SlideShare a Scribd company logo
1 of 12
Download to read offline
Biomolecular ions Soft-Landing on Surfaces:
First Observation of Charge Loss and Desorption Kinetics
                    Omar Hadjar
                 J. H. Futrell, J. Laskin
                                                         AVS
                                                      Seattle 2007


             Pacific Northwest National Laboratory,
                    Environmental Molecular
                      Sciences Laboratory,
                      Richland, Washington
Motivation
 mass-selected ions
 Soft-Landing (SL)


                                            Specific and prompt
                                            surface modification
                                               with minimum
purification of                              amount of material
material using ion
deposition




                         fundamental
                       understanding of
                       charge retention,
                         charge loss,
                      desorption kinetics
Systems
                •Cyclic Gramicidin S (GS), M=1141 amu
                Left: view perpendicular to the plane of the ring, illustrating
                the peptide backbone structure. The antiparallel  -sheet
                region is stabilized by hydrogen bonds.
                Right: side-view, indicating the disposition in space of the
                hydrophobic Val and Leu residues (left) and the basic Orn
                (right) relative to the peptide ring.
                •Protonation state: 1, 2
                •Soft Landing energy: 1 to 100 eV




     Terminal
      Group

                The Alkyl thiol based SAMs consist of three parts: namely,
                the thiol group (SH) which covalently bonds the two
                dimensional crystal to the Au by loss of a hydrogen atom, a
                spacer group (CH2)n defining the length of the molecule and
      (CH2)n    the terminal group responsible for modified surface
                reactivity towards the soft landed ionic peptide.
                Used here are CF3 , CH3 and COOH terminal groups

SH
FT-ICR-SIMS Instrument Schematic
                                                                            +26V   20l/h of 0.1             +(2-3) kV
                                                                            C.Q.   mM peptide
  +20V              +20V
                                           Collision               +15V        1     solution                       Electrospray
                                            energy                 C.L.
   0V       0V
                                                                    2                                                   Ion
  Back                                          -5V                                    10-1 Torr
                                                C.O.                                                                   Funnel
  Trap
    +      -30V     -30V
                                                  3
 surface   Ring    Front               -45V                -45V
                   Trap                Trap2               Trap1                                                    Collision Quadrupole     1
            5                                                                         2*10-2 Torr


    SIMS                                                                              Ar Gas                        Conductance Limit    2
                             -250V
Soft Landing                                                                           line
                           Ion Guide   4

                                                                                      5*10-5 Torr                     Resolving Quadrupole
                  Back                        Front
                  Trap                        Trap
                                                                                                                    Gas cell Collision   3
                                                       6T                                                              Octopole

                                                      Field                          5*10-8 Torr
        Movable
                                                                    7*10-10 Torr                                                     8 keV Cs+
                            8 Segments Ring                                                                                             Gun
         Surface
        for SIMS
       subsequent                                                                                                               -V
      Soft Landing                                                                                  Electrostatic
                                                 ICR Cell          Flight Tube                       Ion Guide        4
                         40 by 40 mm cell
                                                       5
Experiment Principles: Ion Deposition &
        Surface Analysis
                                                                               Au2SH+
                                                                                                                   Alternating exposure of the
                                                                                 Au3+
                                                                                                                   surface to both beams
                                                                                       Au3S+
                                                                       Au2+
                                                             AuCF2+


                                                                 200     400     600     800   1000   1200
                                                                                                         m/z                       real time SIMS
                                                                                                                    during and after Soft-Landing

                                                                                 (GS+2H)2+
                                                                                                                  500
                                                                                  Ion Beam
                                                                                                                  400
                             8 keV                                                                     8 keV
                                                                                                                  300
                               Cs+                                                                       Cs+
                                                                                                                  200              Surface peak: Au2SH+
                           ex situ                     571.0 571.5 572.0 572.5 573.0 573.5                        100
                                                                                               m/z
                           TOF-SIMS                                                                                 0
                           Line Scan                                           (GS/2+H)+               (GS+H)+
                  10
                       5                                                                                           1.2

                       4
                                                    Au+                                                            1.0
                  10                                                                                               0.8
                                                                                                                                           (GS+2H)2+
TOF SIMS Signal




