SlideShare a Scribd company logo
1 of 48
Download to read offline
Mathematical Induction
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
        is)
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
        is)
Step 2: Assume the result is true for n = k, where k is a positive
        integer (or another condition that matches the question)
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
        is)
Step 2: Assume the result is true for n = k, where k is a positive
        integer (or another condition that matches the question)
Step 3: Prove the result is true for n = k + 1
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
        is)
Step 2: Assume the result is true for n = k, where k is a positive
        integer (or another condition that matches the question)
Step 3: Prove the result is true for n = k + 1
NOTE: It is important to note in your conclusion that the result is
        true for n = k + 1 if it is true for n = k
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
        is)
Step 2: Assume the result is true for n = k, where k is a positive
        integer (or another condition that matches the question)
Step 3: Prove the result is true for n = k + 1
NOTE: It is important to note in your conclusion that the result is
        true for n = k + 1 if it is true for n = k
Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction
1
e.g.i  1  3  5    2n  1  n2n  12n  1
       2    2   2              2

                                   3
1
e.g.i  1  3  5    2n  1  n2n  12n  1
       2    2   2              2

                                      3
Step 1: Prove the result is true for n = 1
1
e.g.i  1  3  5    2n  1  n2n  12n  1
       2    2   2              2

                                      3
Step 1: Prove the result is true for n = 1
    LHS  12
           1
1
e.g.i  1  3  5    2n  1  n2n  12n  1
        2   2    2               2

                                      3
Step 1: Prove the result is true for n = 1
                                            1
     LHS  12                          RHS  12  12  1
                                            3
           1
                                            1
                                            113
                                            3
                                           1
1
e.g.i  1  3  5    2n  1  n2n  12n  1
        2   2    2               2

                                      3
Step 1: Prove the result is true for n = 1
                                            1
     LHS  12                          RHS  12  12  1
                                            3
           1
                                            1
                                            113
                                            3
                                           1
                         LHS  RHS
1
e.g.i  1  3  5    2n  1  n2n  12n  1
        2   2    2               2

                                      3
Step 1: Prove the result is true for n = 1
                                              1
     LHS  12                          RHS  12  12  1
                                              3
           1
                                              1
                                             113
                                              3
                                            1
                         LHS  RHS
                 Hence the result is true for n = 1
1
e.g.i  1  3  5    2n  1  n2n  12n  1
        2   2    2               2

                                      3
Step 1: Prove the result is true for n = 1
                                              1
     LHS  12                          RHS  12  12  1
                                              3
           1
                                              1
                                             113
                                              3
                                            1
                         LHS  RHS
                 Hence the result is true for n = 1

Step 2: Assume the result is true for n = k, where k is a positive
        integer
1
e.g.i  1  3  5    2n  1  n2n  12n  1
        2   2    2               2

                                      3
Step 1: Prove the result is true for n = 1
                                              1
     LHS  12                          RHS  12  12  1
                                              3
           1
                                              1
                                             113
                                              3
                                            1
                         LHS  RHS
                 Hence the result is true for n = 1

Step 2: Assume the result is true for n = k, where k is a positive
        integer
                                          1
        i.e. 12  32  52    2k  1  k 2k  12k  1
                                        2

                                          3
1
e.g.i  1  3  5    2n  1  n2n  12n  1
        2   2    2               2

                                      3
Step 1: Prove the result is true for n = 1
                                              1
     LHS  12                          RHS  12  12  1
                                              3
           1
                                              1
                                             113
                                              3
                                            1
                         LHS  RHS
                 Hence the result is true for n = 1

Step 2: Assume the result is true for n = k, where k is a positive
        integer
                                           1
        i.e. 12  32  52    2k  1  k 2k  12k  1
                                        2

                                           3
Step 3: Prove the result is true for n = k + 1
1
e.g.i  1  3  5    2n  1  n2n  12n  1
        2    2   2               2

                                      3
Step 1: Prove the result is true for n = 1
                                              1
     LHS  12                          RHS  12  12  1
                                              3
           1
                                              1
                                             113
                                              3
                                            1
                         LHS  RHS
                 Hence the result is true for n = 1

Step 2: Assume the result is true for n = k, where k is a positive
         integer
                                              1
          i.e. 12  32  52    2k  1  k 2k  12k  1
                                          2

