I.Jmili
I.JmilixDSL
Digital Subscriber Line - Ligne numérique d’abonné
Nouri Anis 2013/2014 Réseaux étendus
Ministère de l...
Table des matières
I. INTRODUCTION...........................................................................................
1XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dép...
2XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dép...
3XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dép...
4XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dép...
5XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dép...
6XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dép...
7XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dép...
8XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dép...
9XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dép...
10XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dé...
11XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dé...
12XDSL NOURI ANIS
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Faculté des Sciences dz Bizerte
Dé...
Prochain SlideShare
Chargement dans…5
×

Digital Subscriber Line - Ligne numérique d’abonné

517 vues

Publié le

Les différentes technologies xDSL ont une caractéristique commune, elles permettent de faire passer des flux importants de données sur de simples lignes téléphoniques torsadées. Une présentation exhaustive des technologies xDSL sera présentée, en insistant sur l’aspect technique et en les comparants avec les différentes autres solutions similaires mises en œuvre

Publié dans : Technologie
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
517
Sur SlideShare
0
Issues des intégrations
0
Intégrations
3
Actions
Partages
0
Téléchargements
16
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Digital Subscriber Line - Ligne numérique d’abonné

  1. 1. I.Jmili I.JmilixDSL Digital Subscriber Line - Ligne numérique d’abonné Nouri Anis 2013/2014 Réseaux étendus Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique
  2. 2. Table des matières I. INTRODUCTION.........................................................................................................................................................1 II. PROBLEMES ...............................................................................................................................................................1 II.1. LADIAPHONIE (CROSSTALK).......................................................................................................................................2 II.2. DISSIPATION D’ENERGIE.............................................................................................................................................3 II.3. LA PUPINISATION ......................................................................................................................................................3 III. LES TECHNOLOGIES DSL ..........................................................................................................................................4 III.1. HISTORIQUE.........................................................................................................................................................4 III.2. PRESENTATION.....................................................................................................................................................4 III.3. PRINCIPES............................................................................................................................................................5 III.4. LES TECHNOLOGIES SYMETRIQUES.........................................................................................................................6 III.4.1. HDSL / SDSL ................................................................................................................................................6 III.5. LES TECHNOLOGIES ASYMETRIQUES.......................................................................................................................7 III.5.1. ADSL.............................................................................................................................................................8 III.5.2. RADSL ..........................................................................................................................................................8 III.5.3. IDSL ..............................................................................................................................................................9 III.5.4. VDSL.............................................................................................................................................................9 III.6. RECAPULATIF.....................................................................................................................................................10 III.6.1. La technologie DSL et ses variantes. ....................................................................................................10 III.6.2. Les applications des technologies xDSL...............................................................................................11 III.6.3. Exemple d’une connexion xDSL .............................................................................................................11 IV. CLONCLUSION ...............................................................................................ERROR! BOOKMARK NOT DEFINED. Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique
  3. 3. 1XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique I. Introduction Depuis l’avènement des technologies xDSL (Digital Subscriber Line), la paire torsadée en cuivre a retrouvé un intérêt grandissant parmi les grandes entreprises de télécommunication. Les différentes technologies xDSL ont une caractéristique commune, elles permettent de faire passer des flux importants de données sur de simples lignes téléphoniques torsadées. Une présentation exhaustive des technologies xDSL sera présentée, en insistant sur l’aspect technique et en les comparants avec les différentes autres solutions similaires mises en œuvre. Des exemples d’applications vont démontrer l’intérêt réel de la part des industriels. Les technologies xDSL permettent des débits de l’ordre de plusieurs mégabits sans bouleverser l’infrastructure existante. La transmission xDSL ne nécessite que de simples paires de cuivre omniprésentes dans les réseaux de distribution des opérateurs. Ces technologies utilisent les structures existantes, permettant de transférer les données entre l’utilisateur et le réseau, sans nécessité un investissement astronomique de la part des opérateurs de télécommunication. II. Problèmes La première difficulté rencontrée fut les derniers Km de transmission. Il a tout d’abord été envisagé de déployer de la fibre optique jusque chez l’abonné. L’investissement s’est cependant révélé trop coûteux et la rentabilité hypothétique. Pour contrer les technologies concurrentes (Câble, Numéris, Lignes spécialisées, Modems X2/K56, MMDS, Satellite et Câbles électriques), il fallait donc trouver une autre solution pour proposer des services assurant du haut débit à moindre coût. Pour cela, une seule solution : doper le réseau téléphonique existant. C’est le but des technologies xDSL. Elles seront utilisées dans la dernière partie du réseau téléphonique : la boucle locale (partie du réseau reliant la prise téléphonique d’un abonné au central de commutation le plus proche). La boucle locale fait transiter les signaux analogiques pour être compatible avec l'immense majorité des postes téléphoniques. Ceux-ci utilisent les signaux électriques analogiques dans la bande audible 300 - 3400 Hz. On touche ici le point clé des technologies xDSL. Elles permettent d'employer des moyens d'accès universel (plus de 700 millions de lignes sont installées dans le monde) tout en s'appuyant sur les méthodes de traitement du signal numérique. L'idée de base de ces technologies est de repousser la barrière théorique des 300-3400 Hz de bande passante qu’utilisent les modems analogiques actuels 56K Mais ce n’est pas si simple car la dissipation d'énergie, la diaphonie et la pupinisation posent problème.
  4. 4. 2XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique II.1. La diaphonie (crosstalk) C’est l’influence non désirée entre signaux utiles, de mêmes caractéristiques, transmis sur des conducteurs voisins. Elle se traduit par interférence des rayonnements électromagnétiques. En téléphonie, plusieurs paires torsadées de cuivre sont regroupées dans un même câble surtout du côté des centraux opérateurs où la concentration de câbles est très forte. L’utilisation de signaux hautes fréquences va donc limiter le débit à cause des perturbations. Il existe deux types de diaphonie : la paradiaphonie et la télédiaphonie (si Full-Duplex). La paradiaphonie est l’influence, au sein d’un même Emetteur-récepteur, du signal émis sur le signal reçu. La télédiaphonie est l’influence d’un signal émis sur un autre signal émis, d’un Emetteur-récepteur à un autre. Elle est due généralement à une mauvaise adaptation de l’impédance d’une ligne (notamment aux points de raccordement de câbles ou aux points de jonction). Une bonne qualité de câble peut limiter la diaphonie. Nous verrons plus loin qu’en employant une fréquence d’émission et de réception différente, on peut également réduire cette perturbation. C'est pourquoi certains systèmes DSL utilisent des spectres de fréquence différents pour les signaux d'émission et de réception FDM (Frequency Division Multiplexing), avec cependant l'inconvénient d'occuper une large bande de fréquences, comparée aux systèmes CAP (Carrierless Amplitude and Phase modulation) à annulation d'écho par exemple, utilisés en HDSL (High bit rate DSL). Spectres de fréquence FDM et CAP.
