SlideShare a Scribd company logo
1 of 74
Oxide Molecular-Beam Epitaxy:
Oxide Molecular-Beam Epitaxy:
An Introduction with Examples
An Introduction with Examples

                 Darrell G. Schlom
   Department of Materials Science and Engineering
                 Cornell University
Sandwich Maker
              Sandwich Maker




http://www.engineering.cornell.edu/faculty/new-faculty/new-faculty-2008/schlom.cfm
Quantum 
Cascade Laser




                        Yanbo Bai
                http://www.yanbobai.com
TEM of MBE-Grown Superlattices
     TEM of MBE-Grown Superlattices
       AlAs / GaAs                     PbTiO3 / SrTiO3                  BaTiO3 / SrTiO3




                                                 C.D. Theis                      J.H. Haeni
     A.K. Gutakovskii et al.,          (1st Generation Schlom Group)          (2nd Generation)
Phys. Stat. Sol. (a) 150 (1995) 127.              HRTEM—Pan Group (Michigan)
                                        D.G. Schlom et al., Mater. Sci. Eng. B 87 (2001) 282.
MBE ≈ Atomic Spray Painting
MBE ≈ Atomic Spray Painting
Key Enablers of MBE
         Key Enablers of MBE
• “3-Temperaturaufdampfverfahren”
  for Growth of III-V Semiconductor Films by
  Vacuum Evaporation
  K.G. Günther, “Aufdampfschichten aus
  halbleitenden III-V Verbindungen,” Zeitschrift für
  Naturforschung A 13 (1958) 1081-1089.

• Reliable UHV Sealing Technology
  W.R. Wheeler and M. Carlson, “Ultra-High Vacuum
  Flanges,” Transactions of the Eighth National
  Vacuum Symposium, edited by L.E. Preuss
  (Pergamon, New York, 1962), pp. 1309-1318.
Evolution of MBE

                                              1st
                                           University
                                             MBE
                                            Cornell,
                                             1978




        1st MBE           Production
Al Cho at Bell Labs, 1972      MBE
                              Today
                       (courtesy of TRW)
MBE production tool performance data

                       HIGH YIELD

UNIFORMITIES / Wafer   Thickness        < ± 0.5 %
                       Composition      < ± 0.5 %
                       Doping           < ±1      %
    REPRODUCIBILITY    Source material: supply consistency
                       Stable process and monitoring: < 2%


                 HIGH THROUGHPUT

    VERY HIGH UPTIME   > 94%, run 6 to 9 months, 7 days/wk, 24/24
     RUN CAPABILITY    13x2’’ or 5x3’’, 4x6’’ or 9x4’’, (4x8’’) 7x6’’
      RUN SWITCHING    less than 2 minutes (platen exchange)


8                                                                   May ‘03
Mobility Achieved with MBE
       Mobility Achieved with MBE




A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno,
       D. Maryenko, A. Ohtomo, and M. Kawasaki                     L. Pfeiffer and K.W. West, Physics E 20 (2003) 57-64.
           Nature Materials 9 (2010) 889-893.
                            D.G. Schlom and L.N. Pfeiffer, Nature Materials 9 (2010) 881-883.
Modulation Doping




R. Dingle, H.L. Störmer, A.C. Gossard, and W. Wiegmann, Applied Physics Letters 33 (1978) 665-667.




                     W.P. McCray, Nature Nanotechnology 2 (2007) 259-261.
Reflection High‐
  Energy Electron 
Diffraction (RHEED) 
     Oscillations




B. Bölger and P. K. Larsen, Review of Scientific      B.A. Joyce, P.J. Dobson, J.H. Neave, K.
      Instruments 57 (1986) 1363-1367.             Woodbridge, J. Zhang, P.K. Larsen, and B Bölger,
                                                       Surface Science 168 (1986) 423-438.
J. Heber, Nature 459 (2009) 28-30.
XRD of (BaTiO33))nn // (SrTiO33))m Superlattices
XRD of (BaTiO          (SrTiO m Superlattices




                          m=4                                                      m = 13
A. Soukiassian, W. Tian, V. Vaithyanathan, J.H. Haeni, L.Q. Chen, X.X. Xi, D.G. Schlom, D.A. Tenne, H.P. Sun, X.Q. Pan,
      K.J. Choi, C.B. Eom, Y.L. Li, Q.X. Jia, C. Constantin, R.M. Feenstra, M. Bernhagen, P. Reiche, and R. Uecker,
                                  Journal of Materials Research 23 (2008) 1417-1432.
Intensity (arbitrary units)




           10
                                        10
                                                                                        10
                                                                                                                    10




               2
                                                3
                                                                                              4
                                                                                                                      5




      0
                                                                                                             003
                                                                                              004
                                                                                 005
                                                                      006
                                                             007
                                                       008
                                                009
                                        0010
                                  0011
                            0012
                          0013
                       0014
                      0015




      10
                       0016
                        0017
                         0018
                          0019
                             0020
                               0021
                               0022
                                0023
                                                                                                                            c = 121.4 ± 1.3 Å




                                  0024
                                     0025
                                        0026
                                          0027
                                                 0028




20
                                                  0029
                                                                                              -
                                                                                              2
                                                                                              10
                                                                                              ω
                                                                                              10
                                                                                              0400
                                                                                              -100
                                                                                              -200
                                                                                              -300
                                                                                              (arc
                                                                                              seconds)




                                                                                                         S




                                                                      0030                                                  0031
                                                                                                                                                 XRD of [(BaTiO

                                                                                                                            *




                                                                   0032
                              0033
                                  0034
                               0035
                            0036
                            0037
                          0038
                         0039
                     0040
                     0041
                   0042




       30
                    0043
                0044
                0045
                 0046




2θ (degrees)
                   0047
                    0048
                   0049
                    0050
                      0051
                            0052
                                0053
                                0054
                                     0055
      40
                                         0056
                                                 0057
                                                         0058
                                                                     0059
                                                                                       0060
                                                                                                             0061
                                                                                                                           0062
                                                                                                                            *




                                                                                                                    0063
                                                                          0064
                                                0065
                                 0066
                          0067
                   0068
      50
                                                                                                                                                 XRD of [(BaTiO33))11 // (SrTiO33))30]]20
                                                                                                                                                                         (SrTiO 30 20
                                                                                                                                                Superlattice grown on (001) SrTiO
                                                                                                                                                Superlattice grown on (001) SrTiO33
Creating New Materials
          Creating New Materials


                                (SrTiO3)30
                                                       SrTiO3



                                  (BaTiO3)1



                                (SrTiO3)30            BaTiO3

High Angle Annular Dark Field
            STEM                Collaboration with David Muller
                                (Cornell, Applied Physics)
Creating New Materials
        Creating New Materials