                                              3
Step 3: Prove the result is true for n = k + 1
                                                1
   i.e. Prove : 12  32  52    2k  1  k  12k  12k  3
                                            2

                                                3
Proof:
12  32  52    2k  1
                                     2
Proof:
          12  32  52    2k  1  2k  1
                                     2          2
12  32  52    2k  1
                                     2
Proof:
          12  32  52    2k  1  2k  1
                                     2          2

                        
                       Sk
12  32  52    2k  1
                                     2
Proof:
          12  32  52    2k  1  2k  1
                                     2             2

                                
                       Sk                  Tk 1
12  32  52    2k  1
                                     2
Proof:
          12  32  52    2k  1  2k  1
                                     2              2

                                
                       Sk                   Tk 1
          1
          k 2k  12k  1  2k  1
                                        2

          3
12  32  52    2k  1
                                       2
Proof:
          12  32  52    2k  1  2k  1
                                       2               2

                                
                        Sk                     Tk 1
           1
          k 2k  12k  1  2k  1
                                         2

           3
                   1                      
          2k  1 k 2k  1  2k  1
                   3                      
12  32  52    2k  1
                                      2
Proof:
          12  32  52    2k  1  2k  1
                                      2                2

                                
                       Sk                      Tk 1
           1
          k 2k  12k  1  2k  1
                                         2

           3
                   1                      
          2k  1 k 2k  1  2k  1
                   3                      
            1
          2k  1k 2k  1  32k  1
            3
12  32  52    2k  1
                                      2
Proof:
          12  32  52    2k  1  2k  1
                                      2                2

                                
                       Sk                      Tk 1
           1
          k 2k  12k  1  2k  1
                                         2

           3
                   1                      
          2k  1 k 2k  1  2k  1
                   3                      
            1
          2k  1k 2k  1  32k  1
            3
          2k  12k 2  k  6k  3
           1
           3
          2k  12k 2  5k  3
           1
           3
12  32  52    2k  1
                                      2
Proof:
          12  32  52    2k  1  2k  1
                                      2                2

                                
                       Sk                      Tk 1
           1
          k 2k  12k  1  2k  1
                                         2

           3
                   1                      
          2k  1 k 2k  1  2k  1
                   3                      
            1
          2k  1k 2k  1  32k  1
            3
          2k  12k 2  k  6k  3
           1
           3
          2k  12k 2  5k  3
           1
           3
            1
          2k  1k  12k  3
            3
12  32  52    2k  1
                                        2
Proof:
            12  32  52    2k  1  2k  1
                                        2             2

                                  
                          Sk                  Tk 1
            1
           k 2k  12k  1  2k  1
                                          2

            3
                     1                     
           2k  1 k 2k  1  2k  1
                     3                     
             1
           2k  1k 2k  1  32k  1
             3
           2k  12k 2  k  6k  3
             1
             3
           2k  12k 2  5k  3
             1
             3
             1
            2k  1k  12k  3
             3
  Hence the result is true for n = k + 1 if it is also true for n = k
Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction
n
                  1             n
ii                       
      k 1 2k  12k  1   2n  1
n
                  1             n
ii                       
      k 1 2k  12k  1   2n  1
            1      1      1                 1           n
                                                
         1 3 3  5 5  7            2n  12n  1 2n  1
n
                  1             n
ii                       
      k 1 2k  12k  1   2n  1
            1      1      1                 1           n
                                                
         1 3 3  5 5  7            2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
n
                  1             n
ii                       
      k 1 2k  12k  1   2n  1
            1      1      1                 1           n
                                                
         1 3 3  5 5  7            2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
                1
    LHS 
              1 3
              1
            
              3
n
                  1             n
ii                       
      k 1 2k  12k  1   2n  1
            1      1      1                 1             n
                                                 
         1 3 3  5 5  7            2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
                1                                      1
    LHS                                    RHS 
              1 3                                   2 1
              1                                     1
                                                 
              3                                     3
n
                  1             n
ii                       
      k 1 2k  12k  1   2n  1
            1      1      1                 1             n
                                                 
         1 3 3  5 5  7            2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
                1                                      1
    LHS                                    RHS 
              1 3                                   2 1
              1                                     1
                                                 
              3                                     3


                      LHS  RHS
n
                  1             n
ii                       
      k 1 2k  12k  1   2n  1
            1      1      1                 1             n
                                                 
