SlideShare a Scribd company logo
1 of 26
Download to read offline
MATH 401: LOGIC & PROOF TECHNIQUES Copyright © Nahid Sultana 2014-2015. 
Dr. Nahid Sultana Email: nszakir@ud.edu.sa 
Chapter-4: More on Direct Proof and Proof by Contrapositive 
10/10/2014 
1
Topics 2 
 
Proofs Involving Divisibility of Integers 
 
Proofs Involving Congruence of Integers 
 
Proofs Involving Real Numbers 
 
Proofs Involving sets 
 
Fundamental Properties of Set Operations 
 
Proofs Involving Cartesian Products of Sets 10/10/2014 Copyright © Nahid Sultana 2014-2015.
3 
Definition: For integers a and b with a≠0, we say that 
a divides b or b is divisible by a if there is an integer c such that b=ac, and is written as a|b. 
If a does not divide b, then we write a b. 
Example: 3|6 and -4 |28 ? 
Yes because 6 = 3 . 2 and 28 = (-4) . (-7). 
Proofs Involving Divisibility of Integers 
|/ 
Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Divisibility of Integers (Cont…) 4 
Result: Let a, b, and c be integers with a≠0 and b ≠0. 
If a|b and b|c, then a|c. 
Proof: (Direct Proof) Assume that a|b and b|c. 
Then b = ax and c = by, where x, y ∈ ℤ. 
Therefore, c = by 
= (ax)y 
= a(xy) 
= a z, where z=xy ∈ ℤ. 
Hence a|c. 
 Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Divisibility of Integers (Cont…) 5 
Result: Let a, b, c and d be integers with a≠0 and b ≠0. 
If a|c and b|d, then ab|cd. 
Proof: (Direct Proof) Assume that a|c and b|d. 
Then c = ax and d = by, where x, y ∈ ℤ. 
Therefore, cd = (ax)(by) 
= ab(xy) 
= ab z, where z = xy ∈ ℤ. 
Hence ab|cd. 
 Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Divisibility of Integers (Cont…) 6 
Result: Let a, b, c, x, y ∈ ℤ, where a≠0. 
If a|b and a|c, then a|(bx+cy). 
Proof: (Direct Proof) Assume that a|b and a|c, 
Then b = ar and c = as, where r, s ∈ ℤ. 
Therefore, bx+cy = (ar)x+(as)y 
= a(rx+sy) 
= at, where t = rx+sy ∈ ℤ. 
Hence a|(bx+cy). 
 Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Divisibility of Integers (Cont…) 7 
Result: Let x∈ℤ. If 2|(x2-1) , then 4|(x2-1) . 
Proof: (Direct Proof) Assume that 2|(x2-1). 
Then x2-1 = 2a for some a ∈ ℤ. Thus x2 = 2a+1, i.e x2 is odd. 
But we have the following theorem: 
“Let x∈ℤ. Then x2 is odd iff x is odd. ” 
Using this theorem, x is odd too. Hence x= 2b+1, for some b ∈ ℤ . 
Then, x2-1 = (2b+1)2-1 
= 4 b2+4b+1-1 
= 4 b2+4b 
= 4c, where c = b2+b ∈ ℤ. 
Hence 4|(x2-1). 
 10/10/2014 Copyright © Nahid Sultana 2014-2015.
Proofs Involving Divisibility of Integers (Cont…) 8 
Result: Let x∈ ℤ. If 3 xy , then 3 x and 3 y. 
Proof: (Proof by Contrapositive) Assume that 3|x or 3|y. 
WLOG assume that 3|x, then x = 3a for some a ∈ ℤ. 
Then xy = (3a)y = 3(ay)= 3b , where b = ay ∈ ℤ. 
Hence 3|xy. 
 
|/|/|/ 
Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Divisibility of Integers (Cont…) 9 
Result: Let x,y∈ ℤ. If 3 (x2-1) , then 3 |x . 
Proof: (Proof by Contrapositive) Assume that 3 x . 
Then x= 3a+1 or x=3a+2 for some a ∈ ℤ. 
Therefore we need to consider two cases: 
Case1: when x= 3a+1 for some a ∈ ℤ. 
Then (x2-1) = 9a2+6a+1-1=3(3a2+2a) =3b, 
where b= 3a2+2a ∈ ℤ. 
Case2: when x= 3a+2 for some a ∈ ℤ. 
Then (x2-1) = 9a2+12a+4-1=3(3a2+4a+1) =3c, 
where c= 3a2+4a+1 ∈ ℤ. 
Hence 3| (x2-1). 
 
|/ |/ 
Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Divisibility of Integers (Cont…) 10 
Result: Let x,y∈ ℤ. Prove that if 3|2a , then 3|a . 
Proof: (Proof by Contrapositive) Assume that 3 a . 
Then a= 3x+1 or a=3x+2 for some x ∈ ℤ. 
Therefore we need to consider twp consider. 
Case1: when a= 3x+1 for some x ∈ ℤ. 
Then 2a = 6x+2 = 3(2x)+2 = 3y+2, where y=2x ∈ ℤ. 
Therefore 3 a. 
Case2: when a= 3x+2 for some x ∈ ℤ. 
Then 2a = 6x+4 = 3(2x+1)+1 = 3z+1, where z =2x+1 ∈ ℤ. 
where c = 3a2+4a+1 ∈ ℤ. 
Therefore 3 a. 
 
|/ |/ |/ 
Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Congruence of Integers 11 
Definition: For integers a, b, and n≥2, we say that a is congruent to b modulo n, written a ≡ b (mod n), if n | (a-b). 
For example: 15≡7 (mod 4) since 4 | (15-7), 
but 14 4 (mod 6) since 6 (14-4). 
≡/|/ 
Result: Let a, b , k, and n be integers, where n≥2. If a ≡ b (mod n), then ka ≡ kb (mod n). Proof: (Direct Proof) Assume that a ≡ b(mod n). Then a-b =nx for some x ∈ ℤ. Now, ka-kb=k(a-b)=k(nx)=n(kx)=nl, where l=kx ∈ ℤ. Therefore, ka ≡ kb (mod n). 
 