                  10
                       3            Peptide                                             (GS+2H)2+                  0.6
                                                                  PVO+                                             0.4
                  10
                       2
                                                                                                       (GS+Au)+    0.2
                       1
                                Cs+                                                                                0.0
                  10
                                                                 200     400     600     800   1000   1200               0   50 100 150 200 250 300 350 400 450 500 550
                       0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5                                           m/z                             Time (min)
                                  Line Scan (mm)
Kinetics of Peptide related peaks after S.L.
   0.08
                                                                                       0.24
   0.07                            70        0.12
                                                                            115        0.21                           169        0.03                           192        0.03                            233
   0.06                                      0.10
                                                                                       0.18
   0.05                                      0.08                                      0.15
   0.04                                      0.06                                      0.12
                                                                                                                                 0.02                                      0.02
                                                                                                                                                                                              (LF-28)+
   0.03                                                                                0.09
                                             0.04                                                                                0.01                                      0.01
   0.02                                                                                0.06
                                             0.02
   0.01
   0.00
                      P+                     0.00
                                                                O+                     0.03
                                                                                       0.00
                                                                                                   (PV-28)+                      0.00                                      0.00
          0   100    200   300   400   500          0   100   200    300   400   500          0   100   200   300    400   500          0   100    200   300   400   500          0    100    200   300   400   500
                    time (min)                                time (min)                                time (min)                                time (min)                                 time (min)




                                                                                       0.12
   0.08
   0.07                           261         0.8                           311        0.10                           429        0.04                            441        0.4                            457
   0.06                                                                                0.08                                      0.03
                                              0.6                                                                                                                           0.3
   0.05
   0.04             LF+                       0.4
                                                                                       0.06
                                                                                                                                 0.02
                                                                                                                                            (FPVO-NH3)+
                                                                                                                                                                            0.2
   0.03                                                                                0.04
   0.02                                       0.2                                                                                0.01                                       0.1
                                                                                       0.02
   0.01
   0.00                                       0.0
                                                              PVO+                     0.00
                                                                                                  (LFPV-28)+                     0.00                                                        (LFPV)+
                                                                                                                                                                            0.0
          0   100   200    300   400   500          0   100    200   300   400   500          0   100   200   300    400   500          0   100   200    300   400   500          0    100    200   300   400   500
                    time (min)                                time (min)                                time (min)                                time (min)                                 time (min)




                                                                                       0.08                                         6
    1.4
    1.2
                             571.5            1.2
                                                                           572         0.07                          813            5                          1142        0.30                           1338
                                              1.0                                      0.06                                                                                0.25
    1.0                                                                                0.05                                         4
                                              0.8                                                                                                                          0.20
    0.8                                                                                0.04                                         3
                                              0.6                                                                                                                          0.15
    0.6                                                                                0.03
                                              0.4                                                                                   2
                                                                                                                                                                           0.10
    0.4
    0.2
              (0GS/2)+                        0.2
                                                                     1GS2+             0.02
                                                                                       0.01                                         1        GS+                           0.05
                                                                                                                                                                                      (GS+Au)+
    0.0                                       0.0                                      0.00                                         0                                      0.00
          0   100    200   300   400   500          0   100    200   300   400   500          0   100   200   300    400   500          0   100    200   300   400   500          0    100    200   300   400   500
                    time (min)                                time (min)                                time (min)                                time (min)                                 time (min)
Kinetics Model during and after S.L.
    A* = SA A +FIB B                B* = SB B + FIC C              C’ = SC C

           A*                               B*                           C’           SIMS
                                                                      Fragments
                                                                                    Population
          z=2           FIB                z=1          FIC         from neutrals




                               k2                             k4                        k5
   R

           A          charge loss
                                         B         charge loss
                                                                       C             Surface
          z=2                        k1 z=1                        k3 z=0           Population


         S.L. induced sudden charge loss
                                           FB                            FC
                                                    and neutralization

dA/dt = -(k1+k2)A + R      dB/dt = -(k3+k4)B + k1A + FBR           dC/dt = -k5C + k3B + FCR
Experimental Results & Kinetics Model Fit