         1 3 3  5 5  7            2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
                1                                      1
    LHS                                    RHS 
              1 3                                   2 1
              1                                     1
                                                 
              3                                     3


                     LHS  RHS
                 Hence the result is true for n = 1
n
                  1             n
ii                       
      k 1 2k  12k  1   2n  1
            1      1      1                 1             n
                                                 
         1 3 3  5 5  7            2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
                1                                      1
    LHS                                    RHS 
              1 3                                   2 1
              1                                     1
                                                 
              3                                     3


                    LHS  RHS
                Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
n
                  1             n
ii                       
      k 1 2k  12k  1   2n  1
            1      1      1                 1             n
                                                 
         1 3 3  5 5  7            2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
                1                                      1
    LHS                                    RHS 
              1 3                                   2 1
              1                                     1
                                                 
              3                                     3


                     LHS  RHS
                 Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
               1     1      1                 1           k
          i.e.                                    
              1 3 3  5 5  7         2k  12k  1 2k  1
Step 3: Prove the result is true for n = k + 1
Step 3: Prove the result is true for n = k + 1
                      1     1      1                1          k 1
        i.e. Prove :                                    
                     1 3 3  5 5  7        2k  12k  3 2k  3
Step 3: Prove the result is true for n = k + 1
                      1     1      1                1          k 1
        i.e. Prove :                                    
                     1 3 3  5 5  7        2k  12k  3 2k  3
Proof:
Step 3: Prove the result is true for n = k + 1
                      1     1      1                1           k 1
        i.e. Prove :                                    
                     1 3 3  5 5  7        2k  12k  3 2k  3
Proof:
               1      1     1                 1
                             
             1 3 3  5 5  7         2k  12k  3
               1      1     1                1                 1
                                                 
             1 3 3  5 5  7         2k  12k  1 2k  12k  3
Step 3: Prove the result is true for n = k + 1
                      1     1      1                1           k 1
        i.e. Prove :                                    
                     1 3 3  5 5  7        2k  12k  3 2k  3
Proof:
               1      1     1                 1
                             
             1 3 3  5 5  7         2k  12k  3
               1      1     1                1                 1
                                                 
             1 3 3  5 5  7         2k  12k  1 2k  12k  3
              k            1
                 
            2k  1 2k  12k  3
Step 3: Prove the result is true for n = k + 1
                      1       1    1                1           k 1
        i.e. Prove :                                    
                     1 3 3  5 5  7        2k  12k  3 2k  3
Proof:
               1       1      1               1
                              
             1 3 3  5 5  7         2k  12k  3
               1       1      1              1                 1
                                                 
             1 3 3  5 5  7         2k  12k  1 2k  12k  3
               k             1
                  
            2k  1 2k  12k  3
              k 2k  3  1
         
            2k  12k  3
Step 3: Prove the result is true for n = k + 1
                      1       1    1                1           k 1
        i.e. Prove :                                    
                     1 3 3  5 5  7        2k  12k  3 2k  3
Proof:
               1       1      1               1
                              
             1 3 3  5 5  7         2k  12k  3
               1       1      1              1                 1
                                                 
             1 3 3  5 5  7         2k  12k  1 2k  12k  3
               k             1
                  
            2k  1 2k  12k  3
              k 2k  3  1
         
            2k  12k  3
            2k 2  3k  1
        
          2k  12k  3
Step 3: Prove the result is true for n = k + 1
                      1       1    1                1           k 1
        i.e. Prove :                                    
                     1 3 3  5 5  7        2k  12k  3 2k  3
Proof:
               1       1      1               1
                              
             1 3 3  5 5  7         2k  12k  3
               1       1      1              1                 1
                                                 
             1 3 3  5 5  7         2k  12k  1 2k  12k  3
               k             1
                  
            2k  1 2k  12k  3
              k 2k  3  1
         
            2k  12k  3
            2k 2  3k  1
        
          2k  12k  3
        
           2k  1k  1
          2k  12k  3

     k  1
    2k  3

     k  1
    2k  3
Hence the result is true for n = k + 1 if it is also true for n = k

        k  1
       2k  3
  Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction

        k  1
       2k  3
  Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction




                  Exercise 6N; 1 ace etc, 10(polygon), 13

More Related Content

What's hot (14)

5.1 Induction
5.1 Induction5.1 Induction
5.1 Induction
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
 
Math induction principle (slides)
Math induction principle (slides)Math induction principle (slides)
Math induction principle (slides)
 