10/10/2014 Copyright © Nahid Sultana 2014-2015.
Proofs Involving Congruence of Integers (Cont…) 12 
Result: Let a, b, c, d, n ∈ ℤ, where n ≥2. If a ≡ b (mod n) and 
c ≡ d (mod n), the a+c ≡ b+d (mod n). 
Proof: Assume that a ≡ b (mod n) and c ≡ d (mod n), i.e. 
a-b = nx and c-d = ny for some x,y ∈ ℤ. 
Adding these two equations, 
a-b+c-d = nx+ny=n(x+y) 
⇒ (a+c) –(b+d)= nz, where z=x+y ∈ ℤ. 
Therefore, the a+c ≡ b+d (mod n). 
 
10/10/2014 Copyright © Nahid Sultana 2014-2015.
Proofs Involving Congruence of Integers (Cont…) 13 
Result: Let n ∈ ℤ. If n2 n (mod 3), then n 0(mod 3) and 
n 1(mod 3). 
Proof. Assume that n ≡ 0 (mod 3) or n ≡ 1(mod 3). 
We consider these two cases. 
Case 1. n ≡ 0(mod 3). Then n=3k for some k ∈ ℤ. 
Hence, n2- n=(3k)2- (3k)=3(3k2- k)=3l, where l = 3k2- k ∈ ℤ. 
Thus n2 ≡ n (mod 3). 
Case 2. n ≡ 1(mod 3). Then n -1=3m for some m ∈ ℤ. 
Hence, n2- n=(3m+1)2- (3m+1)=9m2+3m = 3(3m2+m) = 3p, 
where p = 3m2+m is an integer. 
Hence 3| (n2-n) and so n2 ≡ n (mod 3). 
 
≡/≡/ ≡/ 
Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Real Numbers 14 
Some facts about real numbers that can be used without justification. 
 
a2≥0 for every real number a. 
 
an≥0 for every real number a if n is a positive even integer. 
 
If a<0 and n is a positive odd integer, then an<0. 
 
The product of two real numbers is positive iff both numbers are positive or both are negative. 
 
If the product of two real numbers is 0, then at least one of these numbers is 0. 
 
Let a, b, c ∈R. If a ≥b and c ≥0, then ac ≥ bc; and if c>0, then a/c ≥b/c. 
 
If a>b and c>0, then ac>bc and a/c>b/c. 
 
If a>b and c<0, then ac<bc and a/c<b/c. Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Real Numbers (Cont…) 15 
Result: Let x ∈ ℝ. if x3-5x2+3x=15, then x =5. Proof: (Direct Proof) Assume that x3-5x2+3x=15 ⇒ x3-5x2+3x-15 = 0 ⇒ x2(x-5) +3(x-5)=0 ⇒ (x2+3)(x-5)=0 But we have the following theorem: “If x and y are real numbers such that xy=0, then x=0 or y=0.” Therefore, (x2+3)= 0 or (x-5)=0. But x2+3 >0, so (x-5)=0, i.e. x=5. Hence x=5. Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving Real Numbers (Cont…) 16 
Result: Let x ∈R. if x5-3x4+2x3-x2+4x-1 ≥0, then x ≥0. Proof: (Proof by Contrapositive) Assume that x <0. Then x5<0, x4 >0 ⇒ -3x4 <0 x3<0, x2>0 ⇒ -x2<0 and 4x<0. Thus x5-3x4+2x3-x2+4x-1<0-1<0, as desired. 
 
Copyright © Nahid Sultana 2014-2015. 10/10/2014
Result: If x,y ∈ℝ, then x2/3+(3y2)/4 ≥ xy. 
Proof: (Direct Proof) Assume that x,y ∈ℝ. 
Now x2/3+(3y2)/4 ≥ xy ⇒ (4x2+ 9y2) ≥ 12xy 
⇒ (4x2+ 9y2) - 12xy ≥ 0 
⇒(2x-3y)2 ≥ 0, this is true for any x,y ∈ℝ. Therefore x2/3+(3y2)/4 ≥ xy. 
 
17 
Proofs Involving Real Numbers (Cont…) Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving sets 18 
 
Recall, for set A and B contained in some universal set U, A ∪ B = {x| x ∈ A or x ∈ B}. A ∩ B = {x| x ∈ A and x ∈ B}. A – B = {x| x ∈ A and x ∉ B}. Ac = {x| x ∉ A and x ∈ U} = U-A. 
 
To show that C ⊆ D, we need to show that every element of C is also an element of D; that is, if x ∈ C then x ∈ D. 
 
To show the equality of two sets C and D, we need to show that C ⊆ D and D ⊆ C. Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs Involving sets (Cont…) 19 
Result. For every two sets A and B, A-B = A ∩ Bc . Proof. First we show that A-B ⊆ A∩Bc . Let x ∈ A-B ⇒ x ∈A and x∉B ⇒ x ∈A and x ∈ Bc , since x∉ B Therefore, A-B ⊆A∩ Bc . Next we show that A∩Bc ⊆ A- B. Let y ∈ A∩Bc ⇒ y∈A and y∈Bc ⇒ y∈A and y∉B , since y ∈Bc Thus, A∩ Bc ⊆ A-B. 
 
10/10/2014 Copyright © Nahid Sultana 2014-2015.
20 
Result. Let A and B be sets. Then A∪B= A if and only if B ⊆ A. Proof. First we prove that if A∪B= A, then B ⊆ A. (proof by contrapositive) Assume that B ⊈ A ⇒ x ∈ B and x ∉ A ⇒ x∈ A∪B, Since x ∈ B and A∪B ={x| x∈A or x∈B}. But x ∉ A i.e. A ∪ B ≠ A. Next we prove the converse, i.e. if B ⊆ A, then A∪B=A. (direct proof) Assume that B ⊆ A. To show A∪B= A, we need to show that A ⊆ A∪B and A ∪ B ⊆ A . But by the definition of union A ⊆ A∪B. To prove A ∪ B ⊆A, assume that y∈ A ∪ B ⇒ y∈A or y∈B. Case 1: If y∈A, then A ∪ B ⊆ A as also y ∈ A ∪ B by assumption. Case2: If y∈ B then A ∪ B ⊆ B ⇒ A ∪ B ⊆ A as B⊆ A. Thus A∪B= A. 
 
