SlideShare a Scribd company logo
1 of 55
Download to read offline
Volumes By Non Circular
    Cross-Sections
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid


          h



                      a

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h



                         a   x

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x

          b
                                                   z
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x
                                 2y
          b
                                                   z
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x
                                 2y
          b
                                            2x     z
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a x
                                 2y
          b
                                            2x         z
                                       A z   4 xy
Find x in terms of z
          z
         h




 1                 1 x
 b                  b
 2                 2
Find x in terms of z
          z
         h




 1                 1 x
 b                  b
 2                 2
Find x in terms of z
          z
         h
             x


 1                 1 x
 b                  b
 2                 2
Find x in terms of z
          z
         h
             x   (x,z)


 1                   1 x
 b                    b
 2                   2
Find x in terms of z
           z
           h
               x   (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
Find x in terms of z
           z
           h
               x   (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s

 h

     1
       b
     2
Find x in terms of z
           z
            h
                x   (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s

  h

      1
        b
      2

h-z
       x
Find x in terms of z
           z
            h
                x    (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                     h hz
  h                     
                    1     x
                      b
      1             2
        b
      2

h-z
       x
Find x in terms of z
           z
            h
                x      (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                     h hz
  h                     
                    1       x
                      b
      1             2
        b            2h h  z
      2                 
                      b      x
h-z                       b h  z 
                       x
       x                      2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
            h
                x      (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                     h hz
  h                     
                    1       x
                      b
      1             2
        b            2h h  z
      2                 
                      b      x
h-z                       b h  z 
                       x
       x                      2h
Find x in terms of z             Method 2 : using coordinate geometry
           z
            h (0,h)
               x (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
            h (0,h)
               x (x,z)

                            1 b,0 
 1                   1 x 2 
 b                    b          
 2                   2
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2 
 b                    b          
 2                   2
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2                          2h
 b                    b                     zh        x  0
 2                   2                                b
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2                          2h
 b                    b                     zh        x  0
 2                   2                                b
Method 1 : using similar s                   b z  h   2hx
                h hz
                                                           b h  z 
  h
               1                                       x
                 b     x                                       2h
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2                          2h
 b                    b                     zh        x  0
 2                   2                                b
Method 1 : using similar s                   b z  h   2hx
                h hz
                                                           b h  z 
  h
               1                                       x
                 b     x                                       2h
      1        2
        b       2h h  z                       Similarly;
      2            
                 b      x                         a h  z 
h-z                  b h  z                 y
                  x                                 2h
       x                 2h
 bh  z   ah  z 
A z   4 
            2h   2h 
                                 
 bh  z   ah  z 
A z   4 
            2h   2h 
                                 
         abh  z 
                     2
       
            h2
 bh  z   ah  z 
A z   4 
            2h   2h 
                                 
      abh  z 
                     2
    
          h2
      abh  z 
                2
 V       2
                   z
         h
 b h  z    a  h  z  
A z   4 
            2h   2h                                     abh  z 
                                                       h             2
                                         V  lim             2
                                                                        z
                                                z  0         h
      abh  z 
                        2                              z 0
    
          h2
      abh  z 
                2
 V       2
                   z
         h
 bh  z   ah  z 
A z   4 
            2h   2h                                abh  z 
                                                    h           2
                                    V  lim             2
                                                                   z
                                           z  0         h
      abh  z 
                     2                            z 0
                                          ab
                                                h
          h2                               2  h  z  dz
                                                        2

      abh  z                            h 0
                2
 V       2
                   z
         h
 bh  z   ah  z 
A z   4 
            2h   2h                                abh  z 
                                                    h            2
                                    V  lim             2
                                                                   z
                                           z  0         h
      abh  z 
                     2                            z 0
                                          ab
                                                h
          h2                               2  h  z  dz
                                                        2

      abh  z                            h 0
                2
 V               z
                                           ab  h  z  
                                                         3   h
           2
         h                                 2
                                           h   3 0    
 b h  z    a  h  z  
A z   4 
            2h   2h                                     abh  z 
                                                         h             2
                                         V  lim             2
                                                                        z
                                                z  0         h
      abh  z 
                        2                              z 0
                                               ab
                                                     h
          h2                                    2  h  z  dz
                                                             2

      abh  z                                 h 0
                2
 V               z
                                                ab  h  z  
                                                               3   h
           2
         h                                      2
                                                h   3 0    
                                                ab  h 3 
                                                2 0  
                                                h     3
                                                 abh
                                                    units 3
                                                  3
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x

        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x

        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2




                       x
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                     2 x
          -2




2y

                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                       2 x
          -2


                        A x   4 y 2

2y

                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                       2 x
          -2


                        A x   4 y 2
                                44  x 2 
2y

                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                        2 x
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                   x  0
                                                            
                                                            x  2


                   2

     -2                        2 x
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                     x  0
                                                              