                       (SrTiO3)30
                                               SrTiO3



                          (BaTiO3)1



                       (SrTiO3)30             BaTiO3
BaTiO3 / SrTiO3

 STEM-EELS              Collaboration with David Muller
                        (Cornell, Applied Physics)
NanoEngineering
 NanoEngineering
     of Oxides
     of Oxides
e.g., Srn+1TinnO3n+1
e.g., Srn+1Ti O3n+1
   Homologous
   Homologous
       Series
       Series




  J.H. Haeni, C.D. Theis, D.G. Schlom, W. Tian, X.Q. Pan, H. Chang, I. Takeuchi, and X.-D. Xiang,
                            Applied Physics Letters 78 (2001) 3292-3294.
Intensity (arb. units)
                                               004
                                       006
                                 008




           10
                          0010
                       0012
                     0014
                  0016
                0018




           20
                                                                      *
                                       0024
                            0026
                          0028




           30
                          0030
                           0032
                               0034
                                        0036




           40
                                                    0038




2θ (degrees)
                                                             0040

                                                               0044
                                                                      *
           50                                         0046
                                             0048
                                  0050
                          0052
           60


                      0054
                    0056
                                                                          150 nm Sr11Ti10O31 // (001) SrTiO33 ((n = 10)
                                                                          150 nm Sr11Ti10O31 (001) SrTiO n = 10)
Outline
Maximum O2 Pressure for MBE
     Maximum O2 Pressure for MBE
                                    106
              Mean Free Path (cm)                        Li                          for Metal Flux of
                                    105                                            1×1014 atoms/(cm2·s)
                                    104
                                                          Ba
                                    103
                                    102
                                                MBE Regime
                                    101
                                    100
                                                                     π PO2 ⎛ di + dO2 ⎞    5 ⎛ TO2 ⎞ ⎛ mi ⎞
                                                                                        2
                                         -1
                                    10        1
                                                 = ( Fi di )
                                                   π      2   2mi
                                                                   +       ⎜          ⎟ 1 + ⎜ ⎟⎜          ⎟
                                              Li             3kB Ti kB TO2 ⎝ 2 ⎠           3 ⎝ Ti ⎠ ⎜ mO2 ⎟
                                                                                                     ⎝    ⎠
                                    10-2
                                       10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
                                                     Oxygen Pressure (Torr)
                   D.G. Schlom and J.S. Harris, Jr., “MBE Growth of High Tc Superconductors,” in:
Molecular Beam Epitaxy: Applications to Key Materials, edited by R.F.C. Farrow (Noyes, Park Ridge, 1995), pp. 505-622.
O22 Needed to Oxidize Constituents
O Needed to Oxidize Constituents
                              900 800          700      600                500 °C
Oxygen Pressure (Torr)
                                                            2 Bi + O
                         10-10
                                                                     2     ⌦ 2 Bi O
                                                                                 2 3
                                                            2 Pb + O
                         10-20   4 Nb                                  2   ⌦ 2 PbO
                                         +5O
                                              2   ⌦2
                           -30   Ti +                  Nb O
                         10             O2 ⌦             2 5
                                               TiO
                                                   2
                         10-40                2 Sr        4 Ta
                                                               +5O
                                                   +O             2 ⌦ 2
                                                       2 ⌦              Ta O
                         10-50             2 Ba
                                                +O
                                                            2 Sr
                                                                O
                                                                          2 5

                                                     2 ⌦
                         10-60                           2 Ba
                                                              O
                           -70
                         10
                                 0.90      1.00      1.10     1.20         1.30     1.40
                                                  1000/T (1/K)
O2 Needed to Oxidize Cuprates
      O2 Needed to Oxidize Cuprates
                                       -1   900 800 700     600     500         400 °C
                                     10
            Oxygen Pressure (Torr)
                                                            CuO                               10-1




                                                                                                     Mean Free Path (cm)
                                     10-2                     Bi2Sr2Ca2Cu3O10
                                                                                              100
                                     10-3                             Bi2Sr2CaCu2O8
                                            YBa2Cu3O7-δ                                       101
                                     10-4                             MBE Regime
                                                                                              102
                                     10-5
                                                                                              103
                                     10-6
                                                                                              104
                                     10-7
                                                                                              105
                                     10-8
                                                                                              106
                                     10-9
                                        0.8        1.0        1.2         1.4             1.6
                                                          1000/T (1/K)
                   D.G. Schlom and J.S. Harris, Jr., “MBE Growth of High Tc Superconductors,” in:
Molecular Beam Epitaxy: Applications to Key Materials, edited by R.F.C. Farrow (Noyes, Park Ridge, 1995), pp. 505-622.
Pros and Cons of Ozone
        Pros and Cons of Ozone
• Pros
   – Excellent Oxidant (about 1000x more powerful than O2)
   – 80% Ozone (+20% O2) Delivery Possible to the Substrate
   – No Energetic Species (thermal ozone beam)
   – Inexpensive (if you make it yourself)

• Cons
   – Safety (Ozone still issues)
   – Safety (Pump issues)
   – Need Ozone-Compatible UHV Leak Valve
   – Need to Passivate Ozone System
Outline
Thermodynamic Considerations
TEM of MBE-Grown Superlattices
     TEM of MBE-Grown Superlattices
       AlAs / GaAs                     PbTiO3 / SrTiO3                  BaTiO3 / SrTiO3




                                                 C.D. Theis                      J.H. Haeni
     A.K. Gutakovskii et al.,          (1st Generation Schlom Group)          (2nd Generation)
Phys. Stat. Sol. (a) 150 (1995) 127.              HRTEM—Pan Group (Michigan)
                                        D.G. Schlom et al., Mater. Sci. Eng. B 87 (2001) 282.
Increased Interface 
  Roughness and 
   Clustering at
   Non‐Optimal 
Growth Conditions
W. Barvosa-Carter, M.E. Twigg, M.J. Yang, and L.J. Whitman, Physical Review B 63 (2001) 245311.
Surface Energy Considerations




                           K.-N. Tu, J.W. Mayer, and L.C. Feldman,
Electronic Thin Film Science for Electrical Engineers and Materials Scientists (Macmillan, 1992).
Surface vs. Bulk Diffusion
                       Assuming growth rate of
                       0.1 monolayer/sec

                     Tmin for smooth epitaxial films
                     (growth by step propagation)

                      Tmin for epitaxy
Tmax                         Optimal Growth Temperatures
                                      T sub
                            0 .55 <          < 0 .7 for semiconductors
                                      T melt
                                      T sub
                            0 .35 <          < 0 .4 for metals
                                      T melt
                                     T sub
                            0 .1 <          < 0 .4 for simple ceramics
                                     T melt




                                       M.H. Yang and C.P. Flynn,
                                       Physical Review Letters 62
                                          (1989) 2476-2479.
Universal Diffusion Behavior of Metals




