield
value;
CALL apoc.ml.query("Question") yield value, query
...
Vector index & search:
Index nodes on float or double array properties.
Based on Lucene which uses Hierarchical Navigable Small-World graphs (HNSW).
Created and queried using procedures.
Vector index
Leveraging Vector + KG
Creation
CALL db.index.vector.createNodeIndex(
)
indexName, // Name of the index to create (STRING)
label, // Label of nodes to index (STRING)
propertyKey, // Property key to index (STRING)
dimensions, // Dimensionality of vectors to index (INTEGER)
similarityFunction // “EUCLIDEAN” or “COSINE”
(case-insensitive STRING)
Querying
CALL db.index.vector.queryNodes(
)
indexName, // Name of the index to query (STRING)
k, // Number of neighbors to query for (INTEGER)
vector // Query vector whose neighbors we are searching for
(LIST<FLOAT>)
Writing vector efficiently
CALL db.create.setVectorProperty(
)
node, // Nodes to add the property to (NODE)
propertyKey, // Property key to write to (STRING)
vector, // Property value to write (LIST<FLOAT>)
1 sur 50

Recommandé

La strada verso il successo con i database a grafo, la Graph Data Science e l... par
La strada verso il successo con i database a grafo, la Graph Data Science e l...La strada verso il successo con i database a grafo, la Graph Data Science e l...
La strada verso il successo con i database a grafo, la Graph Data Science e l...Neo4j
9 vues39 diapositives
El camino hacia el éxito con las bases de datos de grafos, la ciencia de dato... par
El camino hacia el éxito con las bases de datos de grafos, la ciencia de dato...El camino hacia el éxito con las bases de datos de grafos, la ciencia de dato...
El camino hacia el éxito con las bases de datos de grafos, la ciencia de dato...Neo4j
61 vues49 diapositives
Neo4j – The Fastest Path to Scalable Real-Time Analytics par
Neo4j – The Fastest Path to Scalable Real-Time AnalyticsNeo4j – The Fastest Path to Scalable Real-Time Analytics
Neo4j – The Fastest Path to Scalable Real-Time AnalyticsNeo4j
456 vues37 diapositives
Graph Data Science with Neo4j: Nordics Webinar par
Graph Data Science with Neo4j: Nordics WebinarGraph Data Science with Neo4j: Nordics Webinar
Graph Data Science with Neo4j: Nordics WebinarNeo4j
321 vues22 diapositives
Einstieg in Neo4j Graph Data Science par
Einstieg in Neo4j Graph Data ScienceEinstieg in Neo4j Graph Data Science
Einstieg in Neo4j Graph Data ScienceNeo4j
249 vues26 diapositives
Introducción a Neo4j par
Introducción a Neo4jIntroducción a Neo4j
Introducción a Neo4jNeo4j
32 vues27 diapositives

Contenu connexe

Similaire à La strada verso il successo con i database a grafo, la Graph Data Science e l’AI generativa

The perfect couple: Uniting Large Language Models and Knowledge Graphs for En... par
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...Neo4j
233 vues57 diapositives
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S... par
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...Neo4j
128 vues42 diapositives
Neo4j : la voie du succès avec les bases de données de graphes et la Graph Da... par
Neo4j : la voie du succès avec les bases de données de graphes et la Graph Da...Neo4j : la voie du succès avec les bases de données de graphes et la Graph Da...
Neo4j : la voie du succès avec les bases de données de graphes et la Graph Da...Neo4j
39 vues30 diapositives
Graphs for Data Science and Machine Learning par
Graphs for Data Science and Machine LearningGraphs for Data Science and Machine Learning
Graphs for Data Science and Machine LearningNeo4j
790 vues40 diapositives
Government GraphSummit: Leveraging Graphs for AI and ML par
Government GraphSummit: Leveraging Graphs for AI and MLGovernment GraphSummit: Leveraging Graphs for AI and ML
Government GraphSummit: Leveraging Graphs for AI and MLNeo4j
92 vues24 diapositives
The Path To Success With Graph Database and Analytics par
The Path To Success With Graph Database and AnalyticsThe Path To Success With Graph Database and Analytics
The Path To Success With Graph Database and AnalyticsNeo4j
39 vues39 diapositives

Similaire à La strada verso il successo con i database a grafo, la Graph Data Science e l’AI generativa(20)

