Big Data Innovation

Getting The Most Out Of Big 
Data 
Associate Professor Paul Hawking
“Can the amount of hype about Big Data be considered Big Data?”
What is Big Data?
Big Data is Not New 
Cox & Ellsworth 
“Data sets are 
generally quite large, 
taxing the capacities 
of main memory, 
local disk and even 
remote disk. We call 
this the problem of 
big data” 
1997 1998 1999 2001 
Masey 
“Big Data… and 
the Next Wave of 
Infrastress.” 
Bryson et al 
“Very powerful 
computers are a 
blessing to many 
fields of inquiry. They 
are also a curse; fast 
computations spew 
out massive 
amounts of data.” 
Laney 
3D Data 
Management: 
Controlling Data 
Volume, Velocity, 
and Variety
Characteristics – V’s 
Volume Velocity Variety Voldemort 
Big Data
Voldemort – The dark side of Big Data
Data Sources 
Big 
Data 
Transactions 
Machines 
Humans
What is Big Data? 
Danah Boyd & Kate Crawford (Microsoft) 
Big data is “a cultural, technological, and scholarly phenomenon 
that rests on the interplay of: 
 Technology: maximizing computation power and algorithmic accuracy 
to gather, analyze, link, and compare large data sets. 
 Analysis: drawing on large data sets to identify patterns in order to 
make economic, social, technical, and legal claims. 
 Mythology: the widespread belief that large data sets offer a higher form 
of intelligence and knowledge that can generate insights that were 
previously impossible, with the aura of truth, objectivity, and accuracy.
Big Data Innovation
Why the increased interest?
The vendors 
Prediction: Customers will leverage existing vendors’ technologies
Big Data Innovation
Business Intelligence Process 
1 
Identify 
business 
issue 
2 
Formulate 
business 
question 
3 
What 
information 
do I need 
4 
Where do I 
find the 
information 
5 
Retrieve 
information 
6 
Analyse 
Information 
7 
Report 
answers 
8 
Take 
actions
Goals of Big Data
Big Data Analysis 
Let’s act on it 
What is the best that can happen? 
What will happen next? 
Why is this happening? 
What actions are needed? 
Where exactly is the problem? 
How many, how often, where? 
What happened? 
Reports 
Ad Hoc 
Reports 
Query 
Drilldown 
Alerts 
Statistical 
Analysis 
Forecasting 
Predictive 
Analysis 
Optimisation 
Degree of Intelligence Maturity 
Competitive Advantage 
Proactive 
Decision 
Making 
Reactive 
Decision 
Making
Leading Companies 
Treacy & Wiersema 
The Discipline of market Leaders
Core/Context Framework 
Core  Engage 
Processes that create differentiation that wins customers 
Context  Disengage 
All other processes
Big Data Value = Analysis + Context 
Wisdom 
Intelligence 
Knowledge 
Information 
Data 
New business strategies, opportunities 
Lifetime value of this customer and 
strategies to deploy to create loyalty 
What the company has purchased, 
what other products they may 
purchase 
A contact associated to a 
Company and all back 
orders 
A Contact
Measuring Success and Value 
Overall Success 
Implementation 
Success 
User 
Success 
Operational 
Success 
Business 
Success 
• Create a formal, continuous process for measuring 
success and value generated 
• Identify and measure results of each initiative 
• Establish realistic goals and expectations based on 
capability / maturity 
• On-time, 
• On-budget 
• User adoption 
• Usage tracking 
• User satisfaction 
• Productivity 
improvements 
• Process 
efficiency and 
effectiveness 
• Return on investment 
• Economic value add 
• Revenue increases 
• Cost Savings 
• Customer / corporate 
profits 
• Enables Business 
Strategy and 
Completive Advantage 
Value Created
Who?
Meta Data 
Management 
Master Data 
Management 
Data Quality 
Data Integration 
Beware 
Big Data
Gartner Hype Cycle
Topic: 
Organized by 
Paul Hawking 
Associate Professor 
SAP Academic Programs Director 
College of Business 
Telephone: +61-3-99194031 
Mobile: +61-419301628 
Email Paul.Hawking@vu.edu.au 
Speaker name: 
Email ID: 
UNICOM Trainings & Seminars Pvt. Ltd. 
contact@unicomlearning.com 
Paulhawking #SAPVU
Big Data Innovation
Big Data Innovation
1 sur 25

