SlideShare a Scribd company logo
1 of 72
Download to read offline
(1) Area Below x axis
                        Areas
           y
                                    y = f(x)




                                x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x


 f  x dx  0
 b

a
(1) Area Below x axis
                               Areas
             y
                                           y = f(x)


                          A1


                      a        b       x


   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                               Areas
             y
                                                y = f(x)


                          A1

                                        c   x
                      a        b   A2

   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b


 A1   f  x dx
              b

             a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b

                                             A2    f  x dx
                                                         c
 A1   f  x dx
              b

             a                                           b
Area below x axis is given by;
Area below x axis is given by;

                 A    f  x dx
                        c

                        b
Area below x axis is given by;

                 A    f  x dx
                         c

                         b

                        OR

                         f  x dx
                         c
                    
                        b
Area below x axis is given by;

                 A    f  x dx
                            c

                         b

                        OR

                         f  x dx
                            c
                    
                        b


                            OR
                      f  x dx
                        b

                        c
e.g. (i)        y       y  x3




           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0




           -1       1   x
e.g. (i)        y       y  x3          0         1
                                 A    x dx   x 3 dx
                                            3
                                       1         0


                                  
                                       4
                                         x 1  4 x 0
                                       1 40 1 41

           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0


                                  
                                      4
                                        x 1  4 x 0
                                      1 40 1 41

           -1       1   x             1
                                      4
                                                 4
                                                     
                                    0   1   4  0
                                                      1
                                                      4
                                                         1

                                    1 1
                                   
                                    4 4
                                    1
                                   units 2
                                    2
e.g. (i)        y             y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
                                         units 2
                                          2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
    4  0
   1
     1
   2
   1
   units 2
   2
(ii)             y   y  x x  1 x  2 




       -2   -1         x
(ii)                           y    y  x x  1 x  2 




        -2            -1              x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                      0
                  3        2
             2                      1
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1

           x 4  x3  x 2    x 4  x3  x 2 
             1                     1
           4
                            2  4
                                               0
                                                 
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1

           x 4  x3  x 2    x 4  x3  x 2 
             1                        1
           4
                             2  4
                                                    0
                                                      
          2 1  14   13   12    1  2 4   2 3   2 2   0
                                                                            
              4                              4                             
           1
          units 2
           2
(2) Area On The y axis
 y
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)                        d
                               3 A   g  y dy
                                        c
                   (a,c)

                           x
(2) Area On The y axis                (1) Make x the subject
  y                                        i.e. x = g(y)
       y = f(x)                       (2) Substitute the y coordinates
             (b,d)                             d
                                      3 A   g  y dy
                                               c
                     (a,c)
                               x

e.g.        y                y  x4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                               d
                                        3 A   g  y dy
                                                 c
                     (a,c)
                               x

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                               x         A   y dy
                                                  4

                                             1

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4

                                             4  5 5
                                            16 4  14 
                                             5          
                     1   2     x             124
                                                units 2
                                              5
(3) Area Between Two Curves
 y




                              x
(3) Area Between Two Curves
 y                                y = f(x)…(1)




                              x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




                                     x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




     a          b                    x
(3) Area Between Two Curves
 y                       y = g(x)…(2)         y = f(x)…(1)




      a           b                      x

     Area = Area under (1) – Area under (2)
(3) Area Between Two Curves
 y                            y = g(x)…(2)       y = f(x)…(1)




      a              b                       x

     Area = Area under (1) – Area under (2)
            b             b
            f  x dx   g  x dx
            a             a
(3) Area Between Two Curves
 y                             y = g(x)…(2)       y = f(x)…(1)




      a               b                       x

     Area = Area under (1) – Area under (2)
            b              b
            f  x dx   g  x dx
            a              a
            b
             f  x   g  x dx
            a
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
             x x
              5
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx




                          x
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                               1    1 
             x5  x  0                        x2  x6 
                                               2    6 0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                               1    1 
             x5  x  0                        x2  x6 
                                               2    6 0
             xx 4  1  0
                                              1 1 2  1 1 6   0
                                               
             x  0 or x  1                             
                                              2       6     
                                              1
                                              unit 2
                                              3
2002 HSC Question 4d)




The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                         x2  5x  4  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
                        A is (1, 3)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4
                       1 x3  5 x 2  4 x 
                    
                      3        2           1
                                            
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                      
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
     y  x  4.         4
                   A    x  4   x 2  4 x  dx
                        1
                        4
                        x 2  5 x  4 dx
                        1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                    
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
                        9
                         units 2
                        2
2005 HSC Question 8b)                                              (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola and area between circle and x axis
It is easier to subtract the area under the parabola from the quadrant.
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                    2          0
                                                
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                    2          0
                                                

                             1 3 3 2
                         1  1  2 1  0
                              3       2            
It is easier to subtract the area under the parabola from the quadrant.
                                     1
                    A    2     x 2  3 x  2 dx
                         1       2

                         4           0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                      2        0
                                                