The perfect couple: Uniting Large Language Models and Knowledge Graphs for En... par Neo4j
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
Neo4j233 vues
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S... par Neo4j
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Neo4j128 vues
Neo4j : la voie du succès avec les bases de données de graphes et la Graph Da... par Neo4j
Neo4j : la voie du succès avec les bases de données de graphes et la Graph Da...Neo4j : la voie du succès avec les bases de données de graphes et la Graph Da...
Neo4j : la voie du succès avec les bases de données de graphes et la Graph Da...
Neo4j39 vues
Graphs for Data Science and Machine Learning par Neo4j
Graphs for Data Science and Machine LearningGraphs for Data Science and Machine Learning
Graphs for Data Science and Machine Learning
Neo4j790 vues
Government GraphSummit: Leveraging Graphs for AI and ML par Neo4j
Government GraphSummit: Leveraging Graphs for AI and MLGovernment GraphSummit: Leveraging Graphs for AI and ML
Government GraphSummit: Leveraging Graphs for AI and ML
Neo4j92 vues
The Path To Success With Graph Database and Analytics par Neo4j
The Path To Success With Graph Database and AnalyticsThe Path To Success With Graph Database and Analytics
The Path To Success With Graph Database and Analytics
Neo4j39 vues
Knowledge Graphs and Generative AI_GraphSummit Minneapolis Sept 20.pptx par Neo4j
Knowledge Graphs and Generative AI_GraphSummit Minneapolis Sept 20.pptxKnowledge Graphs and Generative AI_GraphSummit Minneapolis Sept 20.pptx
Knowledge Graphs and Generative AI_GraphSummit Minneapolis Sept 20.pptx
Neo4j226 vues
Neo4j GraphDay Seattle- Sept19- Connected data imperative par Neo4j
Neo4j GraphDay Seattle- Sept19- Connected data imperativeNeo4j GraphDay Seattle- Sept19- Connected data imperative
Neo4j GraphDay Seattle- Sept19- Connected data imperative
Neo4j528 vues
Optimizing Your Supply Chain with Neo4j par Neo4j
Optimizing Your Supply Chain with Neo4jOptimizing Your Supply Chain with Neo4j
Optimizing Your Supply Chain with Neo4j
Neo4j44 vues
Neo4j y GenAI par Neo4j
Neo4j y GenAI Neo4j y GenAI
Neo4j y GenAI
Neo4j45 vues
The Art of the Possible with Graph - Sudhir Hasbe - GraphSummit London 14 Nov... par Neo4j
The Art of the Possible with Graph - Sudhir Hasbe - GraphSummit London 14 Nov...The Art of the Possible with Graph - Sudhir Hasbe - GraphSummit London 14 Nov...
The Art of the Possible with Graph - Sudhir Hasbe - GraphSummit London 14 Nov...
Neo4j77 vues
ntroducing to the Power of Graph Technology par Neo4j
ntroducing to the Power of Graph Technologyntroducing to the Power of Graph Technology
ntroducing to the Power of Graph Technology
Neo4j334 vues
Using Connected Data and Graph Technology to Enhance Machine Learning and Art... par Neo4j
Using Connected Data and Graph Technology to Enhance Machine Learning and Art...Using Connected Data and Graph Technology to Enhance Machine Learning and Art...
Using Connected Data and Graph Technology to Enhance Machine Learning and Art...
Neo4j50 vues
The path to success with Graph Database and Graph Data Science par Neo4j
The path to success with Graph Database and Graph Data ScienceThe path to success with Graph Database and Graph Data Science
The path to success with Graph Database and Graph Data Science
Neo4j106 vues
GraphSummit Toronto: Leveraging Graphs for AI and ML par Neo4j
GraphSummit Toronto: Leveraging Graphs for AI and MLGraphSummit Toronto: Leveraging Graphs for AI and ML
GraphSummit Toronto: Leveraging Graphs for AI and ML
Neo4j66 vues
Workshop - Build a Graph Solution par Neo4j
Workshop - Build a Graph SolutionWorkshop - Build a Graph Solution
Workshop - Build a Graph Solution
Neo4j94 vues
Neo4j Generative AI workshop at GraphSummit London 14 Nov 2023.pdf par Neo4j
Neo4j Generative AI workshop at GraphSummit London 14 Nov 2023.pdfNeo4j Generative AI workshop at GraphSummit London 14 Nov 2023.pdf
Neo4j Generative AI workshop at GraphSummit London 14 Nov 2023.pdf
Neo4j55 vues
GraphTour 2020 - Neo4j: What's New? par Neo4j
GraphTour 2020 - Neo4j: What's New?GraphTour 2020 - Neo4j: What's New?
GraphTour 2020 - Neo4j: What's New?
Neo4j511 vues
The Neo4j Data Platform for Today & Tomorrow.pdf par Neo4j
The Neo4j Data Platform for Today & Tomorrow.pdfThe Neo4j Data Platform for Today & Tomorrow.pdf
The Neo4j Data Platform for Today & Tomorrow.pdf
Neo4j157 vues
The Art of the Possible with Graph Technology par Neo4j
The Art of the Possible with Graph TechnologyThe Art of the Possible with Graph Technology
The Art of the Possible with Graph Technology
Neo4j29 vues