Recommandé

Moving Data Science from an Event to A Program: Considerations in Creating Su... par
Moving Data Science from an Event to A Program: Considerations in Creating Su...Moving Data Science from an Event to A Program: Considerations in Creating Su...
Moving Data Science from an Event to A Program: Considerations in Creating Su...Domino Data Lab
293 vues11 diapositives
Data driven decision making process - infographic par
Data driven decision making process - infographicData driven decision making process - infographic
Data driven decision making process - infographicIntellspot
488 vues3 diapositives
Supporting innovation in insurance with randomized experimentation par
Supporting innovation in insurance with randomized experimentationSupporting innovation in insurance with randomized experimentation
Supporting innovation in insurance with randomized experimentationDomino Data Lab
662 vues22 diapositives
Data Quality Analytics: Understanding what is in your data, before using it par
Data Quality Analytics: Understanding what is in your data, before using itData Quality Analytics: Understanding what is in your data, before using it
Data Quality Analytics: Understanding what is in your data, before using itDomino Data Lab
1.1K vues14 diapositives
Bootstrap Big Data Webinar par
Bootstrap Big Data WebinarBootstrap Big Data Webinar
Bootstrap Big Data WebinarJane Truch
316 vues32 diapositives
The Five Data Questions par
The Five Data QuestionsThe Five Data Questions
The Five Data Questionscrystalpullen
1.4K vues7 diapositives

Contenu connexe

Tendances

Maggie Jan Keynote par
Maggie Jan KeynoteMaggie Jan Keynote
Maggie Jan KeynoteData Con LA
225 vues23 diapositives
Data Driven Culture with Slalom's Director of Analytics par
Data Driven Culture with Slalom's Director of AnalyticsData Driven Culture with Slalom's Director of Analytics
Data Driven Culture with Slalom's Director of AnalyticsPromotable
97 vues19 diapositives
Big Data Strategies par
Big Data StrategiesBig Data Strategies
Big Data StrategiesMisiek Piskorski
7.3K vues32 diapositives
Ian Swanson Keynote par
Ian Swanson KeynoteIan Swanson Keynote
Ian Swanson KeynoteData Con LA
291 vues9 diapositives
Philips Big Data Expo par
Philips Big Data ExpoPhilips Big Data Expo
Philips Big Data ExpoBigDataExpo
839 vues14 diapositives
big data analytics pgpmx2015 par
big data analytics pgpmx2015big data analytics pgpmx2015
big data analytics pgpmx2015Sanmeet Dhokay
135 vues16 diapositives

Tendances(20)