                                                              x  2
                                                       2

                   2                                8 4  x 2 dx
                                                       0


     -2                        2 x
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                     x  0
                                                              
                                                              x  2
                                                       2

                   2                                8 4  x 2 dx
                                                       0
                                                                       2
                                                      4 x  1 x 3 
                                                    8
     -2                        2 x                          3 0  
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                     x  0
                                                              
                                                              x  2
                                                       2

                   2                                8 4  x 2 dx
                                                       0
                                                                       2
                                                      4 x  1 x 3 
                                                    8
     -2                        2 x                          3 0  
          -2                                          8  8  0
                                                    8           
                                                          3 
                                                     128
                        A x   4 y 2                  units 3
                                                      3
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                   x  0
                                                            
                                                            x  2
                                                     2

                   2                              8 4  x 2 dx
                                                     0
                                                                     2
                                                    4 x  1 x 3 
                                                  8
     -2                        2 x                        3 0  
          -2                                        8  8  0
                                                  8           
                                                        3 
                                                   128
                        A x   4 y 2                units 3
                                                    3
                                 44  x 2 
2y
                            V  44  x  x
                                          2
                                                   Exercise 3A; 16ade, 19

                       x                             Exercise 3C; 2, 7, 8
          2y

More Related Content

What's hot

11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
Nigel Simmons
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration Methods
Silvius
 
11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)
Nigel Simmons
 

What's hot (6)

Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration Methods
 
11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)
 
Em03 t
Em03 tEm03 t
Em03 t
 
11X1 T14 05 volumes
11X1 T14 05 volumes11X1 T14 05 volumes
11X1 T14 05 volumes
 

Viewers also liked

Xαρταετοί πάνω από την πόλη των Αρλεκίνων
Xαρταετοί πάνω από την πόλη των ΑρλεκίνωνXαρταετοί πάνω από την πόλη των Αρλεκίνων
Xαρταετοί πάνω από την πόλη των Αρλεκίνων
Νατάσα Ζωγάνα
 
X84pmanual portas de_sauna
X84pmanual portas de_saunaX84pmanual portas de_sauna
X84pmanual portas de_sauna
Cocab Pools
 
Olga Xaverová: Hlavní nádraží
Olga Xaverová: Hlavní nádražíOlga Xaverová: Hlavní nádraží
Olga Xaverová: Hlavní nádraží
ondpe
 
Xarxes Socials Xsjs
Xarxes Socials XsjsXarxes Socials Xsjs
Xarxes Socials Xsjs
Joan Salgado
 
xandria-successstory-strauss_en
xandria-successstory-strauss_enxandria-successstory-strauss_en
xandria-successstory-strauss_en
Neil McConnell
 
Xarxes socials i gènere
Xarxes socials i gènereXarxes socials i gènere
Xarxes socials i gènere
Ana López
 
xcel energy 10qNSPW
xcel energy 10qNSPWxcel energy 10qNSPW
xcel energy 10qNSPW
finance26
 

Viewers also liked (20)

x-breikki amikseen: ruotsi
x-breikki amikseen: ruotsix-breikki amikseen: ruotsi
x-breikki amikseen: ruotsi
 
X1 6
X1 6X1 6
X1 6
 
Xαρταετοί πάνω από την πόλη των Αρλεκίνων
Xαρταετοί πάνω από την πόλη των ΑρλεκίνωνXαρταετοί πάνω από την πόλη των Αρλεκίνων
Xαρταετοί πάνω από την πόλη των Αρλεκίνων
 
'Xarxes Socials, oci o negoci?' - Conferència COEC
'Xarxes Socials, oci o negoci?' - Conferència COEC'Xarxes Socials, oci o negoci?' - Conferència COEC
'Xarxes Socials, oci o negoci?' - Conferència COEC
 
X84pmanual portas de_sauna
X84pmanual portas de_saunaX84pmanual portas de_sauna
X84pmanual portas de_sauna
 
X Congreso de Investigacion Pedagogia UPR Rio Piedras
X Congreso de Investigacion Pedagogia UPR Rio PiedrasX Congreso de Investigacion Pedagogia UPR Rio Piedras
X Congreso de Investigacion Pedagogia UPR Rio Piedras
 
xbwyz.pdf
xbwyz.pdfxbwyz.pdf
xbwyz.pdf
 
X4102188192
X4102188192X4102188192
X4102188192
 
Xay dung ban do huong nghiep
Xay dung ban do huong nghiepXay dung ban do huong nghiep
Xay dung ban do huong nghiep
 
 xctest
 xctest xctest
 xctest
 
Olga Xaverová: Hlavní nádraží
Olga Xaverová: Hlavní nádražíOlga Xaverová: Hlavní nádraží
Olga Xaverová: Hlavní nádraží
 
X.8 magistra dwinovia indriani ppt
X.8 magistra dwinovia indriani pptX.8 magistra dwinovia indriani ppt
X.8 magistra dwinovia indriani ppt
 