Plus de Neo4j

FIMA 2023 Neo4j & FS - Entity Resolution.pptx par
FIMA 2023 Neo4j & FS - Entity Resolution.pptxFIMA 2023 Neo4j & FS - Entity Resolution.pptx
FIMA 2023 Neo4j & FS - Entity Resolution.pptxNeo4j
6 vues26 diapositives
Operations & Data Graph par
Operations & Data GraphOperations & Data Graph
Operations & Data GraphNeo4j
36 vues25 diapositives
TAGTTOO: La nova xarxa social par
TAGTTOO: La nova xarxa socialTAGTTOO: La nova xarxa social
TAGTTOO: La nova xarxa socialNeo4j
24 vues19 diapositives
El Arte de lo Possible par
El Arte de lo PossibleEl Arte de lo Possible
El Arte de lo PossibleNeo4j
39 vues35 diapositives
Roadmap y Novedades de producto par
Roadmap y Novedades de productoRoadmap y Novedades de producto
Roadmap y Novedades de productoNeo4j
50 vues33 diapositives
Neo4j : Graphes de Connaissance, IA et LLMs par
Neo4j : Graphes de Connaissance, IA et LLMsNeo4j : Graphes de Connaissance, IA et LLMs
Neo4j : Graphes de Connaissance, IA et LLMsNeo4j
47 vues20 diapositives

Plus de Neo4j(20)