Proof by contradiction
Proof by contradictionProof by contradiction
Proof by contradiction
 
5.2 Strong Induction
5.2 Strong Induction5.2 Strong Induction
5.2 Strong Induction
 
Proof By Contradictions
Proof By ContradictionsProof By Contradictions
Proof By Contradictions
 
Contradiction
ContradictionContradiction
Contradiction
 
Merge Sort
Merge SortMerge Sort
Merge Sort
 
03 dc
03 dc03 dc
03 dc
 
Slide subtopic 5
Slide subtopic 5Slide subtopic 5
Slide subtopic 5
 
lecture 8
lecture 8lecture 8
lecture 8
 
EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIAL
EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIALEXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIAL
EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIAL
 
Ijetr011922
Ijetr011922Ijetr011922
Ijetr011922
 
Sol86
Sol86Sol86
Sol86
 

Viewers also liked

Mathematical induction
Mathematical inductionMathematical induction
Mathematical inductionsonia -
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical inductionSman Abbasi
 
5.4 mathematical induction
5.4 mathematical induction5.4 mathematical induction
5.4 mathematical inductionmath260
 
Principle of mathematical induction
Principle of mathematical inductionPrinciple of mathematical induction
Principle of mathematical inductionKriti Varshney
 
Absolute Value Notes
Absolute Value NotesAbsolute Value Notes
Absolute Value Notesmpscils598s07
 
01 1 mathematical induction
01 1 mathematical induction01 1 mathematical induction
01 1 mathematical inductionHerry Wijaya
 
RuleML2015: How to combine event stream reasoning with transactions for the...
RuleML2015:   How to combine event stream reasoning with transactions for the...RuleML2015:   How to combine event stream reasoning with transactions for the...
RuleML2015: How to combine event stream reasoning with transactions for the...RuleML
 
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...RuleML
 
History of Induction and Recursion B
History of Induction and Recursion B History of Induction and Recursion B
History of Induction and Recursion B Damien MacFarland
 
Induction and Decision Tree Learning (Part 1)
Induction and Decision Tree Learning (Part 1)Induction and Decision Tree Learning (Part 1)
Induction and Decision Tree Learning (Part 1)butest
 
RuleML 2015: When Processes Rule Events
RuleML 2015: When Processes Rule EventsRuleML 2015: When Processes Rule Events
RuleML 2015: When Processes Rule EventsRuleML
 
RuleML 2015: Ontology Reasoning using Rules in an eHealth Context
RuleML 2015: Ontology Reasoning using Rules in an eHealth ContextRuleML 2015: Ontology Reasoning using Rules in an eHealth Context
RuleML 2015: Ontology Reasoning using Rules in an eHealth ContextRuleML
 
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...RuleML
 
Challenge@rule ml2015 rule based recommender systems for the Web of Data
Challenge@rule ml2015 rule based recommender systems for the Web of DataChallenge@rule ml2015 rule based recommender systems for the Web of Data
Challenge@rule ml2015 rule based recommender systems for the Web of DataRuleML
 
Iteration, induction, and recursion
Iteration, induction, and recursionIteration, induction, and recursion
Iteration, induction, and recursionMohammed Hussein
 
Probability ppt by Shivansh J.
Probability ppt by Shivansh J.Probability ppt by Shivansh J.
Probability ppt by Shivansh J.shivujagga
 
Probability Powerpoint
Probability PowerpointProbability Powerpoint
Probability Powerpointspike2904
 

Viewers also liked (19)

Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
 
5.4 mathematical induction
5.4 mathematical induction5.4 mathematical induction
5.4 mathematical induction
 
Principle of mathematical induction
Principle of mathematical inductionPrinciple of mathematical induction
Principle of mathematical induction
 
Absolute Value Notes
Absolute Value NotesAbsolute Value Notes
Absolute Value Notes
 
Text s1 21
Text s1 21Text s1 21
Text s1 21
 
01 1 mathematical induction
01 1 mathematical induction01 1 mathematical induction
01 1 mathematical induction
 
RuleML2015: How to combine event stream reasoning with transactions for the...
RuleML2015:   How to combine event stream reasoning with transactions for the...RuleML2015:   How to combine event stream reasoning with transactions for the...
RuleML2015: How to combine event stream reasoning with transactions for the...
 