                                                                                                                             Charge
 0.9
                                                                                                Best simultaneous fit
                                                                                                                            Reduction: Desorption:
                                                                                                of the three populations      (min-1)   (min-1)
 0.6


                                                                                (GS+2H)2+                                   k1 ~ 10-2      k2  10-4
 0.3


 0.0
                                  0     100        200    300             400     500     600
                                              3


                                              2
FT-ICR-SIMS signal (arb. units)




                                              1                                           (GS+H)+                           k3 ~ 2*10-5   k4 ~ 6*10-4

                                              0
                                                   0     100          200        300     400      500    600


                                                                0.4
                                        End
                                       of S.L.                  0.2
                                                                                                               GS0                         k5 ~ 10-3
                                      Time (min)                0.0
                                                                      0         100     200      300    400     500   600
Surface Effect on Charge Retention
             PVO+                                                     GS+
            m/z=311                                                 m/z=1141
                   0.30                         (GS/2)+                                     GS+                                              PVO+
          100                                   m/z=571                                   m/z=1141
                                                                                                            FT-ICR-SIMS signal              m/z=311
COOHSAM




                                                                            GS+/PVO+
           50
                                                                                                                                                      4
                                       571     572    573     574
                                                                                        1.0                                                           3
                                                                                                                                                      2
            0                                                                           0.5
             300     400   500   600     700   800    900   1000    1100                                                                              1
                                                                           m/z
                                                                                        0.0                                                           0
                                                (GS/2)+
                                                                                        1.5
          100
                                                m/z=571
                1.11                                                                                                                                  0.9
HSAM




                                                                                        1.0
                                                                                                                                                      0.6
          50                           571     572    573     574                       0.5
                                                                                                                                                      0.3
                                                                                        0.0                                                           0.0
           0                                                                              6                                                           0.9
            300      400   500   600     700    800   900   1000    1100
                                                                           m/z
FSAM




                                                                                          4                                                           0.6
          900
                                                (GS/2)+
                                                m/z=571                                   2                                                           0.3
                                                             GS2+
          600
                                                                                          0                                                           0.0
                                                                                              0       100    200      300       400   500       600
                                       571     572    573     574
          300   6.26                                                                                               Time (min)
                                                                                        t0= end of
           0
            300      400   500   600     700    800   900   1000    1100
                                                                           m/z
                                                                                       Soft-Landing


                                 Snapshot @ t0
Effect of the Charge State on the Kinetics
  180

  160         GS2+                                                                                              100
                                                                                                                             GS+
  140
                                                                                                                 80
  120

  100                                                                                                            60

   80
                                                                                                                 40
   60

   40
                                                                                                                 20
   20


        200    400   600     800   1000   1200   1400                                                                  200    400         600      800   1000    1200     1400
                           m/z                                                                                                                  m/z

                                                                                                   0      100         200      300               400      500           600      700

                                                        FT-ICR-SIMS (normalized GS signal)   3.0
                                                                                                                                                                                       2.5
  GS2+ vs 1+                S.L.
                                                        +




                                                                                             2.5
                                                                                                                                                                                       2.0
                                                                                             2.0
                                                                                                                                                                                       1.5
                                                                                             1.5
                                                                                                                                                                                       1.0
                                                                                             1.0

   GS1+              SIMS                                                                    0.5                               t0 end of soft                                          0.5
                                                                                                                                  Landing
                                                                                             0.0                                                                                       0.0
                                                                                                   -100     0          100          200          300       400          500      600
                                                                                                                                     Time (min)
Conclusion
 ♣ S.L.-SIMS: New tool for fundamental understanding of ion-surface interactions

   ♣ First observation of charge loss & desorption of soft landed ions in real time

     ♣ Excellent agreement between experiments & a simple kinetic model

        ♣ First experimental values of rate constants produced



What have we learned:
               ♣ Proton loss governs GS2+ signal decay

                  ♣ Desorption governs GS+ signal decay

                    ♣ Sudden neutralization governs GS0 formation

                       ♣ FSAM retains more charges than H & COOH-SAM
Thanks:
                     Julia Laskin
          Peng Wang                   Zhibo Yang




           • Chemical Sciences Division (CSD)
           • Office of Basic Energy Sciences (BES) of the US Department of Energy.
           • Laboratory Directed Research and Development (LDRD) Program at PNNL.