Data Driven Culture with Slalom's Director of Analytics par Promotable
Data Driven Culture with Slalom's Director of AnalyticsData Driven Culture with Slalom's Director of Analytics
Data Driven Culture with Slalom's Director of Analytics
Promotable97 vues
Philips Big Data Expo par BigDataExpo
Philips Big Data ExpoPhilips Big Data Expo
Philips Big Data Expo
BigDataExpo839 vues
Big Data Analytics in 2014 par Sagar Patil
Big Data Analytics in 2014Big Data Analytics in 2014
Big Data Analytics in 2014
Sagar Patil796 vues
Foundational Strategies for Trust in Big Data Part 2: Understanding Your Data par Precisely
Foundational Strategies for Trust in Big Data Part 2: Understanding Your DataFoundational Strategies for Trust in Big Data Part 2: Understanding Your Data
Foundational Strategies for Trust in Big Data Part 2: Understanding Your Data
Precisely81 vues
Foundational Strategies for Trust in Big Data Part 1: Getting Data to the Pla... par Precisely
Foundational Strategies for Trust in Big Data Part 1: Getting Data to the Pla...Foundational Strategies for Trust in Big Data Part 1: Getting Data to the Pla...
Foundational Strategies for Trust in Big Data Part 1: Getting Data to the Pla...
Precisely93 vues
How to use your data science team: Becoming a data-driven organization par Yael Garten
How to use your data science team: Becoming a data-driven organizationHow to use your data science team: Becoming a data-driven organization
How to use your data science team: Becoming a data-driven organization
Yael Garten739 vues
Oceans of big data: Take the plunge or wade in slowly? par Deloitte Canada
Oceans of big data: Take the plunge or wade in slowly?Oceans of big data: Take the plunge or wade in slowly?
Oceans of big data: Take the plunge or wade in slowly?
Deloitte Canada8.5K vues
Data driven in social meet up 20 minutes par Aman Sandhu
Data driven in social meet up 20 minutesData driven in social meet up 20 minutes
Data driven in social meet up 20 minutes
Aman Sandhu520 vues
Qubole State of the Big Data Industry par Qubole
Qubole State of the Big Data IndustryQubole State of the Big Data Industry
Qubole State of the Big Data Industry
Qubole1K vues
Cloud and business agility par Mike ORourke
Cloud and business agilityCloud and business agility
Cloud and business agility
Mike ORourke620 vues
Data is cheap; strategy still matters by Jason Lee par Data Con LA
Data is cheap; strategy still matters by Jason LeeData is cheap; strategy still matters by Jason Lee
Data is cheap; strategy still matters by Jason Lee
Data Con LA504 vues

En vedette

The Good Growth Plan & Open Data Innovation par
The Good Growth Plan & Open Data InnovationThe Good Growth Plan & Open Data Innovation
The Good Growth Plan & Open Data InnovationgodanSec
740 vues7 diapositives
PERAN KEPEMIMPINAN DALAM INOVASI PELAYANAN PUBLIK: Sebuah Aktualisasi Revolus... par
PERAN KEPEMIMPINAN DALAM INOVASI PELAYANAN PUBLIK: Sebuah Aktualisasi Revolus...PERAN KEPEMIMPINAN DALAM INOVASI PELAYANAN PUBLIK: Sebuah Aktualisasi Revolus...
PERAN KEPEMIMPINAN DALAM INOVASI PELAYANAN PUBLIK: Sebuah Aktualisasi Revolus...Tri Widodo W. UTOMO
3.5K vues28 diapositives
Penguatan Sistem Inovasi Daerah par
Penguatan Sistem Inovasi DaerahPenguatan Sistem Inovasi Daerah
Penguatan Sistem Inovasi DaerahMuh Saleh
2.4K vues14 diapositives
Issu-Issu Umum Dalam Pengembangan Inovasi Pemerintahan Daerah par
Issu-Issu Umum Dalam Pengembangan Inovasi Pemerintahan DaerahIssu-Issu Umum Dalam Pengembangan Inovasi Pemerintahan Daerah
Issu-Issu Umum Dalam Pengembangan Inovasi Pemerintahan DaerahTri Widodo W. UTOMO
4.9K vues34 diapositives
RB, Pelayanan Publik, dan Inovasi par
RB, Pelayanan Publik, dan InovasiRB, Pelayanan Publik, dan Inovasi
RB, Pelayanan Publik, dan InovasiTri Widodo W. UTOMO
3.1K vues19 diapositives
Menggali & Menemukan Ide Untuk Inovasi par
Menggali & Menemukan Ide Untuk InovasiMenggali & Menemukan Ide Untuk Inovasi
Menggali & Menemukan Ide Untuk InovasiTri Widodo W. UTOMO
3.1K vues15 diapositives

En vedette(12)

