SlideShare a Scribd company logo
1 of 49
Reusable Lunar Lander
Agenda ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction: Reusable Lander Concept
Concept ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Phased In approach ,[object Object],[object Object],[object Object],[object Object],[object Object]
Lander
Mass Allocations: Equipment List
Mass Allocations ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Propellant Mass Estimates (FWD) If estimates are correct only 5150 lb for all Lander systems except prop wet mass
Propellant Mass Estimates (Back) Includes 50,000 for CEV
Lander Systems ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Lander Systems ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Lander Systems ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Lander Schematics
Lander Descent/Ascent Cockpit with LIDS Lunar Orbit Insertion/ Deorbit Engines (10klb): QTY 4, 2 per AFT Pod Lunar Descent/Ascent Engine (10klb): QTY 4  1 per Pod RCS Quad  Engines (870 lb) Lunar Outpost Module on Flatbed Solar Array Panels Propellant tanks Descent/Ascent Consumables tanks Propellant Pressurization tanks RMS Landing Gear:  4 Struts per Pod RCS TRI  Engines
AFT Engine Pods Gimbaled 10 klb Engine RCS Tri 870 lb RCS Quad 870 lb Two Gimbaled 10 klb Engines +X +Z +Y
AFT Engine Pods Internal Gimbal Electronics RCS Driver Electronics Battery BIU
FWD Engine Pods Gimbaled 10lkb Engine RCS Tri 870 lb RCS Quad 870 lb +X +Z +Y
FWD Engine Pods Internal RNDZ Sensor Electronics RCS Driver Electronics Battery BIU Gimbal Electronics IROC Sensor (port pod) SROC Sensor (starboard pod) LROC Sensor  (port pod) LIDAR (starboard pod) RNDZ Aux Computer Ground Proximity Sensor
Cockpit Internal Side View Lids O2 Tank N2 Tank Propellant Transfer Lines Cockpit Displays Ground Radar Computer Porch and Ladder in Stowed Position Crew member in Eva Suit for Landing Star Tracker IMU
Cockpit Forward Facing GND Radar Propellant tanks Propellant Pressurization tanks Star Tracker Doors O2 Tank N2 Tank Ground Radar Electronics IMUs H2OTank Computers Star Tracker Assemblies Lids Transfer connections FU OX He ECLSS Stowage Computer Stowage
Lander Forward Facing Solar Array Panels RNDZ Sensors RNDZ Sensors GND Radar Porch and Ladder in Stowed Position Propellant tanks Propellant Pressurization tanks RCS Quad Landing Gear 4 per Pod Descent/Ascent Engine Star Tracker Doors
Flat bed Transport Battery Electric Drive Plow attachment for regolith movement RMS Flat Bed Attach Point Transport can be used without flat bed for rover ops Computer Solar Array Panel Suit O2 Supply tank for extended rover ops Outpost Solar Array Panel stowed in Flatbed Suit H2O Supply tank for extended rover ops Hatch to non- pressurized cockpit
Flight Sequence: Flights Ones and Two
Flight One Lander performs Lunar Orbit Insertion with 4 AFT Engines
Flight One Lander Lands on surface
Flight One Lander Releases Outpost Module and flat bed Outpost Module Airlock Rover cockpit RMS
Flight One flat bed deploys Outpost Module with RMS Lunar Regolith for Shielding
Flight Two CEV2 with Crew Rotation PTM with DeltaV for LOI and Lander resupply Outpost Module #2 CEV2 Performs Lunar orbit Insertion