More Related Content

What's hot

Perhitungan korosi standard NACE (AA)
Perhitungan korosi standard NACE (AA)Perhitungan korosi standard NACE (AA)
Perhitungan korosi standard NACE (AA)Abrianto Akuan
 
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsTuong Do
 
лекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbлекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbSergey Sozykin
 
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
In Situ Meas Ecs 213 May 2008
In Situ Meas Ecs 213 May 2008In Situ Meas Ecs 213 May 2008
In Situ Meas Ecs 213 May 2008gregaroche
 
8.3 P Electrical Bistability
8.3   P  Electrical Bistability8.3   P  Electrical Bistability
8.3 P Electrical BistabilitySougata Pahari
 
Lattice Energy LLC-Nickel Seed W-L LENR Nucleosynthetic Network-March 24 2011
Lattice Energy LLC-Nickel Seed W-L LENR Nucleosynthetic Network-March 24 2011Lattice Energy LLC-Nickel Seed W-L LENR Nucleosynthetic Network-March 24 2011
Lattice Energy LLC-Nickel Seed W-L LENR Nucleosynthetic Network-March 24 2011Lewis Larsen
 
Chapter vii direct current circuits new
Chapter vii direct current circuits newChapter vii direct current circuits new
Chapter vii direct current circuits newrozi arrozi
 
Ee1 chapter3 resistors_inseries
Ee1 chapter3 resistors_inseriesEe1 chapter3 resistors_inseries
Ee1 chapter3 resistors_inseriesCK Yang
 
SPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARKSPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARKTsuyoshi Horigome
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Tuong Do
 
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...Sanjay Ram
 

What's hot (19)

Perhitungan korosi standard NACE (AA)
Perhitungan korosi standard NACE (AA)Perhitungan korosi standard NACE (AA)
Perhitungan korosi standard NACE (AA)
 
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
 
Exp5 bani
Exp5 baniExp5 bani
Exp5 bani
 
лекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbлекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsb
 
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
 
In Situ Meas Ecs 213 May 2008
In Situ Meas Ecs 213 May 2008In Situ Meas Ecs 213 May 2008
In Situ Meas Ecs 213 May 2008
 
Lecture9: 123.101
Lecture9: 123.101Lecture9: 123.101
Lecture9: 123.101
 
Morales
MoralesMorales
Morales
 
2 n60
2 n602 n60
2 n60
 
8.3 P Electrical Bistability
8.3   P  Electrical Bistability8.3   P  Electrical Bistability
8.3 P Electrical Bistability
 
1 n4148 1n4448
1 n4148 1n44481 n4148 1n4448
1 n4148 1n4448
 
Lattice Energy LLC-Nickel Seed W-L LENR Nucleosynthetic Network-March 24 2011
Lattice Energy LLC-Nickel Seed W-L LENR Nucleosynthetic Network-March 24 2011Lattice Energy LLC-Nickel Seed W-L LENR Nucleosynthetic Network-March 24 2011
Lattice Energy LLC-Nickel Seed W-L LENR Nucleosynthetic Network-March 24 2011
 
Chapter vii direct current circuits new
Chapter vii direct current circuits newChapter vii direct current circuits new
Chapter vii direct current circuits new
 
Ee1 chapter3 resistors_inseries
Ee1 chapter3 resistors_inseriesEe1 chapter3 resistors_inseries
Ee1 chapter3 resistors_inseries
 
By329 diodo simple
By329 diodo simpleBy329 diodo simple
By329 diodo simple
 
SPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARKSPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARK
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
 
Objectives
ObjectivesObjectives
Objectives
 
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
 

Similar to AVS 2007: selective biomolecular ion soft landing

Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopynirupam12
 
Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009malcolmmackley
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Bostonbmazumder
 
15.30 o5 a kaiser
15.30 o5 a kaiser15.30 o5 a kaiser
15.30 o5 a kaiserNZIP
 
Ev os andhutchisoneffect
Ev os andhutchisoneffectEv os andhutchisoneffect
Ev os andhutchisoneffectJohn Hutchison
 