                                                                      −Q

                                                   D=D e        0
                                                                           R Tm




      C. Peter Flynn, Point Defects and Diffusion (Oxford, 1972) pp. 783-785.
Determining Surface Diffusion from 
       RHEED Oscillations



                 J.H. Neave, P.J. Dobson, B.A. Joyce, and J. Zhang,
                     Applied Physics Letters 47 (1985) 100-102.
Surface vs. Bulk Diffusion
                       Assuming growth rate of
                       0.1 monolayer/sec

                     Tmin for smooth epitaxial films
                     (growth by step propagation)

                      Tmin for epitaxy
Tmax                         Optimal Growth Temperatures
                                      T sub
                            0 .55 <          < 0 .7 for semiconductors
                                      T melt
                                      T sub
                            0 .35 <          < 0 .4 for metals
                                      T melt
                                     T sub
                            0 .1 <          < 0 .4 for simple ceramics
                                     T melt




                                       M.H. Yang and C.P. Flynn,
                                       Physical Review Letters 62
                                          (1989) 2476-2479.
Adsorption‐Controlled Growth of GaAs
                                             Temperature (°C)
                         104 700       650         600           550          500


                                    4 As(s)⇔ As4 (g)
  Gas Pressure (Torr)




                        10-1
                                2 GaAs(s)⇔ 2 Ga(l) + As2 (g)

                        10-6



                        10-11
                                1.05      1.10      1.15       1.20    1.25
                                                 1000/T (1/K)
Adsorption‐Controlled Growth of EuO
    Eu Flux = 1.1×1014 Eu atoms/(cm2 s)
  EuO film thickness (from RBS) after 30 min




R.W. Ulbricht, A. Schmehl, T. Heeg, J. Schubert, and D.G. Schlom,
           Applied Physics Letters 93 (2008) 102105.
Adsorption-Controlled MBE
                                     Adsorption-Controlled MBE
   Atomic Flux (Φ) (atoms/cm2 sec)
                                     1024
                                        22
                                                                      4 As(s) ⇔ As
                                     10                                           4 (g)


                                     1020
                                     1018
                                     1016      2 GaAs(s) ⇔ 2 Ga(l) + As2 (g)
                                     1014                                        ΦBi O
                                        12                                             x y (g)
                                     10
                                            ΦBi O                                  Bi2O3 (s)
                                     1010        x y (g)

                                      10 8 Bi4Ti3O12 (s) + TiO2 (s)
                                         700        650             600         550            500
                                                          Temperature (°C)
D.G. Schlom, J.H. Haeni, J. Lettieri, C.D. Theis, W. Tian, J.C. Jiang, and X.Q. Pan, Mat. Sci. Eng. B, 87 (2001) 282-291.
Adsorption-Controlled MBE
                Adsorption-Controlled MBE

                         Bi Flux (always open)
Relative Flux




                           O2/O3 (always open)


                       Fe Flux (monolayer doses)




                               Time
Adsorption-Controlled MBE
                      Adsorption-Controlled MBE
                                                     T (°C)
                      10-3 500        475             450                   425                   400
                                                                        Φ Bi O
                                 Φ                                               x    y (g)
 O2 Pressure (Torr)



                                    BixOy (g)                    Bi2O2.5 (s) + BiFeO3 (s)
                      10-5          BiFeO3 (s)



                      10-7
                               Φ
                                 BixOy (g)
                             BiFeO3 (s) + γ-Fe2O3
                      10-9             (s)
                             1.30            1.35        1.40                     1.45                 1.50
                                                    1000/T (1/K)
J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt,
       X.Q. Pan, J. Schubert, R. Ramesh, and D.G. Schlom, Applied Physics Letters 92, 142908 (2008).
Epitaxial BiFeO33 // (001) SrTiO33
       Epitaxial BiFeO (001) SrTiO
       Adsorption-Controlled Growth
       Adsorption-Controlled Growth

BiFeO3 + γ-Fe2O3                                                                                       BiFeO3 + Bi2O2.5


                                                          Fe Closed




 Tsub ~ 500°C                                                                                               Tsub ~ 400°C

         ΦBi                                                Fe Open
             = 7.0
         ΦFe
                                                      Tsub ~ 450°C
    J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt, X.Q. Pan, J. Schubert,
R. Ramesh, and D.G. Schlom“Optical Band Gap of BiFeO3 Grown by Molecular-Beam Epitaxy” Applied Physics Letters 92, 142908 (2008)
Flux-Controlled MBE Growth of
 Flux-Controlled MBE Growth of
(BaTiO33))55 // (SrTiO33))55 Superlattice
(BaTiO          (SrTiO Superlattice
Outline
How we do it
                         How we do it
• Use Quartz Crystal Microbalance to Get Fluxes
  Close (~5% accuracy)

• Use Shuttered RHEED Oscillations
  (analogous to MEE of GaAs)

• Yields Sr:Ti Relative Incorporation Ratio
  (~1% accuracy)

• Yields Absolute Monolayer Dose for SrO and TiO2
  (~1% accuracy)

• Works for Other Perovskites too (BaTiO3, SrRuO3)
   J.H. Haeni, C.D. Theis, and D.G. Schlom, Journal of Electroceramics 4 (2000) 385-391.
Reflection High‐
  Energy Electron 
Diffraction (RHEED) 
     Oscillations




B. Bölger and P. K. Larsen, Review of Scientific      B.A. Joyce, P.J. Dobson, J.H. Neave, K.
      Instruments 57 (1986) 1363-1367.             Woodbridge, J. Zhang, P.K. Larsen, and B Bölger,
                                                       Surface Science 168 (1986) 423-438.
Conventional RHEED Oscillations




      Molecular Beam Epitaxy: Applications to Key Materials,
     edited by R.F.C. Farrow (Noyes, Park Ridge, 1995), p. 694.
Shuttered RHEED to Get Sr:Ti = 1:1
                   3 % Ti Rich                                    3 % Ti Poor




                  Stoichiometric                           SrTiO3 [011] Azimuth




       Oscillations of the central diffracted rod as the Sr and Ti
                 are deposited in a sequential manner
 J.H. Haeni, C.D. Theis, and D.G. Schlom, Journal of Electroceramics 4 (2000) 385-391.
Shuttered RHEED Oscillations
Shuttered RHEED Oscillations
Shuttered RHEED Oscillations
Shuttered RHEED Oscillations