The Good Growth Plan & Open Data Innovation par godanSec
The Good Growth Plan & Open Data InnovationThe Good Growth Plan & Open Data Innovation
The Good Growth Plan & Open Data Innovation
godanSec740 vues
PERAN KEPEMIMPINAN DALAM INOVASI PELAYANAN PUBLIK: Sebuah Aktualisasi Revolus... par Tri Widodo W. UTOMO
PERAN KEPEMIMPINAN DALAM INOVASI PELAYANAN PUBLIK: Sebuah Aktualisasi Revolus...PERAN KEPEMIMPINAN DALAM INOVASI PELAYANAN PUBLIK: Sebuah Aktualisasi Revolus...
PERAN KEPEMIMPINAN DALAM INOVASI PELAYANAN PUBLIK: Sebuah Aktualisasi Revolus...
Penguatan Sistem Inovasi Daerah par Muh Saleh
Penguatan Sistem Inovasi DaerahPenguatan Sistem Inovasi Daerah
Penguatan Sistem Inovasi Daerah
Muh Saleh2.4K vues
Issu-Issu Umum Dalam Pengembangan Inovasi Pemerintahan Daerah par Tri Widodo W. UTOMO
Issu-Issu Umum Dalam Pengembangan Inovasi Pemerintahan DaerahIssu-Issu Umum Dalam Pengembangan Inovasi Pemerintahan Daerah
Issu-Issu Umum Dalam Pengembangan Inovasi Pemerintahan Daerah
From Big to Smart Data - Smart Data Innovation Lab Overview par Plamen Kiradjiev
From Big to Smart Data - Smart Data Innovation Lab OverviewFrom Big to Smart Data - Smart Data Innovation Lab Overview
From Big to Smart Data - Smart Data Innovation Lab Overview
Plamen Kiradjiev1.3K vues
Laboratorium Inovasi Sebagai Scaling-up Reformasi Sektor Publik par Tri Widodo W. UTOMO
Laboratorium Inovasi Sebagai Scaling-up Reformasi Sektor PublikLaboratorium Inovasi Sebagai Scaling-up Reformasi Sektor Publik
Laboratorium Inovasi Sebagai Scaling-up Reformasi Sektor Publik
How to Become a Thought Leader in Your Niche par Leslie Samuel
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your Niche
Leslie Samuel1.6M vues

Similaire à Big Data Innovation

Big Data Analytics_Unit1.pptx par
Big Data Analytics_Unit1.pptxBig Data Analytics_Unit1.pptx
Big Data Analytics_Unit1.pptxPrabhaJoshi4
10 vues31 diapositives
Big Data & Business Analytics: Understanding the Marketspace par
Big Data & Business Analytics: Understanding the MarketspaceBig Data & Business Analytics: Understanding the Marketspace
Big Data & Business Analytics: Understanding the MarketspaceBala Iyer
5.1K vues44 diapositives
Embracing data science par
Embracing data scienceEmbracing data science
Embracing data scienceVipul Kalamkar
227 vues42 diapositives
Nuestar "Big Data Cloud" Major Data Center Technology nuestarmobilemarketing... par
Nuestar "Big Data Cloud" Major Data Center Technology  nuestarmobilemarketing...Nuestar "Big Data Cloud" Major Data Center Technology  nuestarmobilemarketing...
Nuestar "Big Data Cloud" Major Data Center Technology nuestarmobilemarketing...IT Support Engineer
471 vues11 diapositives
Austrade Presentation - Big Data the New Oil (Microsoft draft) par
Austrade Presentation - Big Data the New Oil   (Microsoft draft)Austrade Presentation - Big Data the New Oil   (Microsoft draft)
Austrade Presentation - Big Data the New Oil (Microsoft draft)Dr Andrew Seit
1.2K vues45 diapositives
02 a holistic approach to big data par
02 a holistic approach to big data02 a holistic approach to big data
02 a holistic approach to big dataRaul Chong
3.9K vues68 diapositives