Ev os%20and%20 hutchison%20effect
Ev os%20and%20 hutchison%20effectEv os%20and%20 hutchison%20effect
Ev os%20and%20 hutchison%20effectJohn Hutchison
 
NanowireSensor
NanowireSensorNanowireSensor
NanowireSensordalgetty
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
Pira - Cylindrical post magnetron sputtering
Pira - Cylindrical post magnetron sputteringPira - Cylindrical post magnetron sputtering
Pira - Cylindrical post magnetron sputteringthinfilmsworkshop
 
Charge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsCharge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsAstroAtom
 
Clark MRS Spring Meeting Presentation
Clark MRS Spring Meeting PresentationClark MRS Spring Meeting Presentation
Clark MRS Spring Meeting PresentationBrandon Clark
 
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...Sanjay Ram
 
Development Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma DisplaysDevelopment Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma DisplaysSanjay Ram
 
Electrically Symmetric Poly(Phenylene Acetylene) Diodes
Electrically Symmetric Poly(Phenylene Acetylene) DiodesElectrically Symmetric Poly(Phenylene Acetylene) Diodes
Electrically Symmetric Poly(Phenylene Acetylene) DiodesJeffrey Gold
 
Ecs 221 zn_o-fianall
Ecs 221 zn_o-fianallEcs 221 zn_o-fianall
Ecs 221 zn_o-fianallArun Kumar
 
Properties of electrostatic and electromagnetic turbulence in reversed magnet...
Properties of electrostatic and electromagnetic turbulence in reversed magnet...Properties of electrostatic and electromagnetic turbulence in reversed magnet...
Properties of electrostatic and electromagnetic turbulence in reversed magnet...Wenjun Deng
 
Fatigue behavior of welded steel
Fatigue behavior of welded steelFatigue behavior of welded steel
Fatigue behavior of welded steelAygMA
 

Similar to AVS 2007: selective biomolecular ion soft landing (20)

Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Boston
 
15.30 o5 a kaiser
15.30 o5 a kaiser15.30 o5 a kaiser
15.30 o5 a kaiser
 
Ev os andhutchisoneffect
Ev os andhutchisoneffectEv os andhutchisoneffect
Ev os andhutchisoneffect
 
Ev os%20and%20 hutchison%20effect
Ev os%20and%20 hutchison%20effectEv os%20and%20 hutchison%20effect
Ev os%20and%20 hutchison%20effect
 
NanowireSensor
NanowireSensorNanowireSensor
NanowireSensor
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
Pira - Cylindrical post magnetron sputtering
Pira - Cylindrical post magnetron sputteringPira - Cylindrical post magnetron sputtering
Pira - Cylindrical post magnetron sputtering
 
Charge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsCharge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ions
 
Zwilling
ZwillingZwilling
Zwilling
 
Clark MRS Spring Meeting Presentation
Clark MRS Spring Meeting PresentationClark MRS Spring Meeting Presentation
Clark MRS Spring Meeting Presentation
 
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
 
Development Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma DisplaysDevelopment Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma Displays
 
Electrically Symmetric Poly(Phenylene Acetylene) Diodes
Electrically Symmetric Poly(Phenylene Acetylene) DiodesElectrically Symmetric Poly(Phenylene Acetylene) Diodes
Electrically Symmetric Poly(Phenylene Acetylene) Diodes
 
Ecs 221 zn_o-fianall
Ecs 221 zn_o-fianallEcs 221 zn_o-fianall
Ecs 221 zn_o-fianall
 
Properties of electrostatic and electromagnetic turbulence in reversed magnet...
Properties of electrostatic and electromagnetic turbulence in reversed magnet...Properties of electrostatic and electromagnetic turbulence in reversed magnet...
Properties of electrostatic and electromagnetic turbulence in reversed magnet...
 