Proofs Involving sets (Cont…) Copyright © Nahid Sultana 2014-2015. 10/10/2014
Fundamental Properties of Set Operations 21 
 
Commutative laws 
 Associative laws 
 Distributive laws 
Copyright © Nahid Sultana 2014-2015. 10/10/2014
Fundamental Properties of Set Operations (Cont…) 22 
 
De Morgan’s laws 
 
Absorption laws 
Complement laws 
Copyright © Nahid Sultana 2014-2015. 10/10/2014
23 
DeMorgan’s Law: For any sets A and B, (A ∪ B)c = Ac ∩ B c 
Proof. Assume that x∈(A ∪ B)c ⇒ x ∉ A ∪ B 
⇒ x∉ A and x∉ B 
⇒x∈Ac and x∈Bc 
⇒ x∈ Ac ∩ Bc . 
Therefore, (A ∪ B)c ⊆ Ac ∩ Bc 
Next assume that x∈ Ac ∩ Bc ⇒ x∈Ac and x∈Bc 
⇒x∉ A and x∉B 
⇒ x ∉ A ∪ B 
⇒x∈(A ∪ B)c 
Therefore, Ac ∩ Bc ⊆(A ∪ B)c. Hence (A ∪B)c = Ac ∩ Bc. 
 
Fundamental Properties of Set Operations (Cont…) Copyright © Nahid Sultana 2014-2015. 10/10/2014
Proofs involving Cartesian products of sets 24 
Definition: The Cartesian product of two sets A and B is the set of all ordered pairs (a, b) with a∈ A and b∈ B, i.e. A×B = {(a,b)|a∈A and b∈B}. 
Theorem: If A= Φ or B= Φ, then A×B =Φ. 
Theorem: If A, B, C, and D are sets such that A ⊆ C and B ⊆ D, then A × B ⊆ C × D. Proof: Assume that A ⊆ c and B ⊆ D. Now let (x,y)∈ A × B ⇒ x∈A and y∈B ⇒ x∈C and y∈D, as A⊆ C and B ⊆ D. Therefore A×B⊆ C×D. 
 
10/10/2014 Copyright © Nahid Sultana 2014-2015.
Proofs involving Cartesian products of sets (Cont…) 25 
Theorem: For sets A, B and C, A×(B∪C) = (A×B) ∪ (A×C). 
Proof: Assume that (x,y)∈A×(B∪C) ⇒ x∈ A and {y∈ B or y∈C} ⇒ {x∈A and y∈B} or {x∈A and y∈C} ⇒(x,y)∈A×B or (x,y)∈A×C ⇒(x,y)∈(A×B) ∪ (A×C). Therefore, A×(B∪C) ⊆ (A×B) ∪ (A×C). Assume that (x,y)∈ (A×B) ∪ (A×C) ⇒(x,y)∈A×B or (x,y)∈A×C ⇒ {x∈A and y∈B} or {x∈A and y∈C} ⇒x∈ A and {y∈ B or y∈C} ⇒ (x,y)∈A×(B∪C). Therefore, (A×B) ∪ (A×C) ⊆ A×(B∪C) . Hence A×(B∪C) = (A×B) ∪ (A×C). 
 
10/10/2014 Copyright © Nahid Sultana 2014-2015.
Proofs involving Cartesian products of sets (Cont…) 26 
Result: For sets A, B and C, A×(B-C) = (A×B) - (A×C). Proof: Assume that (x,y)∈A×(B-C) ⇒ x∈A and y∈ B-C ⇒ x∈ A and {y∈ B and y∉C} ⇒ {x∈A and y∈B} and {x∈A and y∉C} ⇒(x,y)∈A×B and (x,y)∉A×C, as y∉C ⇒(x,y)∈(A×B) - (A×C). Therefore A×(B-C) ⊆ (A×B) - (A×C). Now Assume that (x,y)∈ (A×B)-(A×C) ⇒(x,y)∈A×B and (x,y)∉A×C ⇒ {x∈A and y∈B} and {x∈A and y∉C} as x∈ A ⇒x∈ A and {y∈ B and y∉C} ⇒ x∈A and y∈ B-C ⇒ (x,y)∈A×(B-C). Therefore (A×B) - (A×C )⊆ A×(B-C). Hence A×(B-C) = (A×B) - (A×C). 
 
10/10/2014 Copyright © Nahid Sultana 2014-2015.

More Related Content

What's hot

K to 12 - Grade 7 Lesson on Properties of the operations on Integers
K to 12 - Grade 7 Lesson on Properties of the operations on IntegersK to 12 - Grade 7 Lesson on Properties of the operations on Integers
K to 12 - Grade 7 Lesson on Properties of the operations on IntegersRoxanne Deang
 
Arguments and methods of proof
Arguments and methods of proofArguments and methods of proof
Arguments and methods of proofRobert Geofroy
 
Beautiful Number Patterns
Beautiful Number PatternsBeautiful Number Patterns
Beautiful Number PatternsThiyagu K
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
Linear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptxLinear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptxKuparala Vidyasagar
 
A course on integral calculus
A course on integral calculusA course on integral calculus
A course on integral calculusGAURAV SAHA
 
Permutation and Combination Maths
Permutation and Combination MathsPermutation and Combination Maths
Permutation and Combination MathsVardhan Jain
 
Method of direct proof
Method of direct proofMethod of direct proof
Method of direct proofAbdur Rehman
 
Special trigonometric integrals
Special trigonometric integralsSpecial trigonometric integrals
Special trigonometric integralsMazharul Islam
 
1.1 Real Number Properties
1.1 Real Number Properties1.1 Real Number Properties
1.1 Real Number Propertiessmiller5
 
2.9 Cartesian products
2.9 Cartesian products2.9 Cartesian products
2.9 Cartesian productsJan Plaza
 
410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.docJosephSPalileoJr
 
CMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical InductionCMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical Inductionallyn joy calcaben
 
Section 11: Normal Subgroups
Section 11: Normal SubgroupsSection 11: Normal Subgroups
Section 11: Normal SubgroupsKevin Johnson
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralRich Elle
 

What's hot (20)

K to 12 - Grade 7 Lesson on Properties of the operations on Integers
K to 12 - Grade 7 Lesson on Properties of the operations on IntegersK to 12 - Grade 7 Lesson on Properties of the operations on Integers
K to 12 - Grade 7 Lesson on Properties of the operations on Integers
 
Set Operations
Set OperationsSet Operations
Set Operations
 
Arguments and methods of proof
Arguments and methods of proofArguments and methods of proof
Arguments and methods of proof
 