Similaire à Big Data Innovation(20)

Big Data Analytics_Unit1.pptx par PrabhaJoshi4
Big Data Analytics_Unit1.pptxBig Data Analytics_Unit1.pptx
Big Data Analytics_Unit1.pptx
PrabhaJoshi410 vues
Big Data & Business Analytics: Understanding the Marketspace par Bala Iyer
Big Data & Business Analytics: Understanding the MarketspaceBig Data & Business Analytics: Understanding the Marketspace
Big Data & Business Analytics: Understanding the Marketspace
Bala Iyer5.1K vues
Nuestar "Big Data Cloud" Major Data Center Technology nuestarmobilemarketing... par IT Support Engineer
Nuestar "Big Data Cloud" Major Data Center Technology  nuestarmobilemarketing...Nuestar "Big Data Cloud" Major Data Center Technology  nuestarmobilemarketing...
Nuestar "Big Data Cloud" Major Data Center Technology nuestarmobilemarketing...
Austrade Presentation - Big Data the New Oil (Microsoft draft) par Dr Andrew Seit
Austrade Presentation - Big Data the New Oil   (Microsoft draft)Austrade Presentation - Big Data the New Oil   (Microsoft draft)
Austrade Presentation - Big Data the New Oil (Microsoft draft)
Dr Andrew Seit1.2K vues
02 a holistic approach to big data par Raul Chong
02 a holistic approach to big data02 a holistic approach to big data
02 a holistic approach to big data
Raul Chong3.9K vues
Building the Analytics Capability par Bala Iyer
Building the Analytics CapabilityBuilding the Analytics Capability
Building the Analytics Capability
Bala Iyer11.2K vues
20140826 I&T Webinar_The Proliferation of Data - Finding Meaning Amidst the N... par Steven Callahan
20140826 I&T Webinar_The Proliferation of Data - Finding Meaning Amidst the N...20140826 I&T Webinar_The Proliferation of Data - Finding Meaning Amidst the N...
20140826 I&T Webinar_The Proliferation of Data - Finding Meaning Amidst the N...
Steven Callahan1.1K vues
Snowball Group Whitepaper - Spotlight on Big Data par Snowball Group
Snowball Group Whitepaper - Spotlight on Big DataSnowball Group Whitepaper - Spotlight on Big Data
Snowball Group Whitepaper - Spotlight on Big Data
Snowball Group370 vues
Perspectives on Ethical Big Data Governance par Cloudera, Inc.
Perspectives on Ethical Big Data GovernancePerspectives on Ethical Big Data Governance
Perspectives on Ethical Big Data Governance
Cloudera, Inc.2K vues
Data foundation for analytics excellence par Mudit Mangal
Data foundation for analytics excellenceData foundation for analytics excellence
Data foundation for analytics excellence
Mudit Mangal87 vues
Big data and your career final par Marina Kerbel
Big data and your career finalBig data and your career final
Big data and your career final
Marina Kerbel117 vues
Creating Big Data Success with the Collaboration of Business and IT par Edward Chenard
Creating Big Data Success with the Collaboration of Business and ITCreating Big Data Success with the Collaboration of Business and IT
Creating Big Data Success with the Collaboration of Business and IT
Edward Chenard1.5K vues
Internet of things, Big Data and Analytics 101 par Mukul Krishna
Internet of things, Big Data and Analytics 101Internet of things, Big Data and Analytics 101
Internet of things, Big Data and Analytics 101
Mukul Krishna9.5K vues
Environmental Big Data: Business Perspective par CLEEN_Ltd
Environmental Big Data: Business PerspectiveEnvironmental Big Data: Business Perspective
Environmental Big Data: Business Perspective
CLEEN_Ltd404 vues
Applying Data Quality Best Practices at Big Data Scale par Precisely
Applying Data Quality Best Practices at Big Data ScaleApplying Data Quality Best Practices at Big Data Scale
Applying Data Quality Best Practices at Big Data Scale
Precisely1.7K vues
Your AI and ML Projects Are Failing – Key Steps to Get Them Back on Track par Precisely
Your AI and ML Projects Are Failing – Key Steps to Get Them Back on TrackYour AI and ML Projects Are Failing – Key Steps to Get Them Back on Track
Your AI and ML Projects Are Failing – Key Steps to Get Them Back on Track
Precisely233 vues