  5. 5. 3XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique II.2. Dissipation d’énergie Un courant électrique passant au travers d'un conducteur dissipe une partie de son énergie sous forme de chaleur (pertes par effet Joule). Ces pertes augmentent avec la résistance du câble. Celle-ci est fonction de la longueur du câble, de sa section et de sa conductivité électrique : Résistance (ligne) = téconductivi 1 x tion longueur sec Les technologies xDSL font passer des signaux haute fréquence, ce qui augmente la résistance du câble et atténue donc le signal. Ce problème limite donc la longueur des boucles locales. Pour limiter cette atténuation, il suffit d’utiliser des câbles moins sensibles, de diamètre plus gros, ce qui augmente donc les frais d’implantation. II.3. La Pupinisation Afin d'éviter les parasites haute fréquence, les opérateurs téléphoniques ont disposé à différents endroits de leur réseau des bobines d'auto-induction. Or, les technologies xDSL laissent la bande des 300-3400 Hz libre et émettent sur des HF. Le troisième problème interdit donc l’usage des technologies xDSL sur une boucle locale équipée de bobine de pupinisation, qui éliminerait le signal en HF. Notons ici la relativité du terme haut débit. Dans cet exposé, il s’agira de comparer ces nouvelles performances aux vitesses actuelles (quelques centaines de kbits/s). Ces mêmes débits dans un autre contexte (routeurs Gigabits) pourront paraître bien maigres…
  6. 6. 4XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique III. Les technologies DSL III.1. Historique Le DSL est une technique relativement ancienne. Cette technologie a en effet été conçue et pensée il y a une vingtaine d'années par les laboratoires BellCore, qui ont développé le premier réseau DSL. L'intérêt porté à cette technologie est revenu au goût du jour en 1997 environ, pour deux raisons :  Tout d'abord, le déploiement massif de la fibre optique, jusque chez l'abonné, envisagé au début des années 1990 s'est révélé un investissement trop onéreux, à la rentabilité hypothétique. Il fallait donc trouver une autre solution pour proposer des services assurant de hauts débits à moindre coût ;  Ensuite, la réforme, en septembre 1996, des télécoms américaines mettait un terme aux monopoles en matière de téléphonie locale, ouvrant ainsi la compétition entre compagnies régionales, câblo-opérateurs, opérateurs longue distance, ISP , etc. Les téléphonistes furent alors confrontés à la montée en puissance des solutions de type câble. Pour les contrer, une seule solution : doper le réseau téléphonique existant. III.2. Présentation Le sigle xDSL regroupe plusieurs variantes de techniques de transmissions hauts débits, utilisant la ligne téléphonique. Une paire de cuivre offre une bande passante de 1Mhz, or seulement 4khz sont utilisés pour la transmission de la voix. Les technologies xDSL exploitent cette bande passante supplémentaire pour créer ainsi deux voies de communications. Les versions des technologies xDSL diffèrent par le nombre de paires téléphoniques utilisés (1 ou 2), le choix des fréquences porteuses et le type de modulation utilisée. La technologie ADSL met en place un débit dissymétrique, plus important sur la voie descendante (VD) que sur la voie Montante (VM). Cette dissymétrie est adaptée aux exigences de l'accès à Internet. Les technologies xDSL reposent sur le concept de « super modems ». Ce sont des boîtiers, où sont couplés des modulateurs-démodulateurs à très hautes performances, placés aux extrémités d’une ligne en paires torsadés pour réaliser une ligne d’abonné numérique. L'xDSL regroupe tout ce qui permet de faire passer des flots de données à grande vitesse sur de simples lignes téléphoniques torsadées. Il en existe différentes variantes :  HDSL : High bit rate DSL  SDSL : Symetric DSL  ADSL : Asymmetric DSL  RADSL : Rate adaptative DSL  VDSL : Very high DSL
  7. 7. 5XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique Les différences essentielles entre ces technologies sont affaires de :  vitesse de transmission  distance maximale de transmission  variation de débit entre le flux montant (utilisateur/réseau) et flux descendant (réseau/utilisateur) Les technologies xDSL sont divisées en deux grandes familles, celles utilisant une transmission symétrique et celle utilisant une asymétrique. III.3. Principes Le principe des technologies DSL est de réaliser une transmission haut débit en utilisant le réseau téléphonique existant. Ce réseau est constitué de paires de cuivre torsadées ; médium qui supporte une bande passante pouvant aller jusqu’à 1 Mhz. Or, l’utilisation du réseau téléphonique ne concerne qu’une bande passante de 4000 Hz, initialement prévue pour transmettre de la voix mais que nous utilisons également actuellement pour essayer de transmettre des données. C’est justement cette portion de circuit qui ralentit le débit des connexions pour un internaute moyen, avec des vitesses de communication de quelques dizaines de kbits/s. Mais attention, améliorer uniquement la bande passante du médium de la boucle locale n’est pas suffisant pour augmenter le débit. Faut-il encore faire évoluer les équipements de communications rattachés à ces lignes.