A-Site Rich       B-Site Rich
Beat Frequency for Sr:Ti = 1:1 Absolute




   J.H. Haeni, C.D. Theis, and D.G. Schlom, Journal of Electroceramics 4 (2000) 385-391.
Outline
Oxide MBE at Brookhaven Nat. Lab.
Oxide MBE at Brookhaven Nat. Lab.
Oxide MBE + ARPES
Oxide MBE + ARPES
       Collaboration with Kyle Shen (Cornell, Physics)
Reactive Molecular-Beam Epitaxy
Reactive Molecular-Beam Epitaxy
R.E. Honig and D.A. Kramer, RCA Review 30 (1969) 285-305.
R.E. Honig and D.A. Kramer, RCA Review 30 (1969) 285-305.
V
               Pb
R.E. Honig and D.A. Kramer, RCA Review 30 (1969) 285-305.
Binary Alloy Phase Diagrams,
edited by T.B. Massalski (ASM International, 1990).
Binary Alloy Phase Diagrams,
edited by T.B. Massalski (ASM International, 1990).
Binary Alloy Phase Diagrams,
edited by T.B. Massalski (ASM International, 1990).
V
R.E. Honig and D.A. Kramer, RCA Review 30 (1969) 285-305.
Kurt J. Lesker, Co. Catalog
Binary Alloy Phase Diagrams,
edited by T.B. Massalski (ASM International, 1990).
Outline
Substrates are Key
Substrates are Key
Commercial Perovskite Substrates
Commercial Perovskite Substrates




                        D.G. Schlom, L.Q. Chen,
                         X.Q. Pan, A. Schmehl,
                         and M.A. Zurbuchen,
                        Journal of the American
                          Ceramic Society 91
                           (2008) 2429-2454.
MBE vs. Single Crystals (Rocking Curves)
Surface Termination Recipes
    Surface Termination Recipes
• (001) SrTiO3
  G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank,
  H. Rogalla, “Quasi-Ideal Strontium Titanate Crystal Surfaces through
  Formation of Strontium Hydroxide,” Appl. Phys. Lett. 73 (1998)
  2920-2922.

• (110) REScO3
  J.E. Kleibeuker, G. Koster, W. Siemons, D. Dubbink, B. Kuiper,
  J.L. Blok, C-H. Yang, J. Ravichandran, R. Ramesh, J.E. ten Elshof,
  D.H.A. Blank, and G. Rijnders, “Atomically Defined Rare-Earth
  Scandate Crystal Surfaces,” Advanced Materials 20 (2010) 3490-
  3496.

• (001) LSAT
  J.H. Ngai, T.C. Schwendemann, A.E. Walker, Y. Segal, F.J. Walker,
  E.I. Altman, and C.H. Ahn, “Achieving A-Site Termination on
  La0.18Sr0.82Al0.59Ta0.41O3 Substrates,” Advanced Materials 22 (2010)
  2945-2948.
Terminated vs. Unterminated SrTiO3




                                 RHEED Intensity (arb. units)
                                                                     (BaTiO )    (SrTiO ) (BaTiO3)4 (SrTiO ) (BaTiO )    (SrTiO )
                                                                           3 4         3 2                3 2      3 4         3 2



                                                                     Ti shutter open
[110] azimuth




                                                                                                                                         Not
                                                                                                                                      Terminated

                                                                              Sr shutter open
                                                                Ba shutter open

                                                                 0                200              400              600              800
                                                                                              Time (s)

                               RHEED Intensity (arb. units)                             Ti shutter open
[100] azimuth




                                                                                                                                     Terminated




                                                                     Ba shutter open         Sr shutter open

                                                                 0        100        200       300       400       500         600    700
                                                                                               Time (s)
MBE Summary
                MBE Summary
       Advantages                     Disadvantages
• Extreme Flexibility           • Extreme Flexibility
                                  (uncontrolled flexibility =
• Independent Growth              chaos!)
  Parameters
                                • High Cost
• Compatible with wide range
  of in situ Diagnostics        • Long Set-up Time

• Clean                         • MBE (the other meanings…)

• Gentle

• Precise Layering Control at
  the Atomic Level

More Related Content

What's hot

BAND THEORY OF SOLIDS
BAND THEORY OF SOLIDSBAND THEORY OF SOLIDS
BAND THEORY OF SOLIDS
Mahi Shinde
 
Hall Effect And Application To identification of Semi-conductors
Hall Effect And Application To identification of Semi-conductorsHall Effect And Application To identification of Semi-conductors
Hall Effect And Application To identification of Semi-conductors
Omkar Rane
 

What's hot (20)

Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene
 
Gamow theory of alpha decay by prerna
Gamow theory of alpha decay by prernaGamow theory of alpha decay by prerna
Gamow theory of alpha decay by prerna
 
BAND THEORY OF SOLIDS
BAND THEORY OF SOLIDSBAND THEORY OF SOLIDS
BAND THEORY OF SOLIDS
 
Hall Effect And Application To identification of Semi-conductors
Hall Effect And Application To identification of Semi-conductorsHall Effect And Application To identification of Semi-conductors
Hall Effect And Application To identification of Semi-conductors
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 
Photoconductivity.pptx
Photoconductivity.pptxPhotoconductivity.pptx
Photoconductivity.pptx
 
High k dielectric
High k dielectricHigh k dielectric
High k dielectric
 
The metal-insulator transition of VO2 revisited
The metal-insulator transition of VO2revisitedThe metal-insulator transition of VO2revisited
The metal-insulator transition of VO2 revisited
 
PECVD
PECVDPECVD
PECVD
 
Graphene electronic properties (1)
Graphene electronic properties (1)Graphene electronic properties (1)
Graphene electronic properties (1)
 
Sputtering process
Sputtering processSputtering process
Sputtering process
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
 
Graphene Based Sensors !!!!!!!
Graphene Based Sensors !!!!!!!Graphene Based Sensors !!!!!!!
Graphene Based Sensors !!!!!!!
 
Topological Insulator Thin Films: Growth and Characterisation
Topological Insulator Thin Films: Growth and CharacterisationTopological Insulator Thin Films: Growth and Characterisation
Topological Insulator Thin Films: Growth and Characterisation
 
Magnetic properties of materials
Magnetic properties of materialsMagnetic properties of materials
Magnetic properties of materials
 
Band theory
Band theoryBand theory
Band theory
 
Perovskite Solar Cell
Perovskite Solar CellPerovskite Solar Cell
Perovskite Solar Cell
 
Metal semiconductor contacts
Metal semiconductor contactsMetal semiconductor contacts
Metal semiconductor contacts
 
ferromagnetism
ferromagnetismferromagnetism
ferromagnetism
 
2d materials introductions
2d materials introductions2d materials introductions
2d materials introductions
 

Viewers also liked

Mse phd lecture
Mse phd lectureMse phd lecture
Mse phd lecture
Toru Hara
 
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Mai Trần
 

Viewers also liked (13)

Molecular Beam Epitaxy
Molecular Beam EpitaxyMolecular Beam Epitaxy
Molecular Beam Epitaxy
 
Mse phd lecture
Mse phd lectureMse phd lecture
Mse phd lecture
 
Humidity sesor ba tio3
Humidity sesor ba tio3Humidity sesor ba tio3
Humidity sesor ba tio3
 