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
 
History of Induction and Recursion B
History of Induction and Recursion B History of Induction and Recursion B
History of Induction and Recursion B
 
Induction and Decision Tree Learning (Part 1)
Induction and Decision Tree Learning (Part 1)Induction and Decision Tree Learning (Part 1)
Induction and Decision Tree Learning (Part 1)
 
RuleML 2015: When Processes Rule Events
RuleML 2015: When Processes Rule EventsRuleML 2015: When Processes Rule Events
RuleML 2015: When Processes Rule Events
 
RuleML 2015: Ontology Reasoning using Rules in an eHealth Context
RuleML 2015: Ontology Reasoning using Rules in an eHealth ContextRuleML 2015: Ontology Reasoning using Rules in an eHealth Context
RuleML 2015: Ontology Reasoning using Rules in an eHealth Context
 
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
 
Challenge@rule ml2015 rule based recommender systems for the Web of Data
Challenge@rule ml2015 rule based recommender systems for the Web of DataChallenge@rule ml2015 rule based recommender systems for the Web of Data
Challenge@rule ml2015 rule based recommender systems for the Web of Data
 
Iteration, induction, and recursion
Iteration, induction, and recursionIteration, induction, and recursion
Iteration, induction, and recursion
 
Probability ppt by Shivansh J.
Probability ppt by Shivansh J.Probability ppt by Shivansh J.
Probability ppt by Shivansh J.
 
Probability Powerpoint
Probability PowerpointProbability Powerpoint
Probability Powerpoint
 

Similar to 11X1 T14 08 mathematical induction 1 (2011)

11X1 T10 08 mathematical induction 1
11X1 T10 08 mathematical induction 111X1 T10 08 mathematical induction 1
11X1 T10 08 mathematical induction 1Nigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)Nigel Simmons
 
mathematical induction and stuff Induction.pptx
mathematical induction and stuff Induction.pptxmathematical induction and stuff Induction.pptx
mathematical induction and stuff Induction.pptxZenLooper
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)Nigel Simmons
 
Solving recurrences
Solving recurrencesSolving recurrences
Solving recurrencesWaqas Akram
 
Solving recurrences
Solving recurrencesSolving recurrences
Solving recurrencesWaqas Akram
 

Similar to 11X1 T14 08 mathematical induction 1 (2011) (10)

11X1 T10 08 mathematical induction 1
11X1 T10 08 mathematical induction 111X1 T10 08 mathematical induction 1
11X1 T10 08 mathematical induction 1
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
mathematical induction and stuff Induction.pptx
mathematical induction and stuff Induction.pptxmathematical induction and stuff Induction.pptx
mathematical induction and stuff Induction.pptx
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
 
Solving recurrences
Solving recurrencesSolving recurrences
Solving recurrences
 
Solving recurrences
Solving recurrencesSolving recurrences
Solving recurrences
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 

Recently uploaded (20)

Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

11X1 T14 08 mathematical induction 1 (2011)