FIMA 2023 Neo4j & FS - Entity Resolution.pptx par Neo4j
FIMA 2023 Neo4j & FS - Entity Resolution.pptxFIMA 2023 Neo4j & FS - Entity Resolution.pptx
FIMA 2023 Neo4j & FS - Entity Resolution.pptx
Neo4j6 vues
Operations & Data Graph par Neo4j
Operations & Data GraphOperations & Data Graph
Operations & Data Graph
Neo4j36 vues
TAGTTOO: La nova xarxa social par Neo4j
TAGTTOO: La nova xarxa socialTAGTTOO: La nova xarxa social
TAGTTOO: La nova xarxa social
Neo4j24 vues
El Arte de lo Possible par Neo4j
El Arte de lo PossibleEl Arte de lo Possible
El Arte de lo Possible
Neo4j39 vues
Roadmap y Novedades de producto par Neo4j
Roadmap y Novedades de productoRoadmap y Novedades de producto
Roadmap y Novedades de producto
Neo4j50 vues
Neo4j : Graphes de Connaissance, IA et LLMs par Neo4j
Neo4j : Graphes de Connaissance, IA et LLMsNeo4j : Graphes de Connaissance, IA et LLMs
Neo4j : Graphes de Connaissance, IA et LLMs
Neo4j47 vues
Les nouveautés produit Neo4j par Neo4j
 Les nouveautés produit Neo4j Les nouveautés produit Neo4j
Les nouveautés produit Neo4j
Neo4j27 vues
Sopra Steria : Analyse intelligente des réseaux dans le domaine des télécommu... par Neo4j
Sopra Steria : Analyse intelligente des réseaux dans le domaine des télécommu...Sopra Steria : Analyse intelligente des réseaux dans le domaine des télécommu...
Sopra Steria : Analyse intelligente des réseaux dans le domaine des télécommu...
Neo4j25 vues
Generali : SPIDER, notre produit au cœur des enjeux Generali en termes de Com... par Neo4j
Generali : SPIDER, notre produit au cœur des enjeux Generali en termes de Com...Generali : SPIDER, notre produit au cœur des enjeux Generali en termes de Com...
Generali : SPIDER, notre produit au cœur des enjeux Generali en termes de Com...
Neo4j53 vues
Neo4j & AWS Bedrock workshop at GraphSummit London 14 Nov 2023.pptx par Neo4j
Neo4j & AWS Bedrock workshop at GraphSummit London 14 Nov 2023.pptxNeo4j & AWS Bedrock workshop at GraphSummit London 14 Nov 2023.pptx
Neo4j & AWS Bedrock workshop at GraphSummit London 14 Nov 2023.pptx
Neo4j49 vues
Neo4j workshop at GraphSummit London 14 Nov 2023.pdf par Neo4j
Neo4j workshop at GraphSummit London 14 Nov 2023.pdfNeo4j workshop at GraphSummit London 14 Nov 2023.pdf
Neo4j workshop at GraphSummit London 14 Nov 2023.pdf
Neo4j50 vues
Neo4j Product Updates & Knowledge Graphs at GraphSummit London 14 Nov 2023.pptx par Neo4j
Neo4j Product Updates & Knowledge Graphs at GraphSummit London 14 Nov 2023.pptxNeo4j Product Updates & Knowledge Graphs at GraphSummit London 14 Nov 2023.pptx
Neo4j Product Updates & Knowledge Graphs at GraphSummit London 14 Nov 2023.pptx
Neo4j62 vues
AstraZeneca at Neo4j GraphSummit London 14Nov23.pptx par Neo4j
AstraZeneca at Neo4j GraphSummit London 14Nov23.pptxAstraZeneca at Neo4j GraphSummit London 14Nov23.pptx
AstraZeneca at Neo4j GraphSummit London 14Nov23.pptx
Neo4j41 vues
Google Cloud at GraphSummit London 14 Nov 2023.pptx par Neo4j
Google Cloud at GraphSummit London 14 Nov 2023.pptxGoogle Cloud at GraphSummit London 14 Nov 2023.pptx
Google Cloud at GraphSummit London 14 Nov 2023.pptx
Neo4j27 vues
Northern Gas Networks and CKDelta at Neo4j GraphSummit London 14Nov23.pptx par Neo4j
Northern Gas Networks and CKDelta at Neo4j GraphSummit London 14Nov23.pptxNorthern Gas Networks and CKDelta at Neo4j GraphSummit London 14Nov23.pptx
Northern Gas Networks and CKDelta at Neo4j GraphSummit London 14Nov23.pptx
Neo4j46 vues
Peek into Neo4j Product Strategy and Roadmap par Neo4j
Peek into Neo4j Product Strategy and RoadmapPeek into Neo4j Product Strategy and Roadmap
Peek into Neo4j Product Strategy and Roadmap
Neo4j87 vues
Transforming Intelligence Analysis with Knowledge Graphs par Neo4j
Transforming Intelligence Analysis with Knowledge GraphsTransforming Intelligence Analysis with Knowledge Graphs
Transforming Intelligence Analysis with Knowledge Graphs
Neo4j60 vues
Knowledge Graphs and Generative AI par Neo4j
Knowledge Graphs and Generative AIKnowledge Graphs and Generative AI
Knowledge Graphs and Generative AI
Neo4j138 vues
Ontology Driven Data for Fleet Management par Neo4j
Ontology Driven Data for Fleet ManagementOntology Driven Data for Fleet Management
Ontology Driven Data for Fleet Management
Neo4j54 vues
Unleash the Power of Neo4j with GPT and Large Language Models: Harmonizing Co... par Neo4j
Unleash the Power of Neo4j with GPT and Large Language Models: Harmonizing Co...Unleash the Power of Neo4j with GPT and Large Language Models: Harmonizing Co...
Unleash the Power of Neo4j with GPT and Large Language Models: Harmonizing Co...
Neo4j77 vues

Dernier

Unleash The Monkeys par
Unleash The MonkeysUnleash The Monkeys
Unleash The MonkeysJacob Duijzer
7 vues28 diapositives
360 graden fabriek par
360 graden fabriek360 graden fabriek
360 graden fabriekinfo33492
36 vues25 diapositives
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t... par
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...Deltares
9 vues26 diapositives
Citi TechTalk Session 2: Kafka Deep Dive par
Citi TechTalk Session 2: Kafka Deep DiveCiti TechTalk Session 2: Kafka Deep Dive
Citi TechTalk Session 2: Kafka Deep Diveconfluent
17 vues60 diapositives
DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit... par
DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit...DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit...
DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit...Deltares
13 vues34 diapositives
A first look at MariaDB 11.x features and ideas on how to use them par
A first look at MariaDB 11.x features and ideas on how to use themA first look at MariaDB 11.x features and ideas on how to use them
A first look at MariaDB 11.x features and ideas on how to use themFederico Razzoli
45 vues36 diapositives