Fatigue behavior of welded steel
Fatigue behavior of welded steelFatigue behavior of welded steel
Fatigue behavior of welded steel
 
Mott insulators
Mott insulatorsMott insulators
Mott insulators
 
Sebastian
SebastianSebastian
Sebastian
 

AVS 2007: selective biomolecular ion soft landing

  • 1. Biomolecular ions Soft-Landing on Surfaces: First Observation of Charge Loss and Desorption Kinetics Omar Hadjar J. H. Futrell, J. Laskin AVS Seattle 2007 Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, Washington
  • 2. Motivation mass-selected ions Soft-Landing (SL) Specific and prompt surface modification with minimum purification of amount of material material using ion deposition fundamental understanding of charge retention, charge loss, desorption kinetics
  • 3. Systems •Cyclic Gramicidin S (GS), M=1141 amu Left: view perpendicular to the plane of the ring, illustrating the peptide backbone structure. The antiparallel  -sheet region is stabilized by hydrogen bonds. Right: side-view, indicating the disposition in space of the hydrophobic Val and Leu residues (left) and the basic Orn (right) relative to the peptide ring. •Protonation state: 1, 2 •Soft Landing energy: 1 to 100 eV Terminal Group The Alkyl thiol based SAMs consist of three parts: namely, the thiol group (SH) which covalently bonds the two dimensional crystal to the Au by loss of a hydrogen atom, a spacer group (CH2)n defining the length of the molecule and (CH2)n the terminal group responsible for modified surface reactivity towards the soft landed ionic peptide. Used here are CF3 , CH3 and COOH terminal groups SH
  • 4. FT-ICR-SIMS Instrument Schematic +26V 20l/h of 0.1 +(2-3) kV C.Q. mM peptide +20V +20V Collision +15V 1 solution Electrospray energy C.L. 0V 0V 2 Ion Back -5V 10-1 Torr C.O. Funnel Trap + -30V -30V 3 surface Ring Front -45V -45V Trap Trap2 Trap1 Collision Quadrupole 1 5 2*10-2 Torr SIMS Ar Gas Conductance Limit 2 -250V Soft Landing line Ion Guide 4 5*10-5 Torr Resolving Quadrupole Back Front Trap Trap Gas cell Collision 3 6T Octopole Field 5*10-8 Torr Movable 7*10-10 Torr 8 keV Cs+ 8 Segments Ring Gun Surface for SIMS subsequent -V Soft Landing Electrostatic ICR Cell Flight Tube Ion Guide 4 40 by 40 mm cell 5
  • 5. Experiment Principles: Ion Deposition & Surface Analysis Au2SH+ Alternating exposure of the Au3+ surface to both beams Au3S+ Au2+ AuCF2+ 200 400 600 800 1000 1200 m/z real time SIMS during and after Soft-Landing (GS+2H)2+ 500 Ion Beam 400 8 keV 8 keV 300 Cs+ Cs+ 200 Surface peak: Au2SH+ ex situ 571.0 571.5 572.0 572.5 573.0 573.5 100 m/z TOF-SIMS 0 Line Scan (GS/2+H)+ (GS+H)+ 10 5 1.2 4 Au+ 1.0 10 0.8 (GS+2H)2+ TOF SIMS Signal 10 3 Peptide (GS+2H)2+ 0.6 PVO+ 0.4 10 2 (GS+Au)+ 0.2 1 Cs+ 0.0 10 200 400 600 800 1000 1200 0 50 100 150 200 250 300 350 400 450 500 550 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 m/z Time (min) Line Scan (mm)