Molecular Beam Epitaxy (MBE)
Molecular Beam Epitaxy (MBE)Molecular Beam Epitaxy (MBE)
Molecular Beam Epitaxy (MBE)
 
Barium titanate synthesis
Barium titanate synthesisBarium titanate synthesis
Barium titanate synthesis
 
Molecular beam epitaxy
Molecular beam epitaxy Molecular beam epitaxy
Molecular beam epitaxy
 
Solid, liquid and gas phase synthesis of nanomaterials
Solid, liquid and gas phase synthesis of  nanomaterialsSolid, liquid and gas phase synthesis of  nanomaterials
Solid, liquid and gas phase synthesis of nanomaterials
 
Techniques for synthesis of nanomaterials (II)
Techniques for synthesis of nanomaterials (II) Techniques for synthesis of nanomaterials (II)
Techniques for synthesis of nanomaterials (II)
 
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
 
Synthesis of hydroxyapatite nanoparticles
Synthesis of hydroxyapatite nanoparticlesSynthesis of hydroxyapatite nanoparticles
Synthesis of hydroxyapatite nanoparticles
 
Molecular beam epitaxy
Molecular beam epitaxyMolecular beam epitaxy
Molecular beam epitaxy
 
Sol-Gel Method
Sol-Gel MethodSol-Gel Method
Sol-Gel Method
 
Sol gel
Sol gelSol gel
Sol gel
 

Similar to D Schlom - Oxide Molecular-Beam Epitaxy

茨城大学2008
茨城大学2008茨城大学2008
茨城大学2008
env29
 
SAMPE 2016_PREDICTING STRESS RELAXATION BEHAVIOR
SAMPE 2016_PREDICTING STRESS RELAXATION BEHAVIORSAMPE 2016_PREDICTING STRESS RELAXATION BEHAVIOR
SAMPE 2016_PREDICTING STRESS RELAXATION BEHAVIOR
Anand Vijay Karuppiah
 
Experimental study on polypropylene fiber reinforced moderate deep beam
Experimental study on polypropylene fiber reinforced moderate deep beamExperimental study on polypropylene fiber reinforced moderate deep beam
Experimental study on polypropylene fiber reinforced moderate deep beam
IAEME Publication
 
A term paper on the effects of vibration on the mechani cal properties of eng...
A term paper on the effects of vibration on the mechani cal properties of eng...A term paper on the effects of vibration on the mechani cal properties of eng...
A term paper on the effects of vibration on the mechani cal properties of eng...
koliyjay
 

Similar to D Schlom - Oxide Molecular-Beam Epitaxy (19)

茨城大学2008
茨城大学2008茨城大学2008
茨城大学2008
 
poster
posterposter
poster
 
Synthesis and characterization of zno thin films deposited by chemical bath t...
Synthesis and characterization of zno thin films deposited by chemical bath t...Synthesis and characterization of zno thin films deposited by chemical bath t...
Synthesis and characterization of zno thin films deposited by chemical bath t...
 
Synthesis and characterization of zno thin films
Synthesis and characterization of zno thin filmsSynthesis and characterization of zno thin films
Synthesis and characterization of zno thin films
 
Structural and optical properties of molybdenum doped BiVO4 powders-Cce 2014
Structural and optical properties of molybdenum doped BiVO4  powders-Cce 2014Structural and optical properties of molybdenum doped BiVO4  powders-Cce 2014
Structural and optical properties of molybdenum doped BiVO4 powders-Cce 2014
 
Fundamentals of reliability engineering and applications part2of3
Fundamentals of reliability engineering and applications part2of3Fundamentals of reliability engineering and applications part2of3
Fundamentals of reliability engineering and applications part2of3
 
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
 
Final Poster
Final PosterFinal Poster
Final Poster
 
SAMPE 2016_PREDICTING STRESS RELAXATION BEHAVIOR
SAMPE 2016_PREDICTING STRESS RELAXATION BEHAVIORSAMPE 2016_PREDICTING STRESS RELAXATION BEHAVIOR
SAMPE 2016_PREDICTING STRESS RELAXATION BEHAVIOR
 
SPICE MODEL of DTD143EC in SPICE PARK
SPICE MODEL of DTD143EC in SPICE PARKSPICE MODEL of DTD143EC in SPICE PARK
SPICE MODEL of DTD143EC in SPICE PARK
 
Experimental study on polypropylene fiber reinforced moderate deep beam
Experimental study on polypropylene fiber reinforced moderate deep beamExperimental study on polypropylene fiber reinforced moderate deep beam
Experimental study on polypropylene fiber reinforced moderate deep beam
 
180715749-4B-Creep-and-Shrinkage.pptx
180715749-4B-Creep-and-Shrinkage.pptx180715749-4B-Creep-and-Shrinkage.pptx
180715749-4B-Creep-and-Shrinkage.pptx
 
Pres for LinkedIn
Pres for LinkedInPres for LinkedIn
Pres for LinkedIn
 
A term paper on the effects of vibration on the mechani cal properties of eng...
A term paper on the effects of vibration on the mechani cal properties of eng...A term paper on the effects of vibration on the mechani cal properties of eng...
A term paper on the effects of vibration on the mechani cal properties of eng...
 
SPICE MODEL of DTD143EK in SPICE PARK
SPICE MODEL of DTD143EK in SPICE PARKSPICE MODEL of DTD143EK in SPICE PARK
SPICE MODEL of DTD143EK in SPICE PARK
 
Visualising Synthetic Dental Biofim on Teeth Using Micro-CT
Visualising Synthetic Dental Biofim on Teeth Using Micro-CTVisualising Synthetic Dental Biofim on Teeth Using Micro-CT
Visualising Synthetic Dental Biofim on Teeth Using Micro-CT
 
SPICE MODEL of DTD143ES in SPICE PARK
SPICE MODEL of DTD143ES in SPICE PARKSPICE MODEL of DTD143ES in SPICE PARK
SPICE MODEL of DTD143ES in SPICE PARK
 
HBCU Presentation
HBCU PresentationHBCU Presentation
HBCU Presentation
 
Enhancing Electrochemical Performance of V2O5 Thin Film by using Ultrasonic W...
Enhancing Electrochemical Performance of V2O5 Thin Film by using Ultrasonic W...Enhancing Electrochemical Performance of V2O5 Thin Film by using Ultrasonic W...
Enhancing Electrochemical Performance of V2O5 Thin Film by using Ultrasonic W...
 