  8. 8. 6XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique En effet, la bande passante étant plus large et les fréquences plus hautes, les modulateurs et démodulateurs doivent être adaptés au signal, aux nouveaux codages et au multiplexage pour fournir de très bonnes performances. En jouant sur la combinaison de ces deux éléments, les débits supportés par les paires de cuivre s’échelonnent entre 1,5 et 50 Mbits/s. Les technologies DSL diffèrent sur les points suivants :  le nombre de paires de cuivre utilisées ;  la modulation de fréquence employée ;  le choix des fréquences porteuses ;  la symétrie des fronts montant et descendant ;  la distance entre l’abonné et le central téléphonique ;  le nombre de canaux. Nous allons maintenant détailler ces technologies, voir dans quelles conditions elles sont utilisées, le type de codage employé, les débits obtenus. III.4. Les technologies symétriques Dans le contexte du DSL, nous dirons qu’une technique est symétrique quand les capacités des canaux montants et descendants seront égales (en terme de débit). En fait, on ne fait pas de distinction entre les deux. Ce principe technologique a été adopté car aucune contrainte particulière n’était posée III.4.1. HDSL / SDSL La première technique, au début des années 90, a consisté à diviser le tronc numérique du réseau, T1 aux Etats-Unis, E1 en Europe, sur plusieurs paires de fils. Ceci a été rendu possible grâce à la théorie du signal qui permet d'augmenter le nombre de bits par symbole transmis. On arriva à 1168 kbits/s, tout en respectant la longueur de 5 km pour la boucle locale, sans adjonction de répéteurs. Cette méthode fut nommée HDSL, pour High bit rate DSL, c'est à dire DSL à haut débit. L'extension du principe de transmission à base de codage 2B1Q (2 Binary 1 Quaternary codage à 4 états) ne fut pas la seule méthode employée pour faire mieux que les technologies traditionnelles AMI (Alternate Mark Inversion, codage bipolaire), utilisées pour T1, et HDB3
  9. 9. 7XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique (High Density Bipolar 3, codage bipolaire à degré 3) pour E1. Paradyne alors filiale de AT&T, développa CAP, dérivée des techniques modernes appliquées aux modems analogiques. CAP (Carrierless Amplitude and Phase modulation) permet de coder jusqu'à 9 bits par symbole, ce qui lui valut l'agrément des organisations de normalisation, l'ANSI (American National Standards Institute) américaine et l'ETSI (European Telecomminication Standards Institute) européenne. Lorsque la longueur de la boucle locale l'autorise, soit environ 3 km, les systèmes HDSL à deux paires de fils peuvent être remplacés par des systèmes à une paire, ou SDSL (Single- pair, ou Symetric DSL). HDSL (High bit rate DSL) Il s’agit donc d’une technique de transmission full duplex. Elle utilise 2 ou 3 paires de cuivre. Elle fournit les équivalents de l’accès primaire RNIS de type T1 ou E1 (soit 1,544 Mbits/s avec un découpage du tronc numérique du réseau). SDSL (Single DSL) Même principe que le HDSL sauf que la transmission ne se fait plus que sur une seule paire torsadée. Le débit tombe alors à 768 kbits/s avec une longueur de boucle réduite à 3,6 Km. Notons que SDSL supporte les transmissions symétriques sur E1 et T1. III.5. Les technologies asymétriques Ces techniques sont basées sur une différence de la capacité des canaux ascendant et descendant (en terme de débit), généralement favorable pour le premier. Ces canaux sont simplex. En effet, c’est par l’expérience que l'on s'est aperçu qu'il était possible de transmettre d’avantage des données depuis le central du réseau public vers l'utilisateur. Plus on se rapproche du central, plus la concentration des câbles est importante. Ces derniers génèrent donc plus de diaphonie à proximité du commutateur. Les signaux envoyés par l’abonné s’affaiblissent au cours du trajet, arrivent plus atténués et sont donc plus sensibles au bruit causé par ces perturbations électromagnétiques. Pour éviter ce désagrément, il vaut mieux transmettre en basse fréquence (ou sur une bande de fréquence moins large) les données issues de l'utilisateur d’où la réduction du débit vers le central.