Dernier(20)

360 graden fabriek par info33492
360 graden fabriek360 graden fabriek
360 graden fabriek
info3349236 vues
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t... par Deltares
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...
Deltares9 vues
Citi TechTalk Session 2: Kafka Deep Dive par confluent
Citi TechTalk Session 2: Kafka Deep DiveCiti TechTalk Session 2: Kafka Deep Dive
Citi TechTalk Session 2: Kafka Deep Dive
confluent17 vues
DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit... par Deltares
DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit...DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit...
DSD-INT 2023 FloodAdapt - A decision-support tool for compound flood risk mit...
Deltares13 vues
A first look at MariaDB 11.x features and ideas on how to use them par Federico Razzoli
A first look at MariaDB 11.x features and ideas on how to use themA first look at MariaDB 11.x features and ideas on how to use them
A first look at MariaDB 11.x features and ideas on how to use them
Unmasking the Dark Art of Vectored Exception Handling: Bypassing XDR and EDR ... par Donato Onofri
Unmasking the Dark Art of Vectored Exception Handling: Bypassing XDR and EDR ...Unmasking the Dark Art of Vectored Exception Handling: Bypassing XDR and EDR ...
Unmasking the Dark Art of Vectored Exception Handling: Bypassing XDR and EDR ...
Donato Onofri773 vues
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx par animuscrm
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx
2023-November-Schneider Electric-Meetup-BCN Admin Group.pptx
animuscrm13 vues
MariaDB stored procedures and why they should be improved par Federico Razzoli
MariaDB stored procedures and why they should be improvedMariaDB stored procedures and why they should be improved
MariaDB stored procedures and why they should be improved
Generic or specific? Making sensible software design decisions par Bert Jan Schrijver
Generic or specific? Making sensible software design decisionsGeneric or specific? Making sensible software design decisions
Generic or specific? Making sensible software design decisions
DSD-INT 2023 Next-Generation Flood Inundation Mapping for Taiwan - Delft3D FM... par Deltares
DSD-INT 2023 Next-Generation Flood Inundation Mapping for Taiwan - Delft3D FM...DSD-INT 2023 Next-Generation Flood Inundation Mapping for Taiwan - Delft3D FM...
DSD-INT 2023 Next-Generation Flood Inundation Mapping for Taiwan - Delft3D FM...
Deltares7 vues
Elevate your SAP landscape's efficiency and performance with HCL Workload Aut... par HCLSoftware
Elevate your SAP landscape's efficiency and performance with HCL Workload Aut...Elevate your SAP landscape's efficiency and performance with HCL Workload Aut...
Elevate your SAP landscape's efficiency and performance with HCL Workload Aut...
HCLSoftware6 vues
Tridens DevOps par Tridens
Tridens DevOpsTridens DevOps
Tridens DevOps
Tridens9 vues
Software evolution understanding: Automatic extraction of software identifier... par Ra'Fat Al-Msie'deen
Software evolution understanding: Automatic extraction of software identifier...Software evolution understanding: Automatic extraction of software identifier...
Software evolution understanding: Automatic extraction of software identifier...
DSD-INT 2023 - Delft3D User Days - Welcome - Day 3 - Afternoon par Deltares
DSD-INT 2023 - Delft3D User Days - Welcome - Day 3 - AfternoonDSD-INT 2023 - Delft3D User Days - Welcome - Day 3 - Afternoon
DSD-INT 2023 - Delft3D User Days - Welcome - Day 3 - Afternoon
Deltares15 vues
DSD-INT 2023 Simulation of Coastal Hydrodynamics and Water Quality in Hong Ko... par Deltares
DSD-INT 2023 Simulation of Coastal Hydrodynamics and Water Quality in Hong Ko...DSD-INT 2023 Simulation of Coastal Hydrodynamics and Water Quality in Hong Ko...
DSD-INT 2023 Simulation of Coastal Hydrodynamics and Water Quality in Hong Ko...
Deltares12 vues
Headless JS UG Presentation.pptx par Jack Spektor
Headless JS UG Presentation.pptxHeadless JS UG Presentation.pptx
Headless JS UG Presentation.pptx
Jack Spektor7 vues