More from nirupam12 (12)

Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxides
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimer
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfaces
 
Resonant X Ray Diffraction
Resonant X Ray DiffractionResonant X Ray Diffraction
Resonant X Ray Diffraction
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopy
 
Band structure
Band structureBand structure
Band structure
 
Piezoelectric mems
Piezoelectric memsPiezoelectric mems
Piezoelectric mems
 

Recently uploaded

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
SanaAli374401
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 

Recently uploaded (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 

D Schlom - Oxide Molecular-Beam Epitaxy

  • 1. Oxide Molecular-Beam Epitaxy: Oxide Molecular-Beam Epitaxy: An Introduction with Examples An Introduction with Examples Darrell G. Schlom Department of Materials Science and Engineering Cornell University
  • 2. Sandwich Maker Sandwich Maker http://www.engineering.cornell.edu/faculty/new-faculty/new-faculty-2008/schlom.cfm
  • 3. Quantum  Cascade Laser Yanbo Bai http://www.yanbobai.com
  • 4. TEM of MBE-Grown Superlattices TEM of MBE-Grown Superlattices AlAs / GaAs PbTiO3 / SrTiO3 BaTiO3 / SrTiO3 C.D. Theis J.H. Haeni A.K. Gutakovskii et al., (1st Generation Schlom Group) (2nd Generation) Phys. Stat. Sol. (a) 150 (1995) 127. HRTEM—Pan Group (Michigan) D.G. Schlom et al., Mater. Sci. Eng. B 87 (2001) 282.
  • 5. MBE ≈ Atomic Spray Painting MBE ≈ Atomic Spray Painting
  • 6. Key Enablers of MBE Key Enablers of MBE • “3-Temperaturaufdampfverfahren” for Growth of III-V Semiconductor Films by Vacuum Evaporation K.G. Günther, “Aufdampfschichten aus halbleitenden III-V Verbindungen,” Zeitschrift für Naturforschung A 13 (1958) 1081-1089. • Reliable UHV Sealing Technology W.R. Wheeler and M. Carlson, “Ultra-High Vacuum Flanges,” Transactions of the Eighth National Vacuum Symposium, edited by L.E. Preuss (Pergamon, New York, 1962), pp. 1309-1318.
  • 7. Evolution of MBE 1st University MBE Cornell, 1978 1st MBE Production Al Cho at Bell Labs, 1972 MBE Today (courtesy of TRW)
  • 8. MBE production tool performance data HIGH YIELD UNIFORMITIES / Wafer Thickness < ± 0.5 % Composition < ± 0.5 % Doping < ±1 % REPRODUCIBILITY Source material: supply consistency Stable process and monitoring: < 2% HIGH THROUGHPUT VERY HIGH UPTIME > 94%, run 6 to 9 months, 7 days/wk, 24/24 RUN CAPABILITY 13x2’’ or 5x3’’, 4x6’’ or 9x4’’, (4x8’’) 7x6’’ RUN SWITCHING less than 2 minutes (platen exchange) 8 May ‘03
  • 9. Mobility Achieved with MBE Mobility Achieved with MBE A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, and M. Kawasaki L. Pfeiffer and K.W. West, Physics E 20 (2003) 57-64. Nature Materials 9 (2010) 889-893. D.G. Schlom and L.N. Pfeiffer, Nature Materials 9 (2010) 881-883.
  • 10. Modulation Doping R. Dingle, H.L. Störmer, A.C. Gossard, and W. Wiegmann, Applied Physics Letters 33 (1978) 665-667. W.P. McCray, Nature Nanotechnology 2 (2007) 259-261.
  • 11. Reflection High‐ Energy Electron  Diffraction (RHEED)  Oscillations B. Bölger and P. K. Larsen, Review of Scientific B.A. Joyce, P.J. Dobson, J.H. Neave, K. Instruments 57 (1986) 1363-1367. Woodbridge, J. Zhang, P.K. Larsen, and B Bölger, Surface Science 168 (1986) 423-438.
  • 12. J. Heber, Nature 459 (2009) 28-30.
  • 13. XRD of (BaTiO33))nn // (SrTiO33))m Superlattices XRD of (BaTiO (SrTiO m Superlattices m=4 m = 13 A. Soukiassian, W. Tian, V. Vaithyanathan, J.H. Haeni, L.Q. Chen, X.X. Xi, D.G. Schlom, D.A. Tenne, H.P. Sun, X.Q. Pan, K.J. Choi, C.B. Eom, Y.L. Li, Q.X. Jia, C. Constantin, R.M. Feenstra, M. Bernhagen, P. Reiche, and R. Uecker, Journal of Materials Research 23 (2008) 1417-1432.
  • 14. Intensity (arbitrary units) 10 10 10 10 2 3 4 5 0 003 004 005 006 007 008 009 0010 0011 0012 0013 0014 0015 10 0016 0017 0018 0019 0020 0021 0022 0023 c = 121.4 ± 1.3 Å 0024 0025 0026 0027 0028 20 0029 - 2 10 ω 10 0400 -100 -200 -300 (arc seconds) S 0030 0031 XRD of [(BaTiO * 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 30 0043 0044 0045 0046 2θ (degrees) 0047 0048 0049 0050 0051 0052 0053 0054 0055 40 0056 0057 0058 0059 0060 0061 0062 * 0063 0064 0065 0066 0067 0068 50 XRD of [(BaTiO33))11 // (SrTiO33))30]]20 (SrTiO 30 20 Superlattice grown on (001) SrTiO Superlattice grown on (001) SrTiO33
  • 15. Creating New Materials Creating New Materials (SrTiO3)30 SrTiO3 (BaTiO3)1 (SrTiO3)30 BaTiO3 High Angle Annular Dark Field STEM Collaboration with David Muller (Cornell, Applied Physics)
  • 16. Creating New Materials Creating New Materials (SrTiO3)30 SrTiO3 (BaTiO3)1 (SrTiO3)30 BaTiO3 BaTiO3 / SrTiO3 STEM-EELS Collaboration with David Muller (Cornell, Applied Physics)
  • 17. NanoEngineering NanoEngineering of Oxides of Oxides e.g., Srn+1TinnO3n+1 e.g., Srn+1Ti O3n+1 Homologous Homologous Series Series J.H. Haeni, C.D. Theis, D.G. Schlom, W. Tian, X.Q. Pan, H. Chang, I. Takeuchi, and X.-D. Xiang, Applied Physics Letters 78 (2001) 3292-3294.