Flight Two CEV2 with Crew Rotation PTM with DeltaV for LOI and Lander resupply Outpost Module #2 CEV2 Station keeps with CEV1 awaiting Lander CEV1
Flight One Termination Crew egresses outpost and takes off in Lander Lunar Regolith for Shielding Solar Array Farm
Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1  Lander docks to outpost module #2 CEV1
Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1  Lander grapples outpost module #2 CEV1
Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1  Lander with outpost module #2 grappled undocks at PTM separation plane CEV1
Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1  Lander stows outpost module #2 CEV1
Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1  Lander redocks with PTM PTM resupplies Lander with propellant and consumables CEV2 crew modes CEV2 to loiter and ingresses PTM CEV1
Crew Rotation CEV2 CEV2 Station keeps with CEV1  Lander undocks with CEV2 at CEV separation plane CEV2 crew flies Lander while CEV1 crew loiters in PTM CEV1
Crew Rotation CEV2 CEV2 Station keeps with CEV1  Lander docks with CEV1 with PTM attached CEV1 crew powers up CEV1 CEV1
Crew Rotation CEV2 CEV2 Station keeps with CEV1  Lander undocks with CEV1 at PTM separation plane CEV1 crew preps CEV1 for TEI CEV2 crew performs Lunar Descent in Lander CEV1
Flight Two Lunar Surface Crew egresses Lander and ingresses flat Bed Lunar Regolith for Shielding Solar Array Farm
Flight Two Lunar Surface Flat bed extracts Outpost Module #2 from Lander Lunar Regolith for Shielding
Flight Two Lunar Surface Flat bed installs Outpost Module #2 Lunar Regolith for Shielding
Lunar Outpost: Assembly Sequence and Crew Rotation
Lunar Outpost 1 2 3 4 5 N1 N2 Airlock Solar Array Farm Regolith Berm for radiation shielding Mini Supply Module Node Two Landers allows 8 person Outpost crew rotating 4 crew members every 3 months  Future Add-on Point Future Add-on Point Node
Assembly Sequence and Crew Rotations  [Jan 2016-April 2017] JAN 2016 APR 2016 JULY 2016 OCT 2016 JAN 2017 APR 2017 Crew 5 CEV #5 Lander #2 Outpost Module #4 PTM #3 Crew 1 Crew 2 Crew 2 Crew 3 Crew 3 Crew 4 Crew 4 Airlock & Outpost Module #1 Outpost Module #2 Outpost Module #2 Node 1 & MSM Node 1 & MSM Outpost Module #3 Outpost Module #3 CEV #1 CEV #2 CEV #2 CEV #3 CEV #3 CEV #4 CEV #4 Lander #1 Lander #1 Lander #1 Lander #2 Lander #2 Lander #1 Lander #1 PTM #1 PTM # 1 PTM #2 PTM #2
Assembly Sequence and Crew Rotations  [Jan 2017-April 2018] Crew 4 Crew 6 Crew 6 Crew 7 Crew 7 Crew 8 Crew 8 Outpost Module#3 Outpost Module #5 CEV #4 CEV #6 CEV #6 CEV #7 CEV #7 CEV #8 CEV #8 Lander #1 Lander #1 Lander #1 Lander #2 Lander #2 Lander #1 Lander #1 PTM #4 JAN 2017 APR 2017 JULY 2017 OCT 2017 JAN 2018 APR 2018 Crew 5 Crew 5 CEV #5 CEV #5 Lander #2 Lander #2 Outpost Module #4 Outpost Module #4 Node 2 & MSM Node 2 & MSM Outpost Module #5 PTM #2 PTM #3 PTM #3 PTM #4 NOTE: It may be possible to send a third Lander with Node 2 & MSM which could be used for surface flying. Would also need surface refueling capability which could be Crew 8’s payload.
Conclusion
Total Mass Rollup ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusion ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