Set theory
Set theorySet theory
Set theory
 
Beautiful Number Patterns
Beautiful Number PatternsBeautiful Number Patterns
Beautiful Number Patterns
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
Linear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptxLinear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptx
 
A course on integral calculus
A course on integral calculusA course on integral calculus
A course on integral calculus
 
Set theory
Set theory Set theory
Set theory
 
Permutation and Combination Maths
Permutation and Combination MathsPermutation and Combination Maths
Permutation and Combination Maths
 
Method of direct proof
Method of direct proofMethod of direct proof
Method of direct proof
 
Special trigonometric integrals
Special trigonometric integralsSpecial trigonometric integrals
Special trigonometric integrals
 
1.1 Real Number Properties
1.1 Real Number Properties1.1 Real Number Properties
1.1 Real Number Properties
 
2.9 Cartesian products
2.9 Cartesian products2.9 Cartesian products
2.9 Cartesian products
 
410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc
 
Distance formula
Distance formulaDistance formula
Distance formula
 
CMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical InductionCMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical Induction
 
Metric space
Metric spaceMetric space
Metric space
 
Section 11: Normal Subgroups
Section 11: Normal SubgroupsSection 11: Normal Subgroups
Section 11: Normal Subgroups
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 

Viewers also liked

Displaying Distributions with Graphs
Displaying Distributions with GraphsDisplaying Distributions with Graphs
Displaying Distributions with Graphsnszakir
 
Chapter 2 part1-Scatterplots
Chapter 2 part1-ScatterplotsChapter 2 part1-Scatterplots
Chapter 2 part1-Scatterplotsnszakir
 
Chapter 3 part3-Toward Statistical Inference
Chapter 3 part3-Toward Statistical InferenceChapter 3 part3-Toward Statistical Inference
Chapter 3 part3-Toward Statistical Inferencenszakir
 
Chapter 7 : Inference for Distributions(The t Distributions, One-Sample t Con...
Chapter 7 : Inference for Distributions(The t Distributions, One-Sample t Con...Chapter 7 : Inference for Distributions(The t Distributions, One-Sample t Con...
Chapter 7 : Inference for Distributions(The t Distributions, One-Sample t Con...nszakir
 
Chapter 5 part1- The Sampling Distribution of a Sample Mean
Chapter 5 part1- The Sampling Distribution of a Sample MeanChapter 5 part1- The Sampling Distribution of a Sample Mean
Chapter 5 part1- The Sampling Distribution of a Sample Meannszakir
 
Describing Distributions with Numbers
Describing Distributions with NumbersDescribing Distributions with Numbers
Describing Distributions with Numbersnszakir
 
Sampling distribution
Sampling distributionSampling distribution
Sampling distributionDanu Saputra
 
Winter art from Ireland
Winter art from IrelandWinter art from Ireland
Winter art from Irelandb-and-b
 
Space Hustlers Comic
Space Hustlers ComicSpace Hustlers Comic
Space Hustlers ComicSteve Owen
 
Tips In Choosing Effective Patient Education Materials
Tips In Choosing Effective Patient Education MaterialsTips In Choosing Effective Patient Education Materials
Tips In Choosing Effective Patient Education Materialsjerrysebastiano
 
Report submitted to (1)
Report submitted to (1)Report submitted to (1)
Report submitted to (1)Andrew Agbenin
 
Cheney Court - Linguarama
Cheney Court - LinguaramaCheney Court - Linguarama
Cheney Court - LinguaramaLinguarama
 
why rape jokes are bad
why rape jokes are badwhy rape jokes are bad
why rape jokes are badAmy Robison
 
Citrus College Sample Work
Citrus College Sample WorkCitrus College Sample Work
Citrus College Sample WorkSteve Owen
 
Expecting Parents Guide to Birth Defects ebook
Expecting Parents Guide to Birth Defects ebookExpecting Parents Guide to Birth Defects ebook
Expecting Parents Guide to Birth Defects ebookPerey Law
 
Snowmen from POland
Snowmen from POlandSnowmen from POland
Snowmen from POlandb-and-b
 
Проект Павленко "Безопасные каникулы".
Проект Павленко "Безопасные каникулы".Проект Павленко "Безопасные каникулы".
Проект Павленко "Безопасные каникулы".Harokol
 
samoupravlenie
samoupravleniesamoupravlenie
samoupravlenieHarokol
 
Blaue Tulpen - blue tulips
Blaue Tulpen - blue tulipsBlaue Tulpen - blue tulips
Blaue Tulpen - blue tulipsb-and-b
 
Портрет слова группа 2
Портрет слова группа 2Портрет слова группа 2
Портрет слова группа 2Harokol
 

Viewers also liked (20)

Displaying Distributions with Graphs
Displaying Distributions with GraphsDisplaying Distributions with Graphs
Displaying Distributions with Graphs
 
Chapter 2 part1-Scatterplots
Chapter 2 part1-ScatterplotsChapter 2 part1-Scatterplots
Chapter 2 part1-Scatterplots
 
Chapter 3 part3-Toward Statistical Inference
Chapter 3 part3-Toward Statistical InferenceChapter 3 part3-Toward Statistical Inference
Chapter 3 part3-Toward Statistical Inference
 
Chapter 7 : Inference for Distributions(The t Distributions, One-Sample t Con...
Chapter 7 : Inference for Distributions(The t Distributions, One-Sample t Con...Chapter 7 : Inference for Distributions(The t Distributions, One-Sample t Con...
Chapter 7 : Inference for Distributions(The t Distributions, One-Sample t Con...
 