  • 18. Intensity (arb. units) 004 006 008 10 0010 0012 0014 0016 0018 20 * 0024 0026 0028 30 0030 0032 0034 0036 40 0038 2θ (degrees) 0040 0044 * 50 0046 0048 0050 0052 60 0054 0056 150 nm Sr11Ti10O31 // (001) SrTiO33 ((n = 10) 150 nm Sr11Ti10O31 (001) SrTiO n = 10)
  • 20. Maximum O2 Pressure for MBE Maximum O2 Pressure for MBE 106 Mean Free Path (cm) Li for Metal Flux of 105 1×1014 atoms/(cm2·s) 104 Ba 103 102 MBE Regime 101 100 π PO2 ⎛ di + dO2 ⎞ 5 ⎛ TO2 ⎞ ⎛ mi ⎞ 2 -1 10 1 = ( Fi di ) π 2 2mi + ⎜ ⎟ 1 + ⎜ ⎟⎜ ⎟ Li 3kB Ti kB TO2 ⎝ 2 ⎠ 3 ⎝ Ti ⎠ ⎜ mO2 ⎟ ⎝ ⎠ 10-2 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 Oxygen Pressure (Torr) D.G. Schlom and J.S. Harris, Jr., “MBE Growth of High Tc Superconductors,” in: Molecular Beam Epitaxy: Applications to Key Materials, edited by R.F.C. Farrow (Noyes, Park Ridge, 1995), pp. 505-622.
  • 21. O22 Needed to Oxidize Constituents O Needed to Oxidize Constituents 900 800 700 600 500 °C Oxygen Pressure (Torr) 2 Bi + O 10-10 2 ⌦ 2 Bi O 2 3 2 Pb + O 10-20 4 Nb 2 ⌦ 2 PbO +5O 2 ⌦2 -30 Ti + Nb O 10 O2 ⌦ 2 5 TiO 2 10-40 2 Sr 4 Ta +5O +O 2 ⌦ 2 2 ⌦ Ta O 10-50 2 Ba +O 2 Sr O 2 5 2 ⌦ 10-60 2 Ba O -70 10 0.90 1.00 1.10 1.20 1.30 1.40 1000/T (1/K)
  • 22. O2 Needed to Oxidize Cuprates O2 Needed to Oxidize Cuprates -1 900 800 700 600 500 400 °C 10 Oxygen Pressure (Torr) CuO 10-1 Mean Free Path (cm) 10-2 Bi2Sr2Ca2Cu3O10 100 10-3 Bi2Sr2CaCu2O8 YBa2Cu3O7-δ 101 10-4 MBE Regime 102 10-5 103 10-6 104 10-7 105 10-8 106 10-9 0.8 1.0 1.2 1.4 1.6 1000/T (1/K) D.G. Schlom and J.S. Harris, Jr., “MBE Growth of High Tc Superconductors,” in: Molecular Beam Epitaxy: Applications to Key Materials, edited by R.F.C. Farrow (Noyes, Park Ridge, 1995), pp. 505-622.
  • 23. Pros and Cons of Ozone Pros and Cons of Ozone • Pros – Excellent Oxidant (about 1000x more powerful than O2) – 80% Ozone (+20% O2) Delivery Possible to the Substrate – No Energetic Species (thermal ozone beam) – Inexpensive (if you make it yourself) • Cons – Safety (Ozone still issues) – Safety (Pump issues) – Need Ozone-Compatible UHV Leak Valve – Need to Passivate Ozone System
  • 26. TEM of MBE-Grown Superlattices TEM of MBE-Grown Superlattices AlAs / GaAs PbTiO3 / SrTiO3 BaTiO3 / SrTiO3 C.D. Theis J.H. Haeni A.K. Gutakovskii et al., (1st Generation Schlom Group) (2nd Generation) Phys. Stat. Sol. (a) 150 (1995) 127. HRTEM—Pan Group (Michigan) D.G. Schlom et al., Mater. Sci. Eng. B 87 (2001) 282.
  • 27. Increased Interface  Roughness and  Clustering at Non‐Optimal  Growth Conditions W. Barvosa-Carter, M.E. Twigg, M.J. Yang, and L.J. Whitman, Physical Review B 63 (2001) 245311.
  • 28. Surface Energy Considerations K.-N. Tu, J.W. Mayer, and L.C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists (Macmillan, 1992).
  • 29. Surface vs. Bulk Diffusion Assuming growth rate of 0.1 monolayer/sec Tmin for smooth epitaxial films (growth by step propagation) Tmin for epitaxy Tmax Optimal Growth Temperatures T sub 0 .55 < < 0 .7 for semiconductors T melt T sub 0 .35 < < 0 .4 for metals T melt T sub 0 .1 < < 0 .4 for simple ceramics T melt M.H. Yang and C.P. Flynn, Physical Review Letters 62 (1989) 2476-2479.
  • 30. Universal Diffusion Behavior of Metals −Q D=D e 0 R Tm C. Peter Flynn, Point Defects and Diffusion (Oxford, 1972) pp. 783-785.
  • 31. Determining Surface Diffusion from  RHEED Oscillations J.H. Neave, P.J. Dobson, B.A. Joyce, and J. Zhang, Applied Physics Letters 47 (1985) 100-102.
  • 32. Surface vs. Bulk Diffusion Assuming growth rate of 0.1 monolayer/sec Tmin for smooth epitaxial films (growth by step propagation) Tmin for epitaxy Tmax Optimal Growth Temperatures T sub 0 .55 < < 0 .7 for semiconductors T melt T sub 0 .35 < < 0 .4 for metals T melt T sub 0 .1 < < 0 .4 for simple ceramics T melt M.H. Yang and C.P. Flynn, Physical Review Letters 62 (1989) 2476-2479.
  • 33. Adsorption‐Controlled Growth of GaAs Temperature (°C) 104 700 650 600 550 500 4 As(s)⇔ As4 (g) Gas Pressure (Torr) 10-1 2 GaAs(s)⇔ 2 Ga(l) + As2 (g) 10-6 10-11 1.05 1.10 1.15 1.20 1.25 1000/T (1/K)
  • 34. Adsorption‐Controlled Growth of EuO Eu Flux = 1.1×1014 Eu atoms/(cm2 s) EuO film thickness (from RBS) after 30 min R.W. Ulbricht, A. Schmehl, T. Heeg, J. Schubert, and D.G. Schlom, Applied Physics Letters 93 (2008) 102105.
  • 35. Adsorption-Controlled MBE Adsorption-Controlled MBE Atomic Flux (Φ) (atoms/cm2 sec) 1024 22 4 As(s) ⇔ As 10 4 (g) 1020 1018 1016 2 GaAs(s) ⇔ 2 Ga(l) + As2 (g) 1014 ΦBi O 12 x y (g) 10 ΦBi O Bi2O3 (s) 1010 x y (g) 10 8 Bi4Ti3O12 (s) + TiO2 (s) 700 650 600 550 500 Temperature (°C) D.G. Schlom, J.H. Haeni, J. Lettieri, C.D. Theis, W. Tian, J.C. Jiang, and X.Q. Pan, Mat. Sci. Eng. B, 87 (2001) 282-291.
  • 36. Adsorption-Controlled MBE Adsorption-Controlled MBE Bi Flux (always open) Relative Flux O2/O3 (always open) Fe Flux (monolayer doses) Time
