SlideShare une entreprise Scribd logo
1  sur  62
Télécharger pour lire hors ligne
Prof. Pier Luca Lanzi
Data Exploration
Data Mining andText Mining (UIC 583 @ Politecnico di Milano)
Prof. Pier Luca Lanzi
Readings
• “Data Mining and Analysis” – Chapter 2 & 3
• Loading Data and Basic Formatting in R
http://flowingdata.com/2015/02/18/loading-data-and-basic-formatting-in-r/
2
Prof. Pier Luca Lanzi
http://www.kdnuggets.com/2015/03/cartoon-us-chief-data-scientist-challenge.html
Prof. Pier Luca Lanzi
Before trying anything,
you should know your data!
Prof. Pier Luca Lanzi
What is Data Exploration?
• It is the preliminary exploration of the data aimed at identifying
their most relevant characteristics
• What the key motivations?
§Helping to select the right tool for preprocessing and data
mining
§Exploiting humans’ abilities to recognize patterns
not captured by automatic tools
• Related to Exploratory Data Analysis (EDA), created by
statistician John Tukey
5
Prof. Pier Luca Lanzi
Exploratory Data Analysis
• “An approach of analyzing data to summarize their main
characteristics without using a statistical model or having
formulated a prior hypothesis.”
• “Exploratory data analysis was promoted by John Tukey
to encourage statisticians to explore the data, and
possibly formulate hypotheses that could lead to new
data collection and experiments.”
• Seminal book is “Exploratory Data Analysis” by Tukey
• Nice online introduction in Chapter 1 of the NIST
Engineering Statistics Handbook
http://www.itl.nist.gov/div898/handbook/index.htm
• http://en.wikipedia.org/wiki/Exploratory_data_analysis
6
Prof. Pier Luca Lanzi
http://vis.stanford.edu/files/2012-EnterpriseAnalysisInterviews-VAST.pdf
Prof. Pier Luca Lanzi
What Data Exploration Techniques?
• Exploratory Data Analysis (as originally defined by Tukey),
was mainly focused on
§Visualization
§Clustering and anomaly detection
(viewed as exploratory techniques)
§In data mining, clustering and anomaly detection are major
areas of interest, and not thought of as just exploratory
• In this section, we focus on data exploration using
§Summary statistics
§Visualization
• We will come back later to data exploration when discussing
clustering
8
Prof. Pier Luca Lanzi
Numerical Attributes
9
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Geometric Interpretation of
Correlation
• The correlation coefficient is simply the cosine of the angle
between the two centered attribute vectors
19
Prof. Pier Luca Lanzi
Normalization
20
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Summary Statistics
• They are numbers that summarize properties of the data
• Summarized properties include location, mean, spread, skewness,
standard deviation
• Most summary statistics can be calculated in a single pass
23
Prof. Pier Luca Lanzi
Frequency and Mode
• The frequency of an attribute value is the percentage of time the
value occurs in the data set
• For example, given the attribute ‘gender’ and a representative
population of people, the gender ‘female’ occurs about 50% of
the time.
• The mode of an attribute is the most frequent attribute value
• The notions of frequency and mode are typically used with
categorical data
24
Prof. Pier Luca Lanzi
Measures of Location:
Mean and Median
• The mean is the most common measure of the location of a set
of points
• However, the mean is very sensitive to outliers
• Thus, the median or a trimmed mean is also commonly used
25
Prof. Pier Luca Lanzi
Measures of Spread:
Range and Variance
• Range is the difference between the max and min
• The variance or standard deviation is the most common measure
of the spread of a set of points
• However, this is also sensitive to outliers, so that other measures
are often used
26
Prof. Pier Luca Lanzi
Percentiles
• For continuous data, the notion of a percentile is veryuseful
• Given an ordinal or continuous attribute x and a number p
between 0 and 100, the p-th percentile is a value xp of x such
that p% of the observed values of x are less than xp
• For instance, the 50th percentile is the value x50% such that 50%
of all values of x are less than x50%
27
Prof. Pier Luca Lanzi
Visualization
• Visualization is the conversion of data into a visual or tabular
format so that the characteristics of the data and the relationships
among data items or attributes can be analyzed or reported
• Data visualization is one of the most powerful and appealing
techniques for data exploration
§Humans have a well developed ability to analyze large
amounts of information that is presented visually
§Can detect general patterns and trends
§Can detect outliers and unusual patterns
28
Prof. Pier Luca Lanzi
Barplots
• They use horizontal or vertical bars to compare categories.
• One axis shows the compared categories, the other axis
represents a discrete value
• Some bar graphs present bars clustered in groups of more than
one (grouped bar graphs), and others show the bars divided into
subparts to show cumulate effect (stacked bar graphs)
29
Prof. Pier Luca Lanzi
Histograms
• They are a graphical representation of the distribution of data
introduced by Karl Pearson in 1895
• They estimate the probability distribution of a continuous variables
• They are representations of tabulated frequencies depicted as adjacent
rectangles, erected over discrete intervals (bins). Their areas are proportional
to the frequency of the observations in the interval.
30
Prof. Pier Luca Lanzi
Histograms
• The height of each bar indicates the number of objects
• Shape of histogram depends on the number of bins
31