  10. 10. 8XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique III.5.1. ADSL L’Asymmetric Digital Subscriber Line (ADSL) est une technique de communication numérique de la famille xDSL. Elle permet d'utiliser une ligne téléphonique, une ligne spécialisée, ou encore une ligne RNIS (en anglais ISDN, soit Integrated Services Digital Network), pour transmettre et recevoir des données numériques de manière indépendante du service téléphonique conventionnel. À ce titre, cette méthode de communication diffère de celle utilisée lors de l'exploitation de modems dits « analogiques », dont les signaux sont échangés dans le cadre d'une communication téléphonique. La technologie ADSL est massivement mise en œuvre par les fournisseurs d'accès à Internet pour le support des accès dits « haut-débit ». Le sigle anglais ADSL signifie Asymmetric Digital Subscriber Line, qui se traduit fonctionnellement par « [liaison] numérique [à débit] asymétrique [sur] ligne d'abonné »1. La terminologie française officielle recommande l'expression « liaison numérique asymétrique »2, mais le sigle « ADSL » reste le plus largement utilisé dans le langage courant. Comme son nom l'indique, la technologie ADSL fournit un débit asymétrique. Le flux de données est plus important dans un sens de transmission que dans l'autre. Contrairement à la technologie SDSL pour laquelle le débit est symétrique, donc équivalent en émission et en réception, le débit de données montant d'une communication ADSL (upload) est plus faible que le débit descendant (download), dans un rapport qui varie généralement entre 5 et 20. III.5.2. RADSL Avec RADSL (Rate Adaptative DSL), la vitesse de la transmission entre deux modems est fixée de manière automatique et dynamique, selon la qualité de la ligne télécoms. Aussi longtemps qu'on est resté au transfert de données vidéo, il fut hors de question de faire varier le débit. Dans ce cas, le traitement synchrone est la règle. Mais de nouvelles applications sont apparues pour faire oublier l'échec du VDT. Les architectures client/serveur, l'accès aux réseaux à distance et l'Internet ont ouvert de nouveaux horizons aux applications de DSL. Celles-ci ont deux avantages : la synchronisation n'y est plus nécessaire et, de même que pour les modems 56K, l'architecture asymétrique devient évidente (par exemple, beaucoup plus d'informations circulent dans le sens serveur/client que dans celui du client vers le serveur). Ainsi on a pu définir une technologie qui adapte la vitesse de transmission aux conditions locales et l'optimiser selon des paramètres spécifiques. Les experts en télécommunications l'ont appelée RADSL (Rate Adaptative DSL) soit "boucle locale numérique à débit variable". RaDSL est une technique très intéressante. Elle permet de simplifier l’installation d’un nouveau service, d’auto-configurer l’équipement de raccordement en fonction des conditions de transmission, mais aussi de donner aux fournisseurs de services l’option de configurer leurs systèmes à des vitesses fixes, pour proposer à leurs clients des coûts adaptés à leurs besoins. Le même système peut être décliné sous plusieurs formes, ce qui simplifie la gestion et la maintenance des lignes de produits.
