Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Fourier transform

  • Identifiez-vous pour voir les commentaires

Fourier transform

  1. 1. Fourier TransformNaveen Sihag
  2. 2. Mathematical Background: Complex Numbers• A complex number x is of the form: a: real part, b: imaginary part• Addition• Multiplication
  3. 3. Mathematical Background: Complex Numbers (cont’d)• Magnitude-Phase (i.e.,vector) representation Magnitude: Phase: φ Phase – Magnitude notation:
  4. 4. Mathematical Background: Complex Numbers (cont’d)• Multiplication using magnitude-phase representation• Complex conjugate• Properties
  5. 5. Mathematical Background: Complex Numbers (cont’d)• Euler’s formula• Properties j
  6. 6. Mathematical Background: Sine and Cosine Functions• Periodic functions• General form of sine and cosine functions:
  7. 7. Mathematical Background:Sine and Cosine Functions Special case: A=1, b=0, α=1 π π
  8. 8. Mathematical Background: Sine and Cosine Functions (cont’d) • Shifting or translating the sine function by a const bNote: cosine is a shifted sine function: π cos(t ) = sin(t + ) 2
  9. 9. Mathematical Background: Sine and Cosine Functions (cont’d)• Changing the amplitude A
  10. 10. Mathematical Background: Sine and Cosine Functions (cont’d)• Changing the period T=2π/|α| consider A=1, b=0: y=cos(αt) α =4 period 2π/4=π/2 shorter period higher frequency (i.e., oscillates faster) Frequency is defined as f=1/T Alternative notation: sin(αt)=sin(2πt/T)=sin(2πft)
  11. 11. Image Transforms• Many times, image processing tasks are best performed in a domain other than the spatial domain.• Key steps: (1) Transform the image (2) Carry the task(s) in the transformed domain. (3) Apply inverse transform to return to the spatial domain.
  12. 12. Transformation Kernels• Forward Transformation forward transformation kernel M −1 N −1T (u , v) = ∑∑ f ( x, y)r ( x, y, u, v) x =0 y =0 u = 0,1,..., M − 1, v =0,1,..., N − 1 inverse transformation kernel• Inverse Transformation M −1 N −1f ( x, y ) = ∑∑ T (u, v)s( x, y, u, v) u =0 v =0 x = 0,1,..., M − 1, y = 0,1,..., N − 1
  13. 13. Kernel Properties• A kernel is said to be separable if: r ( x, y, u, v) = r1 ( x, u )r2 ( y, v)• A kernel is said to be symmetric if: r ( x, y, u , v) = r1 ( x, u )r1 ( y, v)
  14. 14. Notation• Continuous Fourier Transform (FT)• Discrete Fourier Transform (DFT)• Fast Fourier Transform (FFT)
  15. 15. Fourier Series Theorem• Any periodic function can be expressed as a weighted sum (infinite) of sine and cosine functions of varying frequency: is called the “fundamental frequency”
  16. 16. Fourier Series (cont’d) α1 α2 α3
  17. 17. Continuous Fourier Transform (FT)• Transforms a signal (i.e., function) from the spatial domain to the frequency domain. (IFT) where
  18. 18. Why is FT Useful?• Easier to remove undesirable frequencies.• Faster perform certain operations in the frequency domain than in the spatial domain.
  19. 19. Example: Removing undesirable frequencies noisy signal frequenciesTo remove certain remove high reconstructed frequencies signalfrequencies, set theircorresponding F(u)coefficients to zero!
  20. 20. How do frequencies show up in an image?• Low frequencies correspond to slowly varying information (e.g., continuous surface).• High frequencies correspond to quickly varying information (e.g., edges) Original Image Low-passed
  21. 21. Example of noise reduction using FT