More Related Content

Similar to Reusable Lunar Lander

Indian Space Transportation Systems : Present and Future Scenarios
Indian Space Transportation Systems : Present and Future ScenariosIndian Space Transportation Systems : Present and Future Scenarios
Indian Space Transportation Systems : Present and Future ScenariosKurup Kurup
 
Apollo 11 Flight Plan , NASA_230725_190921.pdf
Apollo 11 Flight Plan , NASA_230725_190921.pdfApollo 11 Flight Plan , NASA_230725_190921.pdf
Apollo 11 Flight Plan , NASA_230725_190921.pdfChamps Elysee Roldan
 
reusablelaunchvehicle-180316021818.pptx
reusablelaunchvehicle-180316021818.pptxreusablelaunchvehicle-180316021818.pptx
reusablelaunchvehicle-180316021818.pptxrajmohonsarkar
 
RLV.pptx and charging system in electrical vehicle
RLV.pptx and charging system in electrical vehicleRLV.pptx and charging system in electrical vehicle
RLV.pptx and charging system in electrical vehicleSuruAarvi
 
Isro’s reusable launch vehicle technology demonstrator (rlv-td) – joining t...
Isro’s reusable launch vehicle   technology demonstrator (rlv-td) – joining t...Isro’s reusable launch vehicle   technology demonstrator (rlv-td) – joining t...
Isro’s reusable launch vehicle technology demonstrator (rlv-td) – joining t...hindujudaic
 
Conceptual Design of a Crewed Lunar Lander
Conceptual Design of a Crewed Lunar LanderConceptual Design of a Crewed Lunar Lander
Conceptual Design of a Crewed Lunar Landerguinness
 
Ares V: Supporting Space Exploration from LEO to Beyond
Ares V: Supporting Space Exploration from LEO to BeyondAres V: Supporting Space Exploration from LEO to Beyond
Ares V: Supporting Space Exploration from LEO to BeyondAmerican Astronautical Society
 
Design & Modeling and control of Launch Vehicles
Design & Modeling and control of Launch VehiclesDesign & Modeling and control of Launch Vehicles
Design & Modeling and control of Launch VehiclesAPPLE495596
 
Rockets and Missile Technology AEROSPACE.pptx
Rockets and Missile Technology AEROSPACE.pptxRockets and Missile Technology AEROSPACE.pptx
Rockets and Missile Technology AEROSPACE.pptxPIYUSHNIGAM15
 
Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery Onyebuchi nosiri
 
Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery Onyebuchi nosiri
 
Aircraft Design Proposal 2016
Aircraft Design Proposal 2016Aircraft Design Proposal 2016
Aircraft Design Proposal 2016Francisco Davila
 
Vortex lattice implementation of propeller sections for OpenFoam 2.3x
Vortex lattice implementation of propeller sections for OpenFoam 2.3xVortex lattice implementation of propeller sections for OpenFoam 2.3x
Vortex lattice implementation of propeller sections for OpenFoam 2.3xSuryakiran Peravali
 
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONEDESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONEIRJET Journal
 
Tether boostfacilitiesjun01
Tether boostfacilitiesjun01Tether boostfacilitiesjun01
Tether boostfacilitiesjun01Clifford Stone
 

Similar to Reusable Lunar Lander (20)

Indian Space Transportation Systems : Present and Future Scenarios
Indian Space Transportation Systems : Present and Future ScenariosIndian Space Transportation Systems : Present and Future Scenarios
Indian Space Transportation Systems : Present and Future Scenarios
 
Apollo 11 Flight Plan , NASA_230725_190921.pdf
Apollo 11 Flight Plan , NASA_230725_190921.pdfApollo 11 Flight Plan , NASA_230725_190921.pdf
Apollo 11 Flight Plan , NASA_230725_190921.pdf
 
reusablelaunchvehicle-180316021818.pptx
reusablelaunchvehicle-180316021818.pptxreusablelaunchvehicle-180316021818.pptx
reusablelaunchvehicle-180316021818.pptx
 
premkar RLV.pptx
premkar RLV.pptxpremkar RLV.pptx
premkar RLV.pptx
 
Making of Drone
Making of  DroneMaking of  Drone
Making of Drone
 
RLV.pptx and charging system in electrical vehicle
RLV.pptx and charging system in electrical vehicleRLV.pptx and charging system in electrical vehicle
RLV.pptx and charging system in electrical vehicle
 
Isro’s reusable launch vehicle technology demonstrator (rlv-td) – joining t...
Isro’s reusable launch vehicle   technology demonstrator (rlv-td) – joining t...Isro’s reusable launch vehicle   technology demonstrator (rlv-td) – joining t...
Isro’s reusable launch vehicle technology demonstrator (rlv-td) – joining t...
 
