SlideShare a Scribd company logo
1 of 19
Download to read offline
Properties of Complex
Conjugates
Properties of Complex
Conjugates
1 z  z
Properties of Complex
Conjugates
1 z  z
2 arg z   arg z
Properties of Complex
Conjugates
1 z  z
2 arg z   arg z

3 zz  x 2  y 2
z

2
Properties of Complex
Conjugates
1 z  z
2 arg z   arg z

3 zz  x 2  y 2
z

2

4 z1  z2  z1  z2
Properties of Complex
Conjugates
1 z  z

5 z1 z2  z1  z2

2 arg z   arg z

3 zz  x 2  y 2
z

2

4 z1  z2  z1  z2
Properties of Complex
Conjugates
1 z  z

5 z1 z2  z1  z2

2 arg z   arg z

3 zz  x 2  y 2
z

2

4 z1  z2  z1  z2

 z1  z1
6   
 z2  z2
Properties of Complex
Conjugates
1 z  z

5 z1 z2  z1  z2

2 arg z   arg z

3 zz  x 2  y 2
z

 z1  z1
6   
 z2  z2

2

4 z1  z2  z1  z2

1 z
7   2
z z
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
2
 x  iy  
1
3i
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
2
 x  iy  
1
3i

 6  2i 
 x  iy   

 3i 
2
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
2
 x  iy  
1
3i

 6  2i 
 x  iy   

 3i 
6  2i

3i
2
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
2
 x  iy  
1
3i

 6  2i 
 x  iy   

 3i 
6  2i

3i
6  2i
2
 x  iy  
2
3i
2
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
2
 x  iy  
1
3i
Multiply 1  2

 6  2i 
 x  iy   

 3i 
6  2i

3i
6  2i
2
 x  iy  
2
3i
2
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
2
 x  iy  
1
3i
Multiply 1  2

6  2i 6  2i
 x  iy   x  iy  

3i 3i
2

2

 6  2i 
 x  iy   

 3i 
6  2i

3i
6  2i
2
 x  iy  
2
3i
2
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
2
 x  iy  
1
3i
Multiply 1  2

6  2i 6  2i
 x  iy   x  iy  

3i 3i
36  4
2
2 2
x  y  
9 1
4
2

2

 6  2i 
 x  iy   

 3i 
6  2i

3i
6  2i
2
 x  iy  
2
3i
2
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
2
 x  iy  
1
3i
Multiply 1  2

6  2i 6  2i
 x  iy   x  iy  

3i 3i
36  4
2
2 2
x  y  
9 1
4
x2  y2  2
2

2

 6  2i 
 x  iy   

 3i 
6  2i

3i
6  2i
2
 x  iy  
2
3i
2
6  2i
e.g. If x  iy 
, show that x 2  y 2  2
3i
6  2i
x  iy 
3i
6  2i
2
 x  iy  
1
3i
Multiply 1  2

6  2i 6  2i
 x  iy   x  iy  

3i 3i
36  4
2
2 2
x  y  
9 1
4
x2  y2  2
2

 6  2i 
 x  iy   

 3i 
6  2i

3i
6  2i
2
 x  iy  
2
3i
2

2

Exercise 4H; 1 to 6

More Related Content

What's hot

X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)Nigel Simmons
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equationsriyadutta1996
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers gandhinagar
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functionsNjabulo Nkabinde
 
Different types of functions
Different types of functionsDifferent types of functions
Different types of functionsKatrina Young
 
Section 8: Symmetric Groups
Section 8: Symmetric GroupsSection 8: Symmetric Groups
Section 8: Symmetric GroupsKevin Johnson
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminantswartzje
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivativesmath265
 
Lesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsLesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsMatthew Leingang
 
3.4 derivative and graphs
3.4 derivative and graphs3.4 derivative and graphs
3.4 derivative and graphsmath265
 
Area Under the Curve
Area Under the CurveArea Under the Curve
Area Under the Curvealexbeja
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetDhaval Shukla
 
The binomial theorem class 11 maths
The binomial theorem class 11 mathsThe binomial theorem class 11 maths
The binomial theorem class 11 mathsDharmendra Dudi
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersitutor
 

What's hot (20)

X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equations
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
Limits
LimitsLimits
Limits
 
Different types of functions
Different types of functionsDifferent types of functions
Different types of functions
 
Section 8: Symmetric Groups
Section 8: Symmetric GroupsSection 8: Symmetric Groups
Section 8: Symmetric Groups
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminant
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
 
Lesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsLesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric Functions
 
Determinants
DeterminantsDeterminants
Determinants
 
3.4 derivative and graphs
3.4 derivative and graphs3.4 derivative and graphs
3.4 derivative and graphs
 
Area Under the Curve
Area Under the CurveArea Under the Curve
Area Under the Curve
 
Chapter 4 Integration
Chapter 4  IntegrationChapter 4  Integration
Chapter 4 Integration
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent Set
 
Theory of Equation
Theory of EquationTheory of Equation
Theory of Equation
 
The binomial theorem class 11 maths
The binomial theorem class 11 mathsThe binomial theorem class 11 maths
The binomial theorem class 11 maths
 
1631 the binomial theorem
1631 the binomial theorem1631 the binomial theorem
1631 the binomial theorem
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

X2 t01 05 conjugate properties (2013)

  • 3. Properties of Complex Conjugates 1 z  z 2 arg z   arg z
  • 4. Properties of Complex Conjugates 1 z  z 2 arg z   arg z 3 zz  x 2  y 2 z 2
  • 5. Properties of Complex Conjugates 1 z  z 2 arg z   arg z 3 zz  x 2  y 2 z 2 4 z1  z2  z1  z2
  • 6. Properties of Complex Conjugates 1 z  z 5 z1 z2  z1  z2 2 arg z   arg z 3 zz  x 2  y 2 z 2 4 z1  z2  z1  z2
  • 7. Properties of Complex Conjugates 1 z  z 5 z1 z2  z1  z2 2 arg z   arg z 3 zz  x 2  y 2 z 2 4 z1  z2  z1  z2  z1  z1 6     z2  z2
  • 8. Properties of Complex Conjugates 1 z  z 5 z1 z2  z1  z2 2 arg z   arg z 3 zz  x 2  y 2 z  z1  z1 6     z2  z2 2 4 z1  z2  z1  z2 1 z 7   2 z z
  • 9. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i
  • 10. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i
  • 11. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i
  • 12. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i  6  2i   x  iy      3i  2
  • 13. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i  6  2i   x  iy      3i  6  2i  3i 2
  • 14. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
  • 15. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
  • 16. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2 6  2i 6  2i  x  iy   x  iy    3i 3i 2 2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
  • 17. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2 6  2i 6  2i  x  iy   x  iy    3i 3i 36  4 2 2 2 x  y   9 1 4 2 2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
  • 18. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2 6  2i 6  2i  x  iy   x  iy    3i 3i 36  4 2 2 2 x  y   9 1 4 x2  y2  2 2 2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
  • 19. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2 6  2i 6  2i  x  iy   x  iy    3i 3i 36  4 2 2 2 x  y   9 1 4 x2  y2  2 2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2 2 Exercise 4H; 1 to 6