La strada verso il successo con i database a grafo, la Graph Data Science e l’AI generativa

  • 1. La strada verso il successo con i database a grafo, la Graph Data Science e l’AI generativa Marco Bessi, PreSale Engineer Neo4j Inc. All rights reserved 2023
  • 3. Neo4j Neo4j Inc. All rights reserved 2023
  • 4. Pioneered the graph database in 2002 4 Neo4j Inc. All rights reserved 2023
  • 5. Neo4j is a DB Causal clustering ACID transactions High availability Binary & HTTP protocol Official drivers 5 Neo4j Inc. All rights reserved 2023
  • 6. Neo4j is a GRAPH DB Causal clustering ACID transactions High availability Binary & HTTP protocol Official drivers Native graph DB Property graph model Schema free Index-free adjacency Cypher 6 Neo4j Inc. All rights reserved 2023
  • 7. Labeled property graph model components • Nodes - Represent objects in the graph • Relationships - Relate nodes by type and direction • Properties - Name-value pairs that can go on nodes and relationships - Can have indexes and composite indexes • Labels - Group nodes & shape the domain 7 Neo4j Inc. All rights reserved 2023
  • 8. Hybrid workload duality Intelligent Operational Systems Graph Transactions, Storage & Querying Built for operational and analytical workloads Better Predictions for Analytics Graph Analytics, ML, & Data Science 8 Neo4j Inc. All rights reserved 2023
  • 9. Graph Data Science Neo4j Inc. All rights reserved 2023
  • 10. GDS evolution Local Matching Use embeddings to learn the features in your graph that you don’t even know are important yet. Train in-graph supervise ML models to predict links, labels and missing data. Global Patterns Graph Representations Use unsupervised machine learning techniques to identify associations, anomalies, and trends. Graph analytics Graph feature engineering Find the patterns you’re looking for in connected data. Knowledge graphs 10 Neo4j Inc. All rights reserved 2023
  • 11. 65+ Graph Data Science Techniques in Neo4j Pathfinding & Search • Shortest Path • Single-Source Shortest Path • All Pairs Shortest Path • A* Shortest Path • Yen’s K Shortest Path • Minimum Weight Spanning Tree • K-Spanning Tree (MST) • Random Walk • Breadth & Depth First Search Centrality & Importance • Degree Centrality • Closeness Centrality • Harmonic Centrality • Betweenness Centrality & Approx. • PageRank • Personalized PageRank • ArticleRank • Eigenvector Centrality • Hyperlink Induced Topic Search (HITS) • Influence Maximization (Greedy, CELF) Community Detection • Triangle Count • Local Clustering Coefficient • Connected Components (Union Find) • Strongly Connected Components • Label Propagation • Louvain Modularity • K-1 Coloring • Modularity Optimization • Speaker Listener Label Propagation Supervised Machine Learning • Node Classification • Link Prediction … and more! Heuristic Link Prediction • Adamic Adar • Common Neighbors • Preferential Attachment • Resource Allocations • Same Community • Total Neighbors Similarity • Node Similarity • K-Nearest Neighbors (KNN) • Jaccard Similarity • Cosine Similarity • Pearson Similarity • Euclidean Distance • Approximate Nearest Neighbors (ANN) Graph Embeddings • Node2Vec • FastRP • FastRPExtended • GraphSAGE • Synthetic Graph Generation • Scale Properties • Collapse Paths • One Hot Encoding • Split Relationships • Graph Export • Pregel API (write your own algos) 11 Neo4j Inc. All rights reserved 2023
  • 12. Where is graph data science applied Predictive Maintenance Churn Prediction Fraud Detection Life Sciences Personalized Recommendations Cybersecurity Disambiguation & Segmentation GenAI and KG 12 Neo4j Inc. All rights reserved 2023
  • 13. Generative AI & Knowledge Graphs Neo4j Inc. All rights reserved 2023
  • 14. In a world of infinite content, knowledge becomes valuable Denny Vrandečić [WikiData] [Semantic MediaWiki] [Wikifunctions] 14 Neo4j Inc. All rights reserved 2023
  • 15. $6.6 Trillion In Economic Value Generative AI is Predicted to Unlock Up to 3.3% productivity improvement annually 15 Neo4j Inc. All rights reserved 2023
  • 16. Generative AI A branch of artificial intelligence that focuses on creating models and algorithms capable of generating new and original content. ChatGPT is a well known example of a generative AI. A type of Generative AI that is trained on vast amounts of content. Currently seen as the “GenAI for language/text”. ChatGPT is a Large Language Model. Large Language Model