Dernier

DGIQ East 2023 AI Ethics SIG par
DGIQ East 2023 AI Ethics SIGDGIQ East 2023 AI Ethics SIG
DGIQ East 2023 AI Ethics SIGKaren Lopez
5 vues7 diapositives
PyData Global 2022 - Things I learned while running neural networks on microc... par
PyData Global 2022 - Things I learned while running neural networks on microc...PyData Global 2022 - Things I learned while running neural networks on microc...
PyData Global 2022 - Things I learned while running neural networks on microc...SARADINDU SENGUPTA
5 vues12 diapositives
Custom Tag Manager Templates par
Custom Tag Manager TemplatesCustom Tag Manager Templates
Custom Tag Manager TemplatesMarkus Baersch
30 vues17 diapositives
Customer Data Cleansing Project.pptx par
Customer Data Cleansing Project.pptxCustomer Data Cleansing Project.pptx
Customer Data Cleansing Project.pptxNat O
6 vues23 diapositives
shivam tiwari.pptx par
shivam tiwari.pptxshivam tiwari.pptx
shivam tiwari.pptxAanyaMishra4
9 vues14 diapositives
VoxelNet par
VoxelNetVoxelNet
VoxelNettaeseon ryu
20 vues21 diapositives

Dernier(20)

DGIQ East 2023 AI Ethics SIG par Karen Lopez
DGIQ East 2023 AI Ethics SIGDGIQ East 2023 AI Ethics SIG
DGIQ East 2023 AI Ethics SIG
Karen Lopez5 vues
PyData Global 2022 - Things I learned while running neural networks on microc... par SARADINDU SENGUPTA
PyData Global 2022 - Things I learned while running neural networks on microc...PyData Global 2022 - Things I learned while running neural networks on microc...
PyData Global 2022 - Things I learned while running neural networks on microc...
Customer Data Cleansing Project.pptx par Nat O
Customer Data Cleansing Project.pptxCustomer Data Cleansing Project.pptx
Customer Data Cleansing Project.pptx
Nat O6 vues
Underfunded.pptx par vgarcia19
Underfunded.pptxUnderfunded.pptx
Underfunded.pptx
vgarcia1915 vues
GDG Cloud Community Day 2022 - Managing data quality in Machine Learning par SARADINDU SENGUPTA
GDG Cloud Community Day 2022 -  Managing data quality in Machine LearningGDG Cloud Community Day 2022 -  Managing data quality in Machine Learning
GDG Cloud Community Day 2022 - Managing data quality in Machine Learning
4_4_WP_4_06_ND_Model.pptx par d6fmc6kwd4
4_4_WP_4_06_ND_Model.pptx4_4_WP_4_06_ND_Model.pptx
4_4_WP_4_06_ND_Model.pptx
d6fmc6kwd47 vues
Data about the sector workshop par info828217
Data about the sector workshopData about the sector workshop
Data about the sector workshop
info82821729 vues
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf par 10urkyr34
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf
10urkyr347 vues
Dr. Ousmane Badiane-2023 ReSAKSS Conference par AKADEMIYA2063
Dr. Ousmane Badiane-2023 ReSAKSS ConferenceDr. Ousmane Badiane-2023 ReSAKSS Conference
Dr. Ousmane Badiane-2023 ReSAKSS Conference
AKADEMIYA20635 vues
Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language... par patiladiti752
Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language...Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language...
Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language...
patiladiti7528 vues
Analytics Center of Excellence | Data CoE |Analytics CoE| WNS Triange par RNayak3
Analytics Center of Excellence | Data CoE |Analytics CoE| WNS TriangeAnalytics Center of Excellence | Data CoE |Analytics CoE| WNS Triange
Analytics Center of Excellence | Data CoE |Analytics CoE| WNS Triange
RNayak35 vues