Conceptual Design of a Crewed Lunar Lander
Conceptual Design of a Crewed Lunar LanderConceptual Design of a Crewed Lunar Lander
Conceptual Design of a Crewed Lunar Lander
 
Reusable launch vehicle
Reusable launch vehicleReusable launch vehicle
Reusable launch vehicle
 
Ares V: Supporting Space Exploration from LEO to Beyond
Ares V: Supporting Space Exploration from LEO to BeyondAres V: Supporting Space Exploration from LEO to Beyond
Ares V: Supporting Space Exploration from LEO to Beyond
 
Design & Modeling and control of Launch Vehicles
Design & Modeling and control of Launch VehiclesDesign & Modeling and control of Launch Vehicles
Design & Modeling and control of Launch Vehicles
 
Rockets and Missile Technology AEROSPACE.pptx
Rockets and Missile Technology AEROSPACE.pptxRockets and Missile Technology AEROSPACE.pptx
Rockets and Missile Technology AEROSPACE.pptx
 
Space future
Space futureSpace future
Space future
 
Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery
 
Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery
 
Aircraft Design Proposal 2016
Aircraft Design Proposal 2016Aircraft Design Proposal 2016
Aircraft Design Proposal 2016
 
Vortex lattice implementation of propeller sections for OpenFoam 2.3x
Vortex lattice implementation of propeller sections for OpenFoam 2.3xVortex lattice implementation of propeller sections for OpenFoam 2.3x
Vortex lattice implementation of propeller sections for OpenFoam 2.3x
 
1304.5098
1304.50981304.5098
1304.5098
 
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONEDESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
 
Tether boostfacilitiesjun01
Tether boostfacilitiesjun01Tether boostfacilitiesjun01
Tether boostfacilitiesjun01
 

Recently uploaded

AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101vincent683379
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxJennifer Lim
 
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdfWhere to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdfFIDO Alliance
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfFIDO Alliance
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeCzechDreamin
 
Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaCzechDreamin
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfSrushith Repakula
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfFIDO Alliance
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024Stephanie Beckett
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlPeter Udo Diehl
 
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka DoktorováCzechDreamin
 
Strategic AI Integration in Engineering Teams
Strategic AI Integration in Engineering TeamsStrategic AI Integration in Engineering Teams
Strategic AI Integration in Engineering TeamsUXDXConf
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutesconfluent
 
Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024Enterprise Knowledge
 
A Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System StrategyA Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System StrategyUXDXConf
 
The UX of Automation by AJ King, Senior UX Researcher, Ocado
The UX of Automation by AJ King, Senior UX Researcher, OcadoThe UX of Automation by AJ King, Senior UX Researcher, Ocado
The UX of Automation by AJ King, Senior UX Researcher, OcadoUXDXConf
 
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...CzechDreamin
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?Mark Billinghurst
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIES VE
 
Google I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGoogle I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGDSC PJATK
 

Recently uploaded (20)

AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
 
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdfWhere to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
 
Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara Laskowska
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
 
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
 
Strategic AI Integration in Engineering Teams
Strategic AI Integration in Engineering TeamsStrategic AI Integration in Engineering Teams
Strategic AI Integration in Engineering Teams
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
 
Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024
 
A Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System StrategyA Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System Strategy
 