  11. 11. 9XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique RaDSL permettrait des débits ascendants de 128 kbits/s à 1 Mbits/s et des débits descendant de 600 kbits/s à 7 Mbits/s, pour une longueur maximale de boucle locale de 5,5 Km (comme l'ADSL). RaDSL est en cours de normalisation par l'ANSI. L'organisme considère les technologies QAM, CAP et DMT comme modulations RADSL. III.5.3. IDSL Il s’agit de la technologie DSL passant sur de l’ISDN (RNIS en France). On utilise des adaptateurs de terminaux RNIS à chaque extrémité de la boucle. Cela ne va pas bien plus vite (144 kbits/s au lieu de 128), mais permet d'avoir des connexions permanentes et une autre tarification (par exemple forfaitaire, au lieu d'être calculée selon la durée). III.5.4. VDSL Le VDSL est une technique réseau, qui peut être utilisée au sein d'un réseau domestique ou dans un immeuble. Cette technique permet d'établir des connexions réseau à haut débit sans déployer de câblage dédié : il suffit d'utiliser des installations téléphoniques existantes, il faut utiliser un boîtier répartiteur à la racine du réseau téléphonique, et un boîtier client (modem VDSL) au niveau de chaque prise de téléphone, lui adjoignant ainsi une prise RJ45. Pour une utilisation personnelle (pavillon, appartement), il est possible d'utiliser le VDSL pour raccorder deux points distants, soit si la distance excède les 100 m maxi des réseaux Ethernet, soit si l'installation téléphonique est existante, mais que le déploiement de câbles Ethernet pose un problème de coût ou de faisabilité. On appelle cela un pont VDSL. Pour atteindre les débits maximaux, l'utilisateur devra se trouver à moins de 300 m du DSLAM. Et dès 1 km de distance, il devient plus intéressant d'utiliser une autre technique comme l'ADSL 2+. Pour utiliser le VDSL, on devra donc effectuer du FTTN (Fiber To The Neighborhood), c’est-à-dire amené de la fibre optique jusqu'à chaque quartier, où seraient implantés des DSLAM. En France, cela se traduirait par la pose de DSLAM dans les sous- répartiteurs, ce qui engendrerait de nombreux coûts d'implantation. Une alternative intéressante et plus pérenne consisterait à implanter de la fibre jusqu'à l'usager : FTTH (Fiber To The Home).
  12. 12. 10XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique III.6. Récapulatif III.6.1. La technologie DSLet ses variantes. Technologie Signification Mode de Transmission Débit opérateur vers utilisateur Débit utilisateur vers opérateur Distance maximale HDSL High-data-rate DSL Symétrique (2B1Q/CAP) 1,544 Mbits/s 1,544 Mbits/s 3,6 km SDSL Single-line DSL Symétrique (2B1Q/CAP) 768 kbits/s 768 kbits/s 3,6 km ADSL Asymetric DSL Asymétrique (DMT) 1,544 Mbits/s à 9 Mbits/s 16 kbits/s à 640 kbits/s 5,4 km (à 1,5 Mbits/s) RADSL Rate-Adaptative DSL Asymétrique (CAP) 600 kbits/s à 7 Mbits/s 128 kbits/s à 1 Mbits/s 5,4 km (à 1,5 Mbits/s) DSL Digital Subscriber Line Symétrique (CAP/DMT...) 160 kbits/s 160 kbits/s 5,4 km IDSL ISDN over DSL Symétrique (2B1Q) 128 kbits/s 128 kbits/s 3,6 km VDSL Very-high-data- Rate DSL Asymétrique (CAP/DMT...) 13 Mbits/s à 53 Mbits/s 1,544 Mbits/s à 2,3 Mbits/s 1,5 km (à 13 Mbits/s) Les limites de distances fluctuent en fonction du diamètre des paires de cuivres utilisées. Il est toujours possible d’augmenter la distance de transmission, mais en acceptant une diminution de la bande passante. En effet, les plus hautes fréquences sont atténuées à mesure que la longueur du support augmente. Ainsi, il est possible de transmettre en ADSL jusqu’à 5400 mètres, mais à 1544 Kbits/s pour le flux descendant ce tableau permet de se faire une idée quant aux raisons du grand succès chez les particuliers de l’ADSL par rapport aux autres technologies xDSL. En effet, le mode de transmission asymétrique est mieux adapté à l’utilisation domestique comme le téléchargement et les services multimédia, gros consommateurs de bande passante, alors que les informations envoyées par le particulier sont, en comparaisons assez modestes en taille. Pour une distance à débit maximum relativement raisonnable en comparaison de la concurrence, les débits sont plus favorables qu’avec les autres technologies. VDSL, par exemple promet des débits très importants, mais ne permettrait pas une bonne diffusion en raison de la faible distance offerte par cette technologie.
