SlideShare a Scribd company logo
1 of 27
Download to read offline
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 

z  12   1

2

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n

this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5



z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
2  cis


 4 

4
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

1
1 
 4 2 

i

2
2 

 4  4i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

e.g .i  z 2  4i

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 





k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 




5

z  2cis ,2cis
4
4

k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y

x

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y
2cis



x

z  2  2i, 2  2i

4
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

k  0,1,, n  1

e.g .i  z 2  4i

OR
2
y
z  4cis

2
2cis
4
 2k   

2  k  0,1
z  2cis 
2 
x




3
2cis 
5

z  2cis ,2cis
4
4
4
 1  1 i ,2  1  1 i 
z  2
z  2  2i, 2  2i

 
2  
2
2 
 2
 ii 

x 4  16  0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 




k  0,1, 2,3

3
x  2cis 0, 2cis , 2cis , 2cis
2
2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis 0
x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis


2

2cis

2cis 0
x
2cis 


2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis

Patel: Exercise 4E;
1 to 4 ac


2

2cis

2cis 0
x
2cis 

Cambridge: Exercise 7A;
1, 2, 3 abef, 5, 6, 7,
9 to 14, 16 to 18


2

More Related Content

What's hot

Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
Leo Crisologo
 
Number theory
Number theory Number theory
Number theory
tes31
 

What's hot (20)

Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
Number theory
Number theoryNumber theory
Number theory
 
Application of vector integration
Application of vector integration Application of vector integration
Application of vector integration
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Inner Product Space
Inner Product SpaceInner Product Space
Inner Product Space
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
 
Maxima & Minima of Calculus
Maxima & Minima of CalculusMaxima & Minima of Calculus
Maxima & Minima of Calculus
 
limits and continuity
limits and continuity limits and continuity
limits and continuity
 
application of first order ordinary Differential equations
application of first order ordinary Differential equationsapplication of first order ordinary Differential equations
application of first order ordinary Differential equations
 
Number theory
Number theory Number theory
Number theory
 
Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Fourier series and transforms
Fourier series and transformsFourier series and transforms
Fourier series and transforms
 
Proof
ProofProof
Proof
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 
U4 l4 quadratic formula powerpoint
U4 l4 quadratic formula powerpointU4 l4 quadratic formula powerpoint
U4 l4 quadratic formula powerpoint
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any index
 
Cartesian product of two sets
Cartesian product of two setsCartesian product of two sets
Cartesian product of two sets
 
The chain rule
The chain ruleThe chain rule
The chain rule
 

Viewers also liked

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
Nigel Simmons
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
Nigel Simmons
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
Leo Crisologo
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
swartzje
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
HernanFula
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
itutor
 

Viewers also liked (20)

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
Unit 6.6
Unit 6.6Unit 6.6
Unit 6.6
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Chap4
Chap4Chap4
Chap4
 
Power Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesPower Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's Series
 
Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian series
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 

X2 t01 09 de moivres theorem

  • 1. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n
  • 2. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n  r n cos n  i sin n 
  • 3. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n 
  • 4. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n  z  12   1 2  2   1 arg z  tan    1  1   4
  • 5. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan    1  1   4
  • 6. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5  2  cis    4   4 1
  • 7. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1
  • 8. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4  
  • 9. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4   1 1   4 2   i  2 2    4  4i
  • 10. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n k  0,1,, n  1
  • 11. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n e.g .i  z 2  4i k  0,1,, n  1
  • 12. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2 k  0,1,, n  1
  • 13. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      k  0,1 k  0,1,, n  1
  • 14. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      5  z  2cis ,2cis 4 4 k  0,1 k  0,1,, n  1
  • 15. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 z  2  2i, 2  2i
  • 16. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y x z  2  2i, 2  2i
  • 17. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y 2cis  x z  2  2i, 2  2i 4
  • 18. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n k  0,1,, n  1 e.g .i  z 2  4i  OR 2 y z  4cis  2 2cis 4  2k     2  k  0,1 z  2cis  2  x     3 2cis  5  z  2cis ,2cis 4 4 4  1  1 i ,2  1  1 i  z  2 z  2  2i, 2  2i    2   2 2   2
  • 19.  ii  x 4  16  0
  • 20.  ii  x 4  16  0 x 4  16 x 4  16cis 0
  • 21.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3
  • 22.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4    k  0,1, 2,3 3 x  2cis 0, 2cis , 2cis , 2cis 2 2
  • 23.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i
  • 24.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y x
  • 25.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis 0 x
  • 26.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis  2 2cis 2cis 0 x 2cis   2
  • 27.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis Patel: Exercise 4E; 1 to 4 ac  2 2cis 2cis 0 x 2cis  Cambridge: Exercise 7A; 1, 2, 3 abef, 5, 6, 7, 9 to 14, 16 to 18  2