Chapter 5 part1- The Sampling Distribution of a Sample Mean
Chapter 5 part1- The Sampling Distribution of a Sample MeanChapter 5 part1- The Sampling Distribution of a Sample Mean
Chapter 5 part1- The Sampling Distribution of a Sample Mean
 
Describing Distributions with Numbers
Describing Distributions with NumbersDescribing Distributions with Numbers
Describing Distributions with Numbers
 
Sampling distribution
Sampling distributionSampling distribution
Sampling distribution
 
Winter art from Ireland
Winter art from IrelandWinter art from Ireland
Winter art from Ireland
 
Space Hustlers Comic
Space Hustlers ComicSpace Hustlers Comic
Space Hustlers Comic
 
Tips In Choosing Effective Patient Education Materials
Tips In Choosing Effective Patient Education MaterialsTips In Choosing Effective Patient Education Materials
Tips In Choosing Effective Patient Education Materials
 
Report submitted to (1)
Report submitted to (1)Report submitted to (1)
Report submitted to (1)
 
Cheney Court - Linguarama
Cheney Court - LinguaramaCheney Court - Linguarama
Cheney Court - Linguarama
 
why rape jokes are bad
why rape jokes are badwhy rape jokes are bad
why rape jokes are bad
 
Citrus College Sample Work
Citrus College Sample WorkCitrus College Sample Work
Citrus College Sample Work
 
Expecting Parents Guide to Birth Defects ebook
Expecting Parents Guide to Birth Defects ebookExpecting Parents Guide to Birth Defects ebook
Expecting Parents Guide to Birth Defects ebook
 
Snowmen from POland
Snowmen from POlandSnowmen from POland
Snowmen from POland
 
Проект Павленко "Безопасные каникулы".
Проект Павленко "Безопасные каникулы".Проект Павленко "Безопасные каникулы".
Проект Павленко "Безопасные каникулы".
 
samoupravlenie
samoupravleniesamoupravlenie
samoupravlenie
 
Blaue Tulpen - blue tulips
Blaue Tulpen - blue tulipsBlaue Tulpen - blue tulips
Blaue Tulpen - blue tulips
 
Портрет слова группа 2
Портрет слова группа 2Портрет слова группа 2
Портрет слова группа 2
 

Similar to LOGIC & PROOF TECHNIQUES: DIVISIBILITY, CONGRUENCE & SETS

Similar to LOGIC & PROOF TECHNIQUES: DIVISIBILITY, CONGRUENCE & SETS (20)

Cat 2007 solutions
Cat 2007 solutionsCat 2007 solutions
Cat 2007 solutions
 
lemh2sm.pdf
lemh2sm.pdflemh2sm.pdf
lemh2sm.pdf
 
7_AJMS_246_20.pdf
7_AJMS_246_20.pdf7_AJMS_246_20.pdf
7_AJMS_246_20.pdf
 
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
 
Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107
 
Mock cat solutions paper no 1
Mock cat solutions paper no 1Mock cat solutions paper no 1
Mock cat solutions paper no 1
 
Lemh1a1
Lemh1a1Lemh1a1
Lemh1a1
 
Lemh1a1
Lemh1a1Lemh1a1
Lemh1a1
 
2.7 Ordered pairs
2.7 Ordered pairs2.7 Ordered pairs
2.7 Ordered pairs
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
Imc2017 day1-solutions
Imc2017 day1-solutionsImc2017 day1-solutions
Imc2017 day1-solutions
 
Solution kepler chap 1
Solution kepler chap 1Solution kepler chap 1
Solution kepler chap 1
 
Mcs 013 solve assignment
Mcs 013 solve assignmentMcs 013 solve assignment
Mcs 013 solve assignment
 
amer.math.monthly.124.2.179.pdf
amer.math.monthly.124.2.179.pdfamer.math.monthly.124.2.179.pdf
amer.math.monthly.124.2.179.pdf
 
Vector Algebra One Shot #BounceBack.pdf
Vector Algebra One Shot #BounceBack.pdfVector Algebra One Shot #BounceBack.pdf
Vector Algebra One Shot #BounceBack.pdf
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1
 
Integer_Functions .pdf
Integer_Functions .pdfInteger_Functions .pdf
Integer_Functions .pdf
 
ikh323-05
ikh323-05ikh323-05
ikh323-05
 
Mathematics assignment sample from assignmentsupport.com essay writing services
Mathematics assignment sample from assignmentsupport.com essay writing services Mathematics assignment sample from assignmentsupport.com essay writing services
Mathematics assignment sample from assignmentsupport.com essay writing services
 
Chapter 04 answers
Chapter 04 answersChapter 04 answers
Chapter 04 answers
 

More from nszakir

Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relationsnszakir
 
Chapter 6 part2-Introduction to Inference-Tests of Significance, Stating Hyp...
Chapter 6 part2-Introduction to Inference-Tests of Significance,  Stating Hyp...Chapter 6 part2-Introduction to Inference-Tests of Significance,  Stating Hyp...
Chapter 6 part2-Introduction to Inference-Tests of Significance, Stating Hyp...nszakir
 
Chapter 6 part1- Introduction to Inference-Estimating with Confidence (Introd...
Chapter 6 part1- Introduction to Inference-Estimating with Confidence (Introd...Chapter 6 part1- Introduction to Inference-Estimating with Confidence (Introd...
Chapter 6 part1- Introduction to Inference-Estimating with Confidence (Introd...nszakir
 
Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...
Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...
Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...nszakir
 
Chapter 4 part4- General Probability Rules
Chapter 4 part4- General Probability RulesChapter 4 part4- General Probability Rules
Chapter 4 part4- General Probability Rulesnszakir
 
Chapter 4 part3- Means and Variances of Random Variables
Chapter 4 part3- Means and Variances of Random VariablesChapter 4 part3- Means and Variances of Random Variables
Chapter 4 part3- Means and Variances of Random Variablesnszakir
 
Chapter 4 part2- Random Variables
Chapter 4 part2- Random VariablesChapter 4 part2- Random Variables
Chapter 4 part2- Random Variablesnszakir
 
Chapter 4 part1-Probability Model
Chapter 4 part1-Probability ModelChapter 4 part1-Probability Model
Chapter 4 part1-Probability Modelnszakir
 
Chapter 3 part2- Sampling Design
Chapter 3 part2- Sampling DesignChapter 3 part2- Sampling Design
Chapter 3 part2- Sampling Designnszakir
 
Chapter 3 part1-Design of Experiments
Chapter 3 part1-Design of ExperimentsChapter 3 part1-Design of Experiments
Chapter 3 part1-Design of Experimentsnszakir
 
Chapter 2 part2-Correlation
Chapter 2 part2-CorrelationChapter 2 part2-Correlation
Chapter 2 part2-Correlationnszakir
 
Chapter 2 part3-Least-Squares Regression
Chapter 2 part3-Least-Squares RegressionChapter 2 part3-Least-Squares Regression
Chapter 2 part3-Least-Squares Regressionnszakir
 
Density Curves and Normal Distributions
Density Curves and Normal DistributionsDensity Curves and Normal Distributions
Density Curves and Normal Distributionsnszakir
 

More from nszakir (13)

Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relations
 
Chapter 6 part2-Introduction to Inference-Tests of Significance, Stating Hyp...
Chapter 6 part2-Introduction to Inference-Tests of Significance,  Stating Hyp...Chapter 6 part2-Introduction to Inference-Tests of Significance,  Stating Hyp...
Chapter 6 part2-Introduction to Inference-Tests of Significance, Stating Hyp...
 