Big Data Innovation

  • 1. Getting The Most Out Of Big Data Associate Professor Paul Hawking
  • 2. “Can the amount of hype about Big Data be considered Big Data?”
  • 3. What is Big Data?
  • 4. Big Data is Not New Cox & Ellsworth “Data sets are generally quite large, taxing the capacities of main memory, local disk and even remote disk. We call this the problem of big data” 1997 1998 1999 2001 Masey “Big Data… and the Next Wave of Infrastress.” Bryson et al “Very powerful computers are a blessing to many fields of inquiry. They are also a curse; fast computations spew out massive amounts of data.” Laney 3D Data Management: Controlling Data Volume, Velocity, and Variety
  • 5. Characteristics – V’s Volume Velocity Variety Voldemort Big Data
  • 6. Voldemort – The dark side of Big Data
  • 7. Data Sources Big Data Transactions Machines Humans
  • 8. What is Big Data? Danah Boyd & Kate Crawford (Microsoft) Big data is “a cultural, technological, and scholarly phenomenon that rests on the interplay of:  Technology: maximizing computation power and algorithmic accuracy to gather, analyze, link, and compare large data sets.  Analysis: drawing on large data sets to identify patterns in order to make economic, social, technical, and legal claims.  Mythology: the widespread belief that large data sets offer a higher form of intelligence and knowledge that can generate insights that were previously impossible, with the aura of truth, objectivity, and accuracy.
  • 10. Why the increased interest?
  • 11. The vendors Prediction: Customers will leverage existing vendors’ technologies
  • 13. Business Intelligence Process 1 Identify business issue 2 Formulate business question 3 What information do I need 4 Where do I find the information 5 Retrieve information 6 Analyse Information 7 Report answers 8 Take actions
  • 14. Goals of Big Data
  • 15. Big Data Analysis Let’s act on it What is the best that can happen? What will happen next? Why is this happening? What actions are needed? Where exactly is the problem? How many, how often, where? What happened? Reports Ad Hoc Reports Query Drilldown Alerts Statistical Analysis Forecasting Predictive Analysis Optimisation Degree of Intelligence Maturity Competitive Advantage Proactive Decision Making Reactive Decision Making
  • 16. Leading Companies Treacy & Wiersema The Discipline of market Leaders
  • 17. Core/Context Framework Core  Engage Processes that create differentiation that wins customers Context  Disengage All other processes
  • 18. Big Data Value = Analysis + Context Wisdom Intelligence Knowledge Information Data New business strategies, opportunities Lifetime value of this customer and strategies to deploy to create loyalty What the company has purchased, what other products they may purchase A contact associated to a Company and all back orders A Contact
  • 19. Measuring Success and Value Overall Success Implementation Success User Success Operational Success Business Success • Create a formal, continuous process for measuring success and value generated • Identify and measure results of each initiative • Establish realistic goals and expectations based on capability / maturity • On-time, • On-budget • User adoption • Usage tracking • User satisfaction • Productivity improvements • Process efficiency and effectiveness • Return on investment • Economic value add • Revenue increases • Cost Savings • Customer / corporate profits • Enables Business Strategy and Completive Advantage Value Created
  • 20. Who?
  • 21. Meta Data Management Master Data Management Data Quality Data Integration Beware Big Data
  • 23. Topic: Organized by Paul Hawking Associate Professor SAP Academic Programs Director College of Business Telephone: +61-3-99194031 Mobile: +61-419301628 Email Paul.Hawking@vu.edu.au Speaker name: Email ID: UNICOM Trainings & Seminars Pvt. Ltd. contact@unicomlearning.com Paulhawking #SAPVU