                             1 3 3 2
                         1  1  2 1  0
                              3         2          
                          5  units 2
                                 
                              6
Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18*


     Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*

More Related Content

What's hot

X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)Nigel Simmons
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and divisionNigel Simmons
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230samhui48
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsNigel Simmons
 

What's hot (9)

Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Mat 128 11 3
Mat 128 11 3Mat 128 11 3
Mat 128 11 3
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
Figures
FiguresFigures
Figures
 
Cg
CgCg
Cg
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
 

Similar to 11X1 T14 04 areas

11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)Nigel Simmons
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integralsUrbanX4
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)Nigel Simmons
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt projectcea0001
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reducedKyro Fitkry
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systemstaha25
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guideakabaka12
 
[4] num integration
[4] num integration[4] num integration
[4] num integrationikhulsys
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Mohd Paub
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)Nigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)Nigel Simmons
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regionsHimani Asija
 

Similar to 11X1 T14 04 areas (20)

11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
Integration. area undera curve
Integration. area undera curveIntegration. area undera curve
Integration. area undera curve
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)
 
Business math
Business mathBusiness math
Business math
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
 
Derivadas
DerivadasDerivadas
Derivadas
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
Cs 601
Cs 601Cs 601
Cs 601
 
Exercise #11 notes
Exercise #11 notesExercise #11 notes
Exercise #11 notes
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptNishitharanjan Rout
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...Nguyen Thanh Tu Collection
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code ExamplesPeter Brusilovsky
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptxJoelynRubio1
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...EADTU
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Celine George
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaEADTU
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxAdelaideRefugio
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsSandeep D Chaudhary
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....Ritu480198
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfDiuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfKartik Tiwari
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfstareducators107
 

Recently uploaded (20)

Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
Including Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdfIncluding Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdf
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfDiuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 

11X1 T14 04 areas

  • 1. (1) Area Below x axis Areas y y = f(x) x
  • 2. (1) Area Below x axis Areas y y = f(x) A1 a b x
  • 3. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a
  • 4. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a  A1   f  x dx b a
  • 5. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 b a  A1   f  x dx b a
  • 6. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A1   f  x dx b a
  • 7. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A2    f  x dx c  A1   f  x dx b a b
  • 8. Area below x axis is given by;
  • 9. Area below x axis is given by; A    f  x dx c b
  • 10. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b
  • 11. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b OR   f  x dx b c
  • 12. e.g. (i) y y  x3 -1 1 x
  • 13. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0 -1 1 x
  • 14. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x
  • 15. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   4 4 1  units 2 2
  • 16. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1  units 2 2
  • 17. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2
  • 18. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2
  • 19. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2   4  0 1 1 2 1  units 2 2
  • 20. (ii) y y  x x  1 x  2  -2 -1 x
  • 21. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1
  • 22. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1   x 4  x3  x 2    x 4  x3  x 2  1 1 4   2  4   0 
  • 23. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1   x 4  x3  x 2    x 4  x3  x 2  1 1 4   2  4   0   2 1  14   13   12    1  2 4   2 3   2 2   0     4   4  1  units 2 2
  • 24. (2) Area On The y axis y y = f(x) (b,d) (a,c) x
  • 25. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (b,d) (a,c) x
  • 26. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) (a,c) x
  • 27. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x
  • 28. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 2 x
  • 29. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 x y 4 1 2 x
  • 30. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 e.g. y y  x4 1 x y 4 1 2 x
  • 31. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 1 2 x
  • 32. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 4  5 5  16 4  14  5  1 2 x 124  units 2 5
  • 33. (3) Area Between Two Curves y x
  • 34. (3) Area Between Two Curves y y = f(x)…(1) x
  • 35. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) x
  • 36. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x
  • 37. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2)
  • 38. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a
  • 39. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a b    f  x   g  x dx a
  • 40. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant.
  • 41. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x
  • 42. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5
  • 43. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 44. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 45. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 1  x5  x  0   x2  x6  2 6 0 xx 4  1  0 x  0 or x  1
  • 46. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 1  x5  x  0   x2  x6  2 6 0 xx 4  1  0 1 1 2  1 1 6   0    x  0 or x  1  2 6  1  unit 2 3
  • 47. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
  • 48. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2)
  • 49. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously
  • 50. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x
  • 51. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0
  • 52. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0
  • 53. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4
  • 54. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4  A is (1, 3)
  • 55. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4.
  • 56. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1
  • 57. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1
  • 58. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x    3 2 1 
  • 59. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2 
  • 60. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2  9  units 2 2
  • 61. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region.
  • 62. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 63. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 64. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola
  • 65. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola and area between circle and x axis
  • 66.
  • 67. It is easier to subtract the area under the parabola from the quadrant.
  • 68. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0
  • 69. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0 
  • 70. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0   1 3 3 2    1  1  2 1  0 3 2 
  • 71. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0   1 3 3 2    1  1  2 1  0 3 2     5  units 2   6
  • 72. Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18* Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*