  13. 13. 11XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique III.6.2. Les applications des technologies xDSL. Technologie Applications HDSL/SDSL Services d'interconnexion de PABX, de stations GSM, de routeurs, de serveurs Internet ; services d'agrégation de trafic (accès locaux...) ; réseaux privés de données. Ces deux technologies, globalement, fournissent des services d’interconnexion de PABX, de station GSM, de routeurs, d’agrégation de trafic… ADSL/RADSL Ces technologies permettent des services audiovisuels interactifs fournissant plusieurs canaux TV. Elles fournissent un accès aux services Internet (serveurs Web) et aux réseaux publics. L’ADSL permet également l’interconnexion de réseaux locaux. Enfin, on peut l’envisager pour le questionnement de bases de données distantes importantes. III.6.3. Exemple d’une connexionxDSL
  14. 14. 12XDSL NOURI ANIS Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Faculté des Sciences dz Bizerte Département de l’Informatique IV. Conclusion Les technologies xDSL répondent parfaitement aux besoins des utilisateurs. Comme on a pu le voir, elles proposent d’importants débits tant pour le flux montant que pour le flux descendant ce qui autorise tout genre d’utilisation requérant un fort débit comme le multimédia par exemple avec l’ADSL et le VDSL, ces technologies permettent même l’usage du téléphone pendant l’utilisation de la connexion à Internet. De plus, les données étant transférées sous forme numérique, les technologies xDSL assurent une grande qualité et diversité de services. En outre, ces technologies reposant sur les structures existantes, les lignes téléphoniques, elles permettent un accès aux réseaux pour un coût faible. Ces quatre points (forts débits, conservation du canal téléphonique, qualité des transmissions, faible coût) vont dans l’intérêt de l’utilisateur. xDSL désengorge le réseau Internet et permet à ses usagers d’accéder enfin, de manière réaliste, à de véritables services multimédias et autres. De multiples services, de nouvelles applications sont désormais accessibles aux usagers (avant l’utilisation des technologies xDSL, ils étaient souvent difficilement concevables) :  La vidéo à la demande (VOD) permet d’accéder à tout programme vidéo qui vous intéresse et ceci à n’importe quel moment.  Les technologies xDSL permettent de jouer en réseau, les jeux étant accessibles depuis un serveur.  La vidéo conférence avec une grande qualité d’images, améliore les communications.  xDSL permet le vrai télétravail. L’employé travaille de chez lui, sur un réseau LAN virtuel avec d’autres télétravailleurs et ceci avec tous les avantages d’un réseau local : accès à un serveur d’applications, partage de fichiers. De plus, xDSL permet d’interconnecter des réseaux LAN entre eux. Des universités, des laboratoires peuvent ainsi relier leurs réseaux LAN locaux entre eux de manière transparente. Même si la technologie xDSL est souvent une bonne solution à un tarif très intéressant, elle n’offre malheureusement pas toujours une liaison d’une qualité irréprochable. En effet, une ligne en xDSL est par définition constituée d’une ou deux paires de fils de cuivre; elle est donc influencée par des éléments externes et par la longueur et la résistance ohmique de la liaison considérée. Sa qualité peut varier dans le temps et enfin, la bande passante proposée est particulièrement contrainte par la distance. Malgré cette limitation, on s’attend dans les années à venir à un impact significatif des technologies xDSL, intrinsèquement adaptées aux besoins en communication multimédia employant une large bande passante : accès à Internet à haute vitesse, services on line, vidéo sur demande, distribution de signaux vidéo, jeux interactifs.

×