  22. 22. Frequency Filtering Steps1. Take the FT of f(x):2. Remove undesired frequencies:3. Convert back to a signal: We’ll talk more about this later .....
  23. 23. Definitions• F(u) is a complex function:• Magnitude of FT (spectrum):• Phase of FT:• Magnitude-Phase representation:• Power of f(x): P(u)=|F(u)|2=
  24. 24. Example: rectangular pulse magnituderect(x) function sinc(x)=sin(x)/x
  25. 25. Example: impulse or “delta” function• Definition of delta function:• Properties:
  26. 26. Example: impulse or “delta” function (cont’d)• FT of delta function: 1 x u
  27. 27. Example: spatial/frequency shiftsf ( x) ↔ F (u ), then Special Cases: − j 2πux0(1) f ( x − x0 ) ↔ e − j 2πux0 F (u ) δ ( x − x0 ) ↔ e j 2πu0 x( 2) f ( x ) e j 2πu0 x ↔ F (u − u 0 ) e ↔ δ (u − u 0 )
  28. 28. Example: sine and cosine functions• FT of the cosine function cos(2πu0x) F(u) 1/2
  29. 29. Example: sine and cosine functions (cont’d)• FT of the sine function -jF(u) sin(2πu0x)
  30. 30. Extending FT in 2D• Forward FT• Inverse FT
  31. 31. Example: 2D rectangle function• FT of 2D rectangle function 2D sinc()
  32. 32. Discrete Fourier Transform (DFT)
  33. 33. Discrete Fourier Transform (DFT) (cont’d)• Forward DFT• Inverse DFT 1/NΔx
  34. 34. Example
  35. 35. Extending DFT to 2D• Assume that f(x,y) is M x N.• Forward DFT• Inverse DFT:
  36. 36. Extending DFT to 2D (cont’d)• Special case: f(x,y) is N x N.• Forward DFT u,v = 0,1,2, …, N-1• Inverse DFT x,y = 0,1,2, …, N-1
  37. 37. Visualizing DFT• Typically, we visualize |F(u,v)|• The dynamic range of |F(u,v)| is typically very large• Apply streching: (c is const) original image before scaling after scaling
  38. 38. DFT Properties: (1) Separability• The 2D DFT can be computed using 1D transforms only: Forward DFT: Inverse DFT:kernel is ux + vy ux vy − j 2π ( ) − j 2 π ( ) − j 2π ( )separable: e N =e N e N
  39. 39. DFT Properties: (1) Separability (cont’d)• Rewrite F(u,v) as follows:• Let’s set:• Then:
  40. 40. DFT Properties: (1) Separability (cont’d)• How can we compute F(x,v)? ) N x DFT of rows of f(x,y)• How can we compute F(u,v)? DFT of cols of F(x,v)
  41. 41. DFT Properties: (1) Separability (cont’d)
  42. 42. DFT Properties: (2) Periodicity• The DFT and its inverse are periodic with period N
  43. 43. DFT Properties: (3) Symmetry• If f(x,y) is real, then (see Table 4.1 for more properties)
  44. 44. DFT Properties: (4) Translation f(x,y) F(u,v) • Translation is spatial domain:• Translation is frequency domain: ) N
  45. 45. DFT Properties: (4) Translation (cont’d)• Warning: to show a full period, we need to translate the origin of the transform at u=N/2 (or at (N/2,N/2) in 2D) |F(u)| |F(u-N/2)|
  46. 46. DFT Properties: (4) Translation (cont’d)• To move F(u,v) at (N/2, N/2), take Using ) N
  47. 47. DFT Properties: (4) Translation (cont’d) no translation after translation
  48. 48. DFT Properties: (5) Rotation• Rotating f(x,y) by θ rotates F(u,v) by θ
  49. 49. DFT Properties: (6) Addition/Multiplication but …
  50. 50. DFT Properties: (7) Scale
  51. 51. DFT Properties: (8) Average value Average:F(u,v) at u=0, v=0: So:
  52. 52. Magnitude and Phase of DFT• What is more important? magnitude phase• Hint: use inverse DFT to reconstruct the image using magnitude or phase only information
  53. 53. Magnitude and Phase of DFT (cont’d) Reconstructed image using magnitude only (i.e., magnitude determines the contribution of each component!) Reconstructed image using phase only (i.e., phase determines which components are present!)
  54. 54. Magnitude and Phase of DFT (cont’d)

×