Chapter 6 part1- Introduction to Inference-Estimating with Confidence (Introd...
Chapter 6 part1- Introduction to Inference-Estimating with Confidence (Introd...Chapter 6 part1- Introduction to Inference-Estimating with Confidence (Introd...
Chapter 6 part1- Introduction to Inference-Estimating with Confidence (Introd...
 
Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...
Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...
Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...
 
Chapter 4 part4- General Probability Rules
Chapter 4 part4- General Probability RulesChapter 4 part4- General Probability Rules
Chapter 4 part4- General Probability Rules
 
Chapter 4 part3- Means and Variances of Random Variables
Chapter 4 part3- Means and Variances of Random VariablesChapter 4 part3- Means and Variances of Random Variables
Chapter 4 part3- Means and Variances of Random Variables
 
Chapter 4 part2- Random Variables
Chapter 4 part2- Random VariablesChapter 4 part2- Random Variables
Chapter 4 part2- Random Variables
 
Chapter 4 part1-Probability Model
Chapter 4 part1-Probability ModelChapter 4 part1-Probability Model
Chapter 4 part1-Probability Model
 
Chapter 3 part2- Sampling Design
Chapter 3 part2- Sampling DesignChapter 3 part2- Sampling Design
Chapter 3 part2- Sampling Design
 
Chapter 3 part1-Design of Experiments
Chapter 3 part1-Design of ExperimentsChapter 3 part1-Design of Experiments
Chapter 3 part1-Design of Experiments
 
Chapter 2 part2-Correlation
Chapter 2 part2-CorrelationChapter 2 part2-Correlation
Chapter 2 part2-Correlation
 
Chapter 2 part3-Least-Squares Regression
Chapter 2 part3-Least-Squares RegressionChapter 2 part3-Least-Squares Regression
Chapter 2 part3-Least-Squares Regression
 
Density Curves and Normal Distributions
Density Curves and Normal DistributionsDensity Curves and Normal Distributions
Density Curves and Normal Distributions
 

Recently uploaded

ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxmaryFF1
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》rnrncn29
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
basic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomybasic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomyDrAnita Sharma
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...navyadasi1992
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxnoordubaliya2003
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXDole Philippines School
 

Recently uploaded (20)

ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
basic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomybasic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomy
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptx
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
 