  • 2. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is)
  • 3. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is) Step 2: Assume the result is true for n = k, where k is a positive integer (or another condition that matches the question)
  • 4. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is) Step 2: Assume the result is true for n = k, where k is a positive integer (or another condition that matches the question) Step 3: Prove the result is true for n = k + 1
  • 5. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is) Step 2: Assume the result is true for n = k, where k is a positive integer (or another condition that matches the question) Step 3: Prove the result is true for n = k + 1 NOTE: It is important to note in your conclusion that the result is true for n = k + 1 if it is true for n = k
  • 6. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is) Step 2: Assume the result is true for n = k, where k is a positive integer (or another condition that matches the question) Step 3: Prove the result is true for n = k + 1 NOTE: It is important to note in your conclusion that the result is true for n = k + 1 if it is true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction
  • 7. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3
  • 8. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3 Step 1: Prove the result is true for n = 1
  • 9. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3 Step 1: Prove the result is true for n = 1 LHS  12 1
  • 10. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1
  • 11. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS
  • 12. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1
  • 13. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 14. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer 1 i.e. 12  32  52    2k  1  k 2k  12k  1 2 3
  • 15. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer 1 i.e. 12  32  52    2k  1  k 2k  12k  1 2 3 Step 3: Prove the result is true for n = k + 1
  • 16. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 2 2 2 2 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer 1 i.e. 12  32  52    2k  1  k 2k  12k  1 2 3 Step 3: Prove the result is true for n = k + 1 1 i.e. Prove : 12  32  52    2k  1  k  12k  12k  3 2 3
  • 18. 12  32  52    2k  1 2 Proof:  12  32  52    2k  1  2k  1 2 2
  • 19. 12  32  52    2k  1 2 Proof:  12  32  52    2k  1  2k  1 2 2     Sk
  • 20. 12  32  52    2k  1 2 Proof:  12  32  52    2k  1  2k  1 2 2      Sk Tk 1
  • 21. 12  32  52    2k  1 2 Proof:  12  32  52    2k  1  2k  1 2 2      Sk Tk 1 1  k 2k  12k  1  2k  1 2 3
  • 22. 12  32  52    2k  1 2 Proof:  12  32  52    2k  1  2k  1 2 2      Sk Tk 1 1  k 2k  12k  1  2k  1 2 3 1   2k  1 k 2k  1  2k  1 3 
  • 23. 12  32  52    2k  1 2 Proof:  12  32  52    2k  1  2k  1 2 2      Sk Tk 1 1  k 2k  12k  1  2k  1 2 3 1   2k  1 k 2k  1  2k  1 3  1  2k  1k 2k  1  32k  1 3
  • 24. 12  32  52    2k  1 2 Proof:  12  32  52    2k  1  2k  1 2 2      Sk Tk 1 1  k 2k  12k  1  2k  1 2 3 1   2k  1 k 2k  1  2k  1 3  1  2k  1k 2k  1  32k  1 3  2k  12k 2  k  6k  3 1 3  2k  12k 2  5k  3 1 3
  • 25. 12  32  52    2k  1 2 Proof:  12  32  52    2k  1  2k  1 2 2      Sk Tk 1 1  k 2k  12k  1  2k  1 2 3 1   2k  1 k 2k  1  2k  1 3  1  2k  1k 2k  1  32k  1 3  2k  12k 2  k  6k  3 1 3  2k  12k 2  5k  3 1 3 1  2k  1k  12k  3 3
  • 26. 12  32  52    2k  1 2 Proof:  12  32  52    2k  1  2k  1 2 2      Sk Tk 1 1  k 2k  12k  1  2k  1 2 3 1   2k  1 k 2k  1  2k  1 3  1  2k  1k 2k  1  32k  1 3  2k  12k 2  k  6k  3 1 3  2k  12k 2  5k  3 1 3 1  2k  1k  12k  3 3 Hence the result is true for n = k + 1 if it is also true for n = k
  • 27. Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction
  • 28. n 1 n ii    k 1 2k  12k  1 2n  1
  • 29. n 1 n ii    k 1 2k  12k  1 2n  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1
  • 30. n 1 n ii    k 1 2k  12k  1 2n  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1
  • 31. n 1 n ii    k 1 2k  12k  1 2n  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 LHS  1 3 1  3
  • 32. n 1 n ii    k 1 2k  12k  1 2n  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3
  • 33. n 1 n ii    k 1 2k  12k  1 2n  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3  LHS  RHS
  • 34. n 1 n ii    k 1 2k  12k  1 2n  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3  LHS  RHS Hence the result is true for n = 1
  • 35. n 1 n ii    k 1 2k  12k  1 2n  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3  LHS  RHS Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 36. n 1 n ii    k 1 2k  12k  1 2n  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3  LHS  RHS Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer 1 1 1 1 k i.e.     1 3 3  5 5  7 2k  12k  1 2k  1
  • 37. Step 3: Prove the result is true for n = k + 1
  • 38. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3
  • 39. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof:
  • 40. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3
  • 41. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3 k 1   2k  1 2k  12k  3
  • 42. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3 k 1   2k  1 2k  12k  3 k 2k  3  1  2k  12k  3
  • 43. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3 k 1   2k  1 2k  12k  3 k 2k  3  1  2k  12k  3 2k 2  3k  1  2k  12k  3
  • 44. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3 k 1   2k  1 2k  12k  3 k 2k  3  1  2k  12k  3 2k 2  3k  1  2k  12k  3  2k  1k  1 2k  12k  3
  • 45. k  1 2k  3
  • 46. k  1 2k  3 Hence the result is true for n = k + 1 if it is also true for n = k
  • 47. k  1 2k  3 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction
  • 48. k  1 2k  3 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction Exercise 6N; 1 ace etc, 10(polygon), 13