  • 37. Adsorption-Controlled MBE Adsorption-Controlled MBE T (°C) 10-3 500 475 450 425 400 Φ Bi O Φ x y (g) O2 Pressure (Torr) BixOy (g) Bi2O2.5 (s) + BiFeO3 (s) 10-5 BiFeO3 (s) 10-7 Φ BixOy (g) BiFeO3 (s) + γ-Fe2O3 10-9 (s) 1.30 1.35 1.40 1.45 1.50 1000/T (1/K) J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt, X.Q. Pan, J. Schubert, R. Ramesh, and D.G. Schlom, Applied Physics Letters 92, 142908 (2008).
  • 38. Epitaxial BiFeO33 // (001) SrTiO33 Epitaxial BiFeO (001) SrTiO Adsorption-Controlled Growth Adsorption-Controlled Growth BiFeO3 + γ-Fe2O3 BiFeO3 + Bi2O2.5 Fe Closed Tsub ~ 500°C Tsub ~ 400°C ΦBi Fe Open = 7.0 ΦFe Tsub ~ 450°C J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt, X.Q. Pan, J. Schubert, R. Ramesh, and D.G. Schlom“Optical Band Gap of BiFeO3 Grown by Molecular-Beam Epitaxy” Applied Physics Letters 92, 142908 (2008)
  • 39.
  • 40. Flux-Controlled MBE Growth of Flux-Controlled MBE Growth of (BaTiO33))55 // (SrTiO33))55 Superlattice (BaTiO (SrTiO Superlattice
  • 42. How we do it How we do it • Use Quartz Crystal Microbalance to Get Fluxes Close (~5% accuracy) • Use Shuttered RHEED Oscillations (analogous to MEE of GaAs) • Yields Sr:Ti Relative Incorporation Ratio (~1% accuracy) • Yields Absolute Monolayer Dose for SrO and TiO2 (~1% accuracy) • Works for Other Perovskites too (BaTiO3, SrRuO3) J.H. Haeni, C.D. Theis, and D.G. Schlom, Journal of Electroceramics 4 (2000) 385-391.
  • 43. Reflection High‐ Energy Electron  Diffraction (RHEED)  Oscillations B. Bölger and P. K. Larsen, Review of Scientific B.A. Joyce, P.J. Dobson, J.H. Neave, K. Instruments 57 (1986) 1363-1367. Woodbridge, J. Zhang, P.K. Larsen, and B Bölger, Surface Science 168 (1986) 423-438.
  • 44. Conventional RHEED Oscillations Molecular Beam Epitaxy: Applications to Key Materials, edited by R.F.C. Farrow (Noyes, Park Ridge, 1995), p. 694.
  • 45. Shuttered RHEED to Get Sr:Ti = 1:1 3 % Ti Rich 3 % Ti Poor Stoichiometric SrTiO3 [011] Azimuth Oscillations of the central diffracted rod as the Sr and Ti are deposited in a sequential manner J.H. Haeni, C.D. Theis, and D.G. Schlom, Journal of Electroceramics 4 (2000) 385-391.
  • 47. Shuttered RHEED Oscillations Shuttered RHEED Oscillations A-Site Rich B-Site Rich
  • 48.
  • 49. Beat Frequency for Sr:Ti = 1:1 Absolute J.H. Haeni, C.D. Theis, and D.G. Schlom, Journal of Electroceramics 4 (2000) 385-391.
  • 51. Oxide MBE at Brookhaven Nat. Lab. Oxide MBE at Brookhaven Nat. Lab.
  • 52. Oxide MBE + ARPES Oxide MBE + ARPES Collaboration with Kyle Shen (Cornell, Physics)
  • 54.
  • 55.
  • 56.
  • 57.
  • 58. R.E. Honig and D.A. Kramer, RCA Review 30 (1969) 285-305.
  • 59. R.E. Honig and D.A. Kramer, RCA Review 30 (1969) 285-305.
  • 60. V Pb R.E. Honig and D.A. Kramer, RCA Review 30 (1969) 285-305.
  • 61. Binary Alloy Phase Diagrams, edited by T.B. Massalski (ASM International, 1990).
  • 62. Binary Alloy Phase Diagrams, edited by T.B. Massalski (ASM International, 1990).
  • 63. Binary Alloy Phase Diagrams, edited by T.B. Massalski (ASM International, 1990).
  • 64. V R.E. Honig and D.A. Kramer, RCA Review 30 (1969) 285-305.
  • 65. Kurt J. Lesker, Co. Catalog
  • 66. Binary Alloy Phase Diagrams, edited by T.B. Massalski (ASM International, 1990).
  • 69. Commercial Perovskite Substrates Commercial Perovskite Substrates D.G. Schlom, L.Q. Chen, X.Q. Pan, A. Schmehl, and M.A. Zurbuchen, Journal of the American Ceramic Society 91 (2008) 2429-2454.
  • 70. MBE vs. Single Crystals (Rocking Curves)
  • 71.
  • 72. Surface Termination Recipes Surface Termination Recipes • (001) SrTiO3 G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, H. Rogalla, “Quasi-Ideal Strontium Titanate Crystal Surfaces through Formation of Strontium Hydroxide,” Appl. Phys. Lett. 73 (1998) 2920-2922. • (110) REScO3 J.E. Kleibeuker, G. Koster, W. Siemons, D. Dubbink, B. Kuiper, J.L. Blok, C-H. Yang, J. Ravichandran, R. Ramesh, J.E. ten Elshof, D.H.A. Blank, and G. Rijnders, “Atomically Defined Rare-Earth Scandate Crystal Surfaces,” Advanced Materials 20 (2010) 3490- 3496. • (001) LSAT J.H. Ngai, T.C. Schwendemann, A.E. Walker, Y. Segal, F.J. Walker, E.I. Altman, and C.H. Ahn, “Achieving A-Site Termination on La0.18Sr0.82Al0.59Ta0.41O3 Substrates,” Advanced Materials 22 (2010) 2945-2948.
  • 73. Terminated vs. Unterminated SrTiO3 RHEED Intensity (arb. units) (BaTiO ) (SrTiO ) (BaTiO3)4 (SrTiO ) (BaTiO ) (SrTiO ) 3 4 3 2 3 2 3 4 3 2 Ti shutter open [110] azimuth Not Terminated Sr shutter open Ba shutter open 0 200 400 600 800 Time (s) RHEED Intensity (arb. units) Ti shutter open [100] azimuth Terminated Ba shutter open Sr shutter open 0 100 200 300 400 500 600 700 Time (s)
  • 74. MBE Summary MBE Summary Advantages Disadvantages • Extreme Flexibility • Extreme Flexibility (uncontrolled flexibility = • Independent Growth chaos!) Parameters • High Cost • Compatible with wide range of in situ Diagnostics • Long Set-up Time • Clean • MBE (the other meanings…) • Gentle • Precise Layering Control at the Atomic Level