The UX of Automation by AJ King, Senior UX Researcher, Ocado
The UX of Automation by AJ King, Senior UX Researcher, OcadoThe UX of Automation by AJ King, Senior UX Researcher, Ocado
The UX of Automation by AJ King, Senior UX Researcher, Ocado
 
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and Planning
 
Google I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGoogle I/O Extended 2024 Warsaw
Google I/O Extended 2024 Warsaw
 

Reusable Lunar Lander

  • 2.
  • 4.
  • 5.
  • 8.
  • 9. Propellant Mass Estimates (FWD) If estimates are correct only 5150 lb for all Lander systems except prop wet mass
  • 10. Propellant Mass Estimates (Back) Includes 50,000 for CEV
  • 11.
  • 12.
  • 13.
  • 15. Lander Descent/Ascent Cockpit with LIDS Lunar Orbit Insertion/ Deorbit Engines (10klb): QTY 4, 2 per AFT Pod Lunar Descent/Ascent Engine (10klb): QTY 4 1 per Pod RCS Quad Engines (870 lb) Lunar Outpost Module on Flatbed Solar Array Panels Propellant tanks Descent/Ascent Consumables tanks Propellant Pressurization tanks RMS Landing Gear: 4 Struts per Pod RCS TRI Engines
  • 16. AFT Engine Pods Gimbaled 10 klb Engine RCS Tri 870 lb RCS Quad 870 lb Two Gimbaled 10 klb Engines +X +Z +Y
  • 17. AFT Engine Pods Internal Gimbal Electronics RCS Driver Electronics Battery BIU
  • 18. FWD Engine Pods Gimbaled 10lkb Engine RCS Tri 870 lb RCS Quad 870 lb +X +Z +Y
  • 19. FWD Engine Pods Internal RNDZ Sensor Electronics RCS Driver Electronics Battery BIU Gimbal Electronics IROC Sensor (port pod) SROC Sensor (starboard pod) LROC Sensor (port pod) LIDAR (starboard pod) RNDZ Aux Computer Ground Proximity Sensor
  • 20. Cockpit Internal Side View Lids O2 Tank N2 Tank Propellant Transfer Lines Cockpit Displays Ground Radar Computer Porch and Ladder in Stowed Position Crew member in Eva Suit for Landing Star Tracker IMU
  • 21. Cockpit Forward Facing GND Radar Propellant tanks Propellant Pressurization tanks Star Tracker Doors O2 Tank N2 Tank Ground Radar Electronics IMUs H2OTank Computers Star Tracker Assemblies Lids Transfer connections FU OX He ECLSS Stowage Computer Stowage
  • 22. Lander Forward Facing Solar Array Panels RNDZ Sensors RNDZ Sensors GND Radar Porch and Ladder in Stowed Position Propellant tanks Propellant Pressurization tanks RCS Quad Landing Gear 4 per Pod Descent/Ascent Engine Star Tracker Doors
  • 23. Flat bed Transport Battery Electric Drive Plow attachment for regolith movement RMS Flat Bed Attach Point Transport can be used without flat bed for rover ops Computer Solar Array Panel Suit O2 Supply tank for extended rover ops Outpost Solar Array Panel stowed in Flatbed Suit H2O Supply tank for extended rover ops Hatch to non- pressurized cockpit
  • 24. Flight Sequence: Flights Ones and Two
  • 25. Flight One Lander performs Lunar Orbit Insertion with 4 AFT Engines
  • 26. Flight One Lander Lands on surface
  • 27. Flight One Lander Releases Outpost Module and flat bed Outpost Module Airlock Rover cockpit RMS
  • 28. Flight One flat bed deploys Outpost Module with RMS Lunar Regolith for Shielding
  • 29. Flight Two CEV2 with Crew Rotation PTM with DeltaV for LOI and Lander resupply Outpost Module #2 CEV2 Performs Lunar orbit Insertion