  • 6. Kinetics of Peptide related peaks after S.L. 0.08 0.24 0.07 70 0.12 115 0.21 169 0.03 192 0.03 233 0.06 0.10 0.18 0.05 0.08 0.15 0.04 0.06 0.12 0.02 0.02 (LF-28)+ 0.03 0.09 0.04 0.01 0.01 0.02 0.06 0.02 0.01 0.00 P+ 0.00 O+ 0.03 0.00 (PV-28)+ 0.00 0.00 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 time (min) time (min) time (min) time (min) time (min) 0.12 0.08 0.07 261 0.8 311 0.10 429 0.04 441 0.4 457 0.06 0.08 0.03 0.6 0.3 0.05 0.04 LF+ 0.4 0.06 0.02 (FPVO-NH3)+ 0.2 0.03 0.04 0.02 0.2 0.01 0.1 0.02 0.01 0.00 0.0 PVO+ 0.00 (LFPV-28)+ 0.00 (LFPV)+ 0.0 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 time (min) time (min) time (min) time (min) time (min) 0.08 6 1.4 1.2 571.5 1.2 572 0.07 813 5 1142 0.30 1338 1.0 0.06 0.25 1.0 0.05 4 0.8 0.20 0.8 0.04 3 0.6 0.15 0.6 0.03 0.4 2 0.10 0.4 0.2 (0GS/2)+ 0.2 1GS2+ 0.02 0.01 1 GS+ 0.05 (GS+Au)+ 0.0 0.0 0.00 0 0.00 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 time (min) time (min) time (min) time (min) time (min)
  • 7. Kinetics Model during and after S.L. A* = SA A +FIB B B* = SB B + FIC C C’ = SC C A* B* C’ SIMS Fragments Population z=2 FIB z=1 FIC from neutrals k2 k4 k5 R A charge loss B charge loss C Surface z=2 k1 z=1 k3 z=0 Population S.L. induced sudden charge loss FB FC and neutralization dA/dt = -(k1+k2)A + R dB/dt = -(k3+k4)B + k1A + FBR dC/dt = -k5C + k3B + FCR
  • 8. Experimental Results & Kinetics Model Fit Charge 0.9 Best simultaneous fit Reduction: Desorption: of the three populations (min-1) (min-1) 0.6 (GS+2H)2+ k1 ~ 10-2 k2  10-4 0.3 0.0 0 100 200 300 400 500 600 3 2 FT-ICR-SIMS signal (arb. units) 1 (GS+H)+ k3 ~ 2*10-5 k4 ~ 6*10-4 0 0 100 200 300 400 500 600 0.4 End of S.L. 0.2 GS0 k5 ~ 10-3 Time (min) 0.0 0 100 200 300 400 500 600
  • 9. Surface Effect on Charge Retention PVO+ GS+ m/z=311 m/z=1141 0.30 (GS/2)+ GS+ PVO+ 100 m/z=571 m/z=1141 FT-ICR-SIMS signal m/z=311 COOHSAM GS+/PVO+ 50 4 571 572 573 574 1.0 3 2 0 0.5 300 400 500 600 700 800 900 1000 1100 1 m/z 0.0 0 (GS/2)+ 1.5 100 m/z=571 1.11 0.9 HSAM 1.0 0.6 50 571 572 573 574 0.5 0.3 0.0 0.0 0 6 0.9 300 400 500 600 700 800 900 1000 1100 m/z FSAM 4 0.6 900 (GS/2)+ m/z=571 2 0.3 GS2+ 600 0 0.0 0 100 200 300 400 500 600 571 572 573 574 300 6.26 Time (min) t0= end of 0 300 400 500 600 700 800 900 1000 1100 m/z Soft-Landing Snapshot @ t0
  • 10. Effect of the Charge State on the Kinetics 180 160 GS2+ 100 GS+ 140 80 120 100 60 80 40 60 40 20 20 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 m/z m/z 0 100 200 300 400 500 600 700 FT-ICR-SIMS (normalized GS signal) 3.0 2.5 GS2+ vs 1+ S.L. + 2.5 2.0 2.0 1.5 1.5 1.0 1.0 GS1+ SIMS 0.5 t0 end of soft 0.5 Landing 0.0 0.0 -100 0 100 200 300 400 500 600 Time (min)
  • 11. Conclusion ♣ S.L.-SIMS: New tool for fundamental understanding of ion-surface interactions ♣ First observation of charge loss & desorption of soft landed ions in real time ♣ Excellent agreement between experiments & a simple kinetic model ♣ First experimental values of rate constants produced What have we learned: ♣ Proton loss governs GS2+ signal decay ♣ Desorption governs GS+ signal decay ♣ Sudden neutralization governs GS0 formation ♣ FSAM retains more charges than H & COOH-SAM
  • 12. Thanks: Julia Laskin Peng Wang Zhibo Yang • Chemical Sciences Division (CSD) • Office of Basic Energy Sciences (BES) of the US Department of Energy. • Laboratory Directed Research and Development (LDRD) Program at PNNL.