LOGIC & PROOF TECHNIQUES: DIVISIBILITY, CONGRUENCE & SETS

  • 1. MATH 401: LOGIC & PROOF TECHNIQUES Copyright © Nahid Sultana 2014-2015. Dr. Nahid Sultana Email: nszakir@ud.edu.sa Chapter-4: More on Direct Proof and Proof by Contrapositive 10/10/2014 1
  • 2. Topics 2  Proofs Involving Divisibility of Integers  Proofs Involving Congruence of Integers  Proofs Involving Real Numbers  Proofs Involving sets  Fundamental Properties of Set Operations  Proofs Involving Cartesian Products of Sets 10/10/2014 Copyright © Nahid Sultana 2014-2015.
  • 3. 3 Definition: For integers a and b with a≠0, we say that a divides b or b is divisible by a if there is an integer c such that b=ac, and is written as a|b. If a does not divide b, then we write a b. Example: 3|6 and -4 |28 ? Yes because 6 = 3 . 2 and 28 = (-4) . (-7). Proofs Involving Divisibility of Integers |/ Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 4. Proofs Involving Divisibility of Integers (Cont…) 4 Result: Let a, b, and c be integers with a≠0 and b ≠0. If a|b and b|c, then a|c. Proof: (Direct Proof) Assume that a|b and b|c. Then b = ax and c = by, where x, y ∈ ℤ. Therefore, c = by = (ax)y = a(xy) = a z, where z=xy ∈ ℤ. Hence a|c.  Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 5. Proofs Involving Divisibility of Integers (Cont…) 5 Result: Let a, b, c and d be integers with a≠0 and b ≠0. If a|c and b|d, then ab|cd. Proof: (Direct Proof) Assume that a|c and b|d. Then c = ax and d = by, where x, y ∈ ℤ. Therefore, cd = (ax)(by) = ab(xy) = ab z, where z = xy ∈ ℤ. Hence ab|cd.  Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 6. Proofs Involving Divisibility of Integers (Cont…) 6 Result: Let a, b, c, x, y ∈ ℤ, where a≠0. If a|b and a|c, then a|(bx+cy). Proof: (Direct Proof) Assume that a|b and a|c, Then b = ar and c = as, where r, s ∈ ℤ. Therefore, bx+cy = (ar)x+(as)y = a(rx+sy) = at, where t = rx+sy ∈ ℤ. Hence a|(bx+cy).  Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 7. Proofs Involving Divisibility of Integers (Cont…) 7 Result: Let x∈ℤ. If 2|(x2-1) , then 4|(x2-1) . Proof: (Direct Proof) Assume that 2|(x2-1). Then x2-1 = 2a for some a ∈ ℤ. Thus x2 = 2a+1, i.e x2 is odd. But we have the following theorem: “Let x∈ℤ. Then x2 is odd iff x is odd. ” Using this theorem, x is odd too. Hence x= 2b+1, for some b ∈ ℤ . Then, x2-1 = (2b+1)2-1 = 4 b2+4b+1-1 = 4 b2+4b = 4c, where c = b2+b ∈ ℤ. Hence 4|(x2-1).  10/10/2014 Copyright © Nahid Sultana 2014-2015.
  • 8. Proofs Involving Divisibility of Integers (Cont…) 8 Result: Let x∈ ℤ. If 3 xy , then 3 x and 3 y. Proof: (Proof by Contrapositive) Assume that 3|x or 3|y. WLOG assume that 3|x, then x = 3a for some a ∈ ℤ. Then xy = (3a)y = 3(ay)= 3b , where b = ay ∈ ℤ. Hence 3|xy.  |/|/|/ Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 9. Proofs Involving Divisibility of Integers (Cont…) 9 Result: Let x,y∈ ℤ. If 3 (x2-1) , then 3 |x . Proof: (Proof by Contrapositive) Assume that 3 x . Then x= 3a+1 or x=3a+2 for some a ∈ ℤ. Therefore we need to consider two cases: Case1: when x= 3a+1 for some a ∈ ℤ. Then (x2-1) = 9a2+6a+1-1=3(3a2+2a) =3b, where b= 3a2+2a ∈ ℤ. Case2: when x= 3a+2 for some a ∈ ℤ. Then (x2-1) = 9a2+12a+4-1=3(3a2+4a+1) =3c, where c= 3a2+4a+1 ∈ ℤ. Hence 3| (x2-1).  |/ |/ Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 10. Proofs Involving Divisibility of Integers (Cont…) 10 Result: Let x,y∈ ℤ. Prove that if 3|2a , then 3|a . Proof: (Proof by Contrapositive) Assume that 3 a . Then a= 3x+1 or a=3x+2 for some x ∈ ℤ. Therefore we need to consider twp consider. Case1: when a= 3x+1 for some x ∈ ℤ. Then 2a = 6x+2 = 3(2x)+2 = 3y+2, where y=2x ∈ ℤ. Therefore 3 a. Case2: when a= 3x+2 for some x ∈ ℤ. Then 2a = 6x+4 = 3(2x+1)+1 = 3z+1, where z =2x+1 ∈ ℤ. where c = 3a2+4a+1 ∈ ℤ. Therefore 3 a.  |/ |/ |/ Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 11. Proofs Involving Congruence of Integers 11 Definition: For integers a, b, and n≥2, we say that a is congruent to b modulo n, written a ≡ b (mod n), if n | (a-b). For example: 15≡7 (mod 4) since 4 | (15-7), but 14 4 (mod 6) since 6 (14-4). ≡/|/ Result: Let a, b , k, and n be integers, where n≥2. If a ≡ b (mod n), then ka ≡ kb (mod n). Proof: (Direct Proof) Assume that a ≡ b(mod n). Then a-b =nx for some x ∈ ℤ. Now, ka-kb=k(a-b)=k(nx)=n(kx)=nl, where l=kx ∈ ℤ. Therefore, ka ≡ kb (mod n).  10/10/2014 Copyright © Nahid Sultana 2014-2015.
  • 12. Proofs Involving Congruence of Integers (Cont…) 12 Result: Let a, b, c, d, n ∈ ℤ, where n ≥2. If a ≡ b (mod n) and c ≡ d (mod n), the a+c ≡ b+d (mod n). Proof: Assume that a ≡ b (mod n) and c ≡ d (mod n), i.e. a-b = nx and c-d = ny for some x,y ∈ ℤ. Adding these two equations, a-b+c-d = nx+ny=n(x+y) ⇒ (a+c) –(b+d)= nz, where z=x+y ∈ ℤ. Therefore, the a+c ≡ b+d (mod n).  10/10/2014 Copyright © Nahid Sultana 2014-2015.