  • 30. Flight Two CEV2 with Crew Rotation PTM with DeltaV for LOI and Lander resupply Outpost Module #2 CEV2 Station keeps with CEV1 awaiting Lander CEV1
  • 31. Flight One Termination Crew egresses outpost and takes off in Lander Lunar Regolith for Shielding Solar Array Farm
  • 32. Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander docks to outpost module #2 CEV1
  • 33. Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander grapples outpost module #2 CEV1
  • 34. Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander with outpost module #2 grappled undocks at PTM separation plane CEV1
  • 35. Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander stows outpost module #2 CEV1
  • 36. Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander redocks with PTM PTM resupplies Lander with propellant and consumables CEV2 crew modes CEV2 to loiter and ingresses PTM CEV1
  • 37. Crew Rotation CEV2 CEV2 Station keeps with CEV1 Lander undocks with CEV2 at CEV separation plane CEV2 crew flies Lander while CEV1 crew loiters in PTM CEV1
  • 38. Crew Rotation CEV2 CEV2 Station keeps with CEV1 Lander docks with CEV1 with PTM attached CEV1 crew powers up CEV1 CEV1
  • 39. Crew Rotation CEV2 CEV2 Station keeps with CEV1 Lander undocks with CEV1 at PTM separation plane CEV1 crew preps CEV1 for TEI CEV2 crew performs Lunar Descent in Lander CEV1
  • 40. Flight Two Lunar Surface Crew egresses Lander and ingresses flat Bed Lunar Regolith for Shielding Solar Array Farm
  • 41. Flight Two Lunar Surface Flat bed extracts Outpost Module #2 from Lander Lunar Regolith for Shielding
  • 42. Flight Two Lunar Surface Flat bed installs Outpost Module #2 Lunar Regolith for Shielding
  • 43. Lunar Outpost: Assembly Sequence and Crew Rotation
  • 44. Lunar Outpost 1 2 3 4 5 N1 N2 Airlock Solar Array Farm Regolith Berm for radiation shielding Mini Supply Module Node Two Landers allows 8 person Outpost crew rotating 4 crew members every 3 months Future Add-on Point Future Add-on Point Node
  • 45. Assembly Sequence and Crew Rotations [Jan 2016-April 2017] JAN 2016 APR 2016 JULY 2016 OCT 2016 JAN 2017 APR 2017 Crew 5 CEV #5 Lander #2 Outpost Module #4 PTM #3 Crew 1 Crew 2 Crew 2 Crew 3 Crew 3 Crew 4 Crew 4 Airlock & Outpost Module #1 Outpost Module #2 Outpost Module #2 Node 1 & MSM Node 1 & MSM Outpost Module #3 Outpost Module #3 CEV #1 CEV #2 CEV #2 CEV #3 CEV #3 CEV #4 CEV #4 Lander #1 Lander #1 Lander #1 Lander #2 Lander #2 Lander #1 Lander #1 PTM #1 PTM # 1 PTM #2 PTM #2
  • 46. Assembly Sequence and Crew Rotations [Jan 2017-April 2018] Crew 4 Crew 6 Crew 6 Crew 7 Crew 7 Crew 8 Crew 8 Outpost Module#3 Outpost Module #5 CEV #4 CEV #6 CEV #6 CEV #7 CEV #7 CEV #8 CEV #8 Lander #1 Lander #1 Lander #1 Lander #2 Lander #2 Lander #1 Lander #1 PTM #4 JAN 2017 APR 2017 JULY 2017 OCT 2017 JAN 2018 APR 2018 Crew 5 Crew 5 CEV #5 CEV #5 Lander #2 Lander #2 Outpost Module #4 Outpost Module #4 Node 2 & MSM Node 2 & MSM Outpost Module #5 PTM #2 PTM #3 PTM #3 PTM #4 NOTE: It may be possible to send a third Lander with Node 2 & MSM which could be used for surface flying. Would also need surface refueling capability which could be Crew 8’s payload.
  • 48.
  • 49.