  • 17. LLMs give us an amazing opportunity to: Automate data retrieval tasks 1 3 2 4 Expedite reading, understanding, & summarizing Improve customer service experiences Generate content & code 17 Neo4j Inc. All rights reserved 2023
  • 18. Save time and money Improve growth and retention: Customer Operations 1 3 2 4 Software Engineering Marketing & Sales R&D 75% of GenAI value will come from four areas 18 Neo4j Inc. All rights reserved 2023
  • 19. But there are challenges: 1 3 2 4 5 Knowledge cut-off Can inherit bias through training data Reasonable answers, not always accurate Lack of enterprise domain knowledge Inability to verify or attribute sources 19 Neo4j Inc. All rights reserved 2023
  • 20. In summary Learns random sentences from random people Talks like a person but doesn’t really understand what it’s saying Occasionally speaks absolute non sense Is a cute little bird 20 Neo4j Inc. All rights reserved 2023
  • 21. How can you take advantage of this massive opportunity while overcoming these challenges? 21 Neo4j Inc. All rights reserved 2023
  • 22. LLM + Graphs I want to use LLM’s in my Graph for… 22 Neo4j Inc. All rights reserved 2023
  • 23. LLM + Graphs Front-end Natural language to cypher I want to use LLM’s in my Graph for… 23 Neo4j Inc. All rights reserved 2023
  • 24. LLM + Graphs Back-end KG-enhanced LLMs Front-end Natural language to cypher I want to use LLM’s in my Graph for… 24 Neo4j Inc. All rights reserved 2023
  • 25. How to help LLM do better? Fine tuning Few-shot learning Grounding Provide additional training data to better tune GenAI to your use case Provide completed examples “shots” to the AI as context in prompts. a.k.a In-Context Learning Provide AI with the information to use for generating responses Neo4j as the data source for Grounding 25 Neo4j Inc. All rights reserved 2023
  • 26. Ground LLMs in Neo4j’s Knowledge Graph 26 Neo4j Inc. All rights reserved 2023 Retrieval Augmented Generation (RAG): retrieve data from outside a foundation model and augment your prompts by adding the relevant retrieved data in context
  • 27. Neo4j’s Knowledge Graph LLM + Neo4j’s Knowledge Graph Improve accuracy Deploy with confidence Unlock innovation 27 Neo4j Inc. All rights reserved 2023
  • 28. Combine the power of LLM with the stored data of your knowledge graph for more accurate responses and to reduce hallucinations. Improve Accuracy Neo4j Inc. All rights reserved 2023
  • 29. LLMs can help generate more accurate responses by considering the connections and dependencies within the graph and mapping new links as new data is identified. Flexible schema means it is easy to grow your knowledge base whenever new information is available Relationships are data that is used to return explicit results Accuracy Vector search adds implicit results showcasing similar responses 29 Neo4j Inc. All rights reserved 2023
  • 30. Knowledge retrieval with Neo4j 30 Neo4j Inc. All rights reserved 2023 CALL db.index.vector.queryNodes('products', 5, $embedding) CALL apoc.ml.openai.embedding([$question], $apiKey) CALL apoc.ml.openai.chat([{role:'system', content: $system}, {role:'user', content: $user}], $apiKey) 1 2 3
  • 31. Add a layer of context over your LLM for accuracy and specificity Neo4j knowledge graphs supply the LLM with information about your company so answers are specific to your business, giving more context for more accurate responses. Specificity 31 Neo4j Inc. All rights reserved 2023
  • 32. Ensure your grounding-partner meets security, scalability, and regulatory requirements so you can deploy enterprise-wide with confidence. Deploy with Confidence Neo4j Inc. All rights reserved 2023
  • 33. Define policies by role or identity Integrates with identity and access management provider with SSO LLM retrieves and returns information governed by your enterprise security and access control policies-down to the node level. Security & Privacy Build constraints on nodes, labels, relationships, properties, specific parts of the graph, and even traversal depth 33 Neo4j Inc. All rights reserved 2023
  • 34. Easily scale with autonomous clustering Reliability Neo4j knowledge graphs scale and are battle-tested to thousands of concurrent users, get answers quickly with incredibly fast query speeds. Incredibly fast traversals with index free adjacency 34 Neo4j Inc. All rights reserved 2023