  • 13. Proofs Involving Congruence of Integers (Cont…) 13 Result: Let n ∈ ℤ. If n2 n (mod 3), then n 0(mod 3) and n 1(mod 3). Proof. Assume that n ≡ 0 (mod 3) or n ≡ 1(mod 3). We consider these two cases. Case 1. n ≡ 0(mod 3). Then n=3k for some k ∈ ℤ. Hence, n2- n=(3k)2- (3k)=3(3k2- k)=3l, where l = 3k2- k ∈ ℤ. Thus n2 ≡ n (mod 3). Case 2. n ≡ 1(mod 3). Then n -1=3m for some m ∈ ℤ. Hence, n2- n=(3m+1)2- (3m+1)=9m2+3m = 3(3m2+m) = 3p, where p = 3m2+m is an integer. Hence 3| (n2-n) and so n2 ≡ n (mod 3).  ≡/≡/ ≡/ Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 14. Proofs Involving Real Numbers 14 Some facts about real numbers that can be used without justification.  a2≥0 for every real number a.  an≥0 for every real number a if n is a positive even integer.  If a<0 and n is a positive odd integer, then an<0.  The product of two real numbers is positive iff both numbers are positive or both are negative.  If the product of two real numbers is 0, then at least one of these numbers is 0.  Let a, b, c ∈R. If a ≥b and c ≥0, then ac ≥ bc; and if c>0, then a/c ≥b/c.  If a>b and c>0, then ac>bc and a/c>b/c.  If a>b and c<0, then ac<bc and a/c<b/c. Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 15. Proofs Involving Real Numbers (Cont…) 15 Result: Let x ∈ ℝ. if x3-5x2+3x=15, then x =5. Proof: (Direct Proof) Assume that x3-5x2+3x=15 ⇒ x3-5x2+3x-15 = 0 ⇒ x2(x-5) +3(x-5)=0 ⇒ (x2+3)(x-5)=0 But we have the following theorem: “If x and y are real numbers such that xy=0, then x=0 or y=0.” Therefore, (x2+3)= 0 or (x-5)=0. But x2+3 >0, so (x-5)=0, i.e. x=5. Hence x=5. Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 16. Proofs Involving Real Numbers (Cont…) 16 Result: Let x ∈R. if x5-3x4+2x3-x2+4x-1 ≥0, then x ≥0. Proof: (Proof by Contrapositive) Assume that x <0. Then x5<0, x4 >0 ⇒ -3x4 <0 x3<0, x2>0 ⇒ -x2<0 and 4x<0. Thus x5-3x4+2x3-x2+4x-1<0-1<0, as desired.  Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 17. Result: If x,y ∈ℝ, then x2/3+(3y2)/4 ≥ xy. Proof: (Direct Proof) Assume that x,y ∈ℝ. Now x2/3+(3y2)/4 ≥ xy ⇒ (4x2+ 9y2) ≥ 12xy ⇒ (4x2+ 9y2) - 12xy ≥ 0 ⇒(2x-3y)2 ≥ 0, this is true for any x,y ∈ℝ. Therefore x2/3+(3y2)/4 ≥ xy.  17 Proofs Involving Real Numbers (Cont…) Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 18. Proofs Involving sets 18  Recall, for set A and B contained in some universal set U, A ∪ B = {x| x ∈ A or x ∈ B}. A ∩ B = {x| x ∈ A and x ∈ B}. A – B = {x| x ∈ A and x ∉ B}. Ac = {x| x ∉ A and x ∈ U} = U-A.  To show that C ⊆ D, we need to show that every element of C is also an element of D; that is, if x ∈ C then x ∈ D.  To show the equality of two sets C and D, we need to show that C ⊆ D and D ⊆ C. Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 19. Proofs Involving sets (Cont…) 19 Result. For every two sets A and B, A-B = A ∩ Bc . Proof. First we show that A-B ⊆ A∩Bc . Let x ∈ A-B ⇒ x ∈A and x∉B ⇒ x ∈A and x ∈ Bc , since x∉ B Therefore, A-B ⊆A∩ Bc . Next we show that A∩Bc ⊆ A- B. Let y ∈ A∩Bc ⇒ y∈A and y∈Bc ⇒ y∈A and y∉B , since y ∈Bc Thus, A∩ Bc ⊆ A-B.  10/10/2014 Copyright © Nahid Sultana 2014-2015.
  • 20. 20 Result. Let A and B be sets. Then A∪B= A if and only if B ⊆ A. Proof. First we prove that if A∪B= A, then B ⊆ A. (proof by contrapositive) Assume that B ⊈ A ⇒ x ∈ B and x ∉ A ⇒ x∈ A∪B, Since x ∈ B and A∪B ={x| x∈A or x∈B}. But x ∉ A i.e. A ∪ B ≠ A. Next we prove the converse, i.e. if B ⊆ A, then A∪B=A. (direct proof) Assume that B ⊆ A. To show A∪B= A, we need to show that A ⊆ A∪B and A ∪ B ⊆ A . But by the definition of union A ⊆ A∪B. To prove A ∪ B ⊆A, assume that y∈ A ∪ B ⇒ y∈A or y∈B. Case 1: If y∈A, then A ∪ B ⊆ A as also y ∈ A ∪ B by assumption. Case2: If y∈ B then A ∪ B ⊆ B ⇒ A ∪ B ⊆ A as B⊆ A. Thus A∪B= A.  Proofs Involving sets (Cont…) Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 21. Fundamental Properties of Set Operations 21  Commutative laws  Associative laws  Distributive laws Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 22. Fundamental Properties of Set Operations (Cont…) 22  De Morgan’s laws  Absorption laws Complement laws Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 23. 23 DeMorgan’s Law: For any sets A and B, (A ∪ B)c = Ac ∩ B c Proof. Assume that x∈(A ∪ B)c ⇒ x ∉ A ∪ B ⇒ x∉ A and x∉ B ⇒x∈Ac and x∈Bc ⇒ x∈ Ac ∩ Bc . Therefore, (A ∪ B)c ⊆ Ac ∩ Bc Next assume that x∈ Ac ∩ Bc ⇒ x∈Ac and x∈Bc ⇒x∉ A and x∉B ⇒ x ∉ A ∪ B ⇒x∈(A ∪ B)c Therefore, Ac ∩ Bc ⊆(A ∪ B)c. Hence (A ∪B)c = Ac ∩ Bc.  Fundamental Properties of Set Operations (Cont…) Copyright © Nahid Sultana 2014-2015. 10/10/2014
  • 24. Proofs involving Cartesian products of sets 24 Definition: The Cartesian product of two sets A and B is the set of all ordered pairs (a, b) with a∈ A and b∈ B, i.e. A×B = {(a,b)|a∈A and b∈B}. Theorem: If A= Φ or B= Φ, then A×B =Φ. Theorem: If A, B, C, and D are sets such that A ⊆ C and B ⊆ D, then A × B ⊆ C × D. Proof: Assume that A ⊆ c and B ⊆ D. Now let (x,y)∈ A × B ⇒ x∈A and y∈B ⇒ x∈C and y∈D, as A⊆ C and B ⊆ D. Therefore A×B⊆ C×D.  10/10/2014 Copyright © Nahid Sultana 2014-2015.
  • 25. Proofs involving Cartesian products of sets (Cont…) 25 Theorem: For sets A, B and C, A×(B∪C) = (A×B) ∪ (A×C). Proof: Assume that (x,y)∈A×(B∪C) ⇒ x∈ A and {y∈ B or y∈C} ⇒ {x∈A and y∈B} or {x∈A and y∈C} ⇒(x,y)∈A×B or (x,y)∈A×C ⇒(x,y)∈(A×B) ∪ (A×C). Therefore, A×(B∪C) ⊆ (A×B) ∪ (A×C). Assume that (x,y)∈ (A×B) ∪ (A×C) ⇒(x,y)∈A×B or (x,y)∈A×C ⇒ {x∈A and y∈B} or {x∈A and y∈C} ⇒x∈ A and {y∈ B or y∈C} ⇒ (x,y)∈A×(B∪C). Therefore, (A×B) ∪ (A×C) ⊆ A×(B∪C) . Hence A×(B∪C) = (A×B) ∪ (A×C).  10/10/2014 Copyright © Nahid Sultana 2014-2015.
  • 26. Proofs involving Cartesian products of sets (Cont…) 26 Result: For sets A, B and C, A×(B-C) = (A×B) - (A×C). Proof: Assume that (x,y)∈A×(B-C) ⇒ x∈A and y∈ B-C ⇒ x∈ A and {y∈ B and y∉C} ⇒ {x∈A and y∈B} and {x∈A and y∉C} ⇒(x,y)∈A×B and (x,y)∉A×C, as y∉C ⇒(x,y)∈(A×B) - (A×C). Therefore A×(B-C) ⊆ (A×B) - (A×C). Now Assume that (x,y)∈ (A×B)-(A×C) ⇒(x,y)∈A×B and (x,y)∉A×C ⇒ {x∈A and y∈B} and {x∈A and y∉C} as x∈ A ⇒x∈ A and {y∈ B and y∉C} ⇒ x∈A and y∈ B-C ⇒ (x,y)∈A×(B-C). Therefore (A×B) - (A×C )⊆ A×(B-C). Hence A×(B-C) = (A×B) - (A×C).  10/10/2014 Copyright © Nahid Sultana 2014-2015.