Xarxes Socials Xsjs
Xarxes Socials XsjsXarxes Socials Xsjs
Xarxes Socials Xsjs
 
X01226148151
X01226148151X01226148151
X01226148151
 
Xarxes socials 3 -Personal Branding
Xarxes socials 3 -Personal BrandingXarxes socials 3 -Personal Branding
Xarxes socials 3 -Personal Branding
 
Xacaca
XacacaXacaca
Xacaca
 
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV SystemCoupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
 
xandria-successstory-strauss_en
xandria-successstory-strauss_enxandria-successstory-strauss_en
xandria-successstory-strauss_en
 
Xarxes socials i gènere
Xarxes socials i gènereXarxes socials i gènere
Xarxes socials i gènere
 
xcel energy 10qNSPW
xcel energy 10qNSPWxcel energy 10qNSPW
xcel energy 10qNSPW
 

Similar to X2 T05 03 parallel crosssections (2011)

Similar to X2 T05 03 parallel crosssections (2011) (12)

11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functions
 
Week 8 - Trigonometry
Week 8 - TrigonometryWeek 8 - Trigonometry
Week 8 - Trigonometry
 
sol pg 89
sol pg 89 sol pg 89
sol pg 89
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functions
 
Solving trignometric equations
Solving trignometric equationsSolving trignometric equations
Solving trignometric equations
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theorem
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health Education
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 

X2 T05 03 parallel crosssections (2011)

  • 1. Volumes By Non Circular Cross-Sections
  • 2. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid h a b
  • 3. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h a x b
  • 4. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x b
  • 5. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x b
  • 6. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x b z
  • 7. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x 2y b z
  • 8. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x 2y b 2x z
  • 9. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x 2y b 2x z A z   4 xy
  • 10. Find x in terms of z z h 1 1 x  b b 2 2
  • 11. Find x in terms of z z h 1 1 x  b b 2 2
  • 12. Find x in terms of z z h x 1 1 x  b b 2 2
  • 13. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2
  • 14. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s
  • 15. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h 1 b 2
  • 16. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h 1 b 2 h-z x
  • 17. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2 h-z x
  • 18. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 19. Find x in terms of z Method 2 : using coordinate geometry z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 20. Find x in terms of z Method 2 : using coordinate geometry z h (0,h) x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 21. Find x in terms of z Method 2 : using coordinate geometry z h (0,h) x (x,z)  1 b,0  1 1 x 2   b b   2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 22. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   b b   2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 23. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   2h  b b   zh   x  0 2 2 b Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 24. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   2h  b b   zh   x  0 2 2 b Method 1 : using similar s b z  h   2hx h hz  b h  z  h 1 x b x 2h 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 25. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   2h  b b   zh   x  0 2 2 b Method 1 : using similar s b z  h   2hx h hz  b h  z  h 1 x b x 2h 1 2 b 2h h  z Similarly; 2  b x a h  z  h-z b h  z  y x 2h x 2h
  • 26.  bh  z   ah  z  A z   4   2h   2h   
  • 27.  bh  z   ah  z  A z   4   2h   2h    abh  z  2  h2
  • 28.  bh  z   ah  z  A z   4   2h   2h    abh  z  2  h2 abh  z  2 V  2  z h
  • 29.  b h  z    a  h  z   A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  h2 abh  z  2 V  2  z h
  • 30.  bh  z   ah  z  A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  ab h h2  2  h  z  dz 2 abh  z  h 0 2 V  2  z h
  • 31.  bh  z   ah  z  A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  ab h h2  2  h  z  dz 2 abh  z  h 0 2 V   z ab  h  z   3 h 2 h  2 h   3 0 
  • 32.  b h  z    a  h  z   A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  ab h h2  2  h  z  dz 2 abh  z  h 0 2 V   z ab  h  z   3 h 2 h  2 h   3 0  ab  h 3   2 0   h  3 abh  units 3 3
  • 33. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base.
  • 34. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 35. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 36. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 37. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 38. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 39. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 40. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 41. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 42. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 43. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 44. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 45. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 46. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 x
  • 47. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 2y x 2y
  • 48. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 A x   4 y 2 2y x 2y
  • 49. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 A x   4 y 2  44  x 2  2y x 2y
  • 50. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 51. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 -2 2 x -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 52. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 -2 2 x -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 53. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 2 4 x  1 x 3   8 -2 2 x  3 0  -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 54. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 2 4 x  1 x 3   8 -2 2 x  3 0  -2 8  8  0  8   3  128 A x   4 y 2  units 3 3  44  x 2  2y V  44  x 2  x x 2y
  • 55. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 2 4 x  1 x 3   8 -2 2 x  3 0  -2 8  8  0  8   3  128 A x   4 y 2  units 3 3  44  x 2  2y V  44  x  x 2 Exercise 3A; 16ade, 19 x Exercise 3C; 2, 7, 8 2y