  • 35. Add metadata or annotations Map relationships between search results and data source nodes Represent data sources as nodes Verify the enriched responses from your LLM because each piece of information is linked to its sources and origins. Explainability 35 Neo4j Inc. All rights reserved 2023
  • 36. Adopt innovation and iterate as your LLM implementations evolve with full interoperability across all cloud and data providers. Unlock Innovation Neo4j Inc. All rights reserved 2023
  • 37. Any cloud, any data provider Graph Data Science BI & VISUALIZATIONS INGEST STORE PROCESS Apache Kafka MACHINE LEARNING Cloud Functions Neo4j Bloom PubSub DataProc Analytics Feature Engineering Data Exploration Graph Data Science Business Applications & Existing Systems Files (unstructured, structured) TensorFlow KNIME Python Cloud Storage AWS Lambda Graph Database 37 Neo4j Inc. All rights reserved 2023
  • 38. Ground LLMs to improve accuracy and explainability with Neo4j’s enterprise-ready knowledge graph built on a flexible schema that integrates seamlessly with your GenAI tech platform. Stay Grounded with Neo4j Improve Accuracy Deploy with Confidence Unlock Innovation Neo4j Inc. All rights reserved 2023
  • 39. Nhow Milano Via Tortona 35, Milano Graph Talk Milano Giovedi, 5 Ottobre 2023 9.00-13.30
  • 40. Thank you Marco Bessi, PreSale Engineer, marco.bessi@neo4j.com Neo4j Inc. All rights reserved 2023
  • 41. Support 41 Neo4j Inc. All rights reserved 2023
  • 42. Better predictions with data you already have ● Traditional ML ignore network structure because it’s difficult to extract ● Add graphy data to existing ML pipelines to increase accuracy, or ● Graphs use relationships to unlock otherwise unattainable predictions Machine Learning Pipeline 42 Neo4j Inc. All rights reserved 2023
  • 43. Why do data science in Neo4j (VS Python/R )? 1 2 3 Performance: Specialized data structure; Good concurrency; In-memory optimization & compression productions-ready. Easy of use: Consistent syntax, including Cypher; Comprehensive library (65+ vetted algorithms); Persistence, every stage of the data science process can be stored/not stored. Product support: GDS / AuraDS is supported by Neo4j, well documented, with a large team of support engineers, and a sizeable user community. 43 Neo4j Inc. All rights reserved 2023
  • 44. Neo4j should be the database for Grounding 44 Neo4j Inc. All rights reserved 2023 Vector DB Limitations Knowledge Graph Strengths Neo4j Differentiators Similarity ≠ Relevance or Accuracy Black-Box (Sub-Symbolic) Duplicate & incomplete results Missing reference information Challenging to answer multi-hop questions Difficult for SME to correct Relevancy beyond just similarity Transparent symbolic representation Condensed information storage References between documents calculated before query time Enables human correction LLMs understand Cypher Vectors + Cypher Index for many data types (numeric, geopoints, dates) Fine-grained security and access control ACID transactions, high-availability, and scale Ecosystem integration Available on all clouds Graph Data Science for enhanced ML
  • 45. New Neo4j features From Neo4j v5.11 1 2 APOC OpenAI API: CALL apoc.ml.openai.embedding(['Some Text'], $apiKey, {}) CALL apoc.ml.openai.completion('Question', $apiKey, {config}) yield value; CALL apoc.ml.query("Question") yield value, query ... Vector index & search: Index nodes on float or double array properties. Based on Lucene which uses Hierarchical Navigable Small-World graphs (HNSW). Created and queried using procedures.
  • 48. Creation CALL db.index.vector.createNodeIndex( ) indexName, // Name of the index to create (STRING) label, // Label of nodes to index (STRING) propertyKey, // Property key to index (STRING) dimensions, // Dimensionality of vectors to index (INTEGER) similarityFunction // “EUCLIDEAN” or “COSINE” (case-insensitive STRING)
  • 49. Querying CALL db.index.vector.queryNodes( ) indexName, // Name of the index to query (STRING) k, // Number of neighbors to query for (INTEGER) vector // Query vector whose neighbors we are searching for (LIST<FLOAT>)
  • 50. Writing vector efficiently CALL db.create.setVectorProperty( ) node, // Nodes to add the property to (NODE) propertyKey, // Property key to write to (STRING) vector, // Property value to write (LIST<FLOAT>)