Example: Petal Width (10 and 20 bins, respectively)
Prof. Pier Luca Lanzi
Maps
• Maps are a very effective communications tool that can visualize
thousands of data points in just one figure
32
Prof. Pier Luca Lanzi
Mapping Data for Visualization
• Data objects, their attributes, and the relationships among data
objects are translated into graphical elements such as points, lines,
shapes, and colors
• Objects are often represented as points
• Their attribute values can be represented as the position of the
points or the characteristics of the points, e.g., color, size, and
shape
• If position is used, then the relationships of points, i.e., whether
they form groups or a point is an outlier, is easily perceived.
33
Prof. Pier Luca Lanzi
Data Arrangement
• Is the placement of visual elements within a display
• Influence on how easy it is to understand the data
34
Prof. Pier Luca Lanzi
Selection
• Is the elimination or the de-emphasis of
certain objects and attributes
• Selection may involve choosing a subset of attributes
§Dimensionality reduction is often used to reduce the number
of dimensions to two or three
§Alternatively, pairs of attributes can be considered
• Selection may also involve choosing a subset of objects
§ A region of the screen can only show so many points
§Can sample, but want to preserve points in sparse areas
35
Prof. Pier Luca Lanzi
Box Plots
• Box Plots (invented by Tukey)
• Another way of displaying the distribution of data
• Following figure shows
the basic part of a box plot
• IQR is the interquartile range
or Q3-Q1
36
outlier
Min (> Q1 -1.5 IQR)
1st quartile (Q1)
3rd quartile (Q3)
2nd quartile (Q2)
Max ( < Q3 +1.5 IQR)
Prof. Pier Luca Lanzi
Box Plot Example 37
Prof. Pier Luca Lanzi
Scatter Plots
• Attributes values determine the position
• Two-dimensional scatter plots most common, but can have
three-dimensional scatter plots
• Often additional attributes can be displayed by using the size,
shape, and color of the markers that represent the objects
• It is useful to have arrays of scatter plots can compactly
summarize the relationships of several pairs of attributes
• Examples: http://www.statmethods.net/graphs/scatterplot.html
38
Prof. Pier Luca Lanzi
Scatter Plots 39
Prof. Pier Luca Lanzi
Scatter Plots 40
Prof. Pier Luca Lanzi
Scatter Plot Array for Iris 41
Prof. Pier Luca Lanzi
Scatter Plot Combined with Box Plots 42
Prof. Pier Luca Lanzi
Contour Plots
• Useful for continuous attributes measured on a spatial grid
• They partition the plane into regions of similar values
• The contour lines that form the boundaries of these regions
connect points with equal values
• The most common example is contour maps of elevation
• Can also display temperature, rainfall, air pressure, etc.
43
Prof. Pier Luca Lanzi
Celsius
Prof. Pier Luca Lanzi
Matrix Plots
• Can plot the data matrix
• This can be useful when objects are sorted according to class
• Typically, the attributes are normalized to prevent one attribute
from dominating the plot
• Plots of similarity or distance matrices can also be useful for
visualizing the relationships between objects
45
Prof. Pier Luca Lanzi
Heatmaps 46
Prof. Pier Luca Lanzi
Other Visualization Techniques
• Star Plots
§Similar approach to parallel coordinates,
but axes radiate from a central point
§The line connecting the values of an object is a polygon
• Chernoff Faces
§Approach created by Herman Chernoff
§This approach associates each attribute with a characteristic of
a face
§The values of each attribute determine the appearance of the
corresponding facial characteristic
§Each object becomes a separate face
§Relies on human’s ability to distinguish faces
47
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Chernoff Faces
• More dimensions are plotted using several features of human faces
50
Prof. Pier Luca Lanzi
http://cartastrophe.files.wordpress.com/2010/06/spinelli.png
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Examples
Prof. Pier Luca Lanzi
do we read the articles we share?
does my banner work?
Prof. Pier Luca Lanzi
“When we combined attention and traffic to find the story that had
the largest volume of total engaged time, we found that it had fewer
than 100 likes and fewer than 50 tweets. Conversely, the story with
the largest number of tweets got about 20% of the total engaged
time that the most engaging story received.”
Prof. Pier Luca Lanzi
“Here’s the skinny, 66% of attention on a normal media page is spent
below the fold.That leaderboard at the top of the page? People
scroll right past that and spend their time where the content not the
cruft is. .”
Prof. Pier Luca Lanzi
http://time.com/12933/what-you-think-you-know-about-the-web-is-wrong/?iid=biz-category-mostpop2
Prof. Pier Luca Lanzi
http://apps.startribune.com/news/20140313-beer-me-minnesota/
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Run the Python notebooks
for this lecture

Contenu connexe

Tendances

The Growing Importance of Data Cleaning
The Growing Importance of Data CleaningThe Growing Importance of Data Cleaning
The Growing Importance of Data CleaningCarolineSmith912130
 
Data science life cycle
Data science life cycleData science life cycle
Data science life cycleManoj Mishra
 
Data Science Lifecycle
Data Science LifecycleData Science Lifecycle
Data Science LifecycleSwapnilDahake2
 
Exploratory data analysis
Exploratory data analysisExploratory data analysis
Exploratory data analysisVishwas N
 
Introduction to Data Visualization
Introduction to Data VisualizationIntroduction to Data Visualization
Introduction to Data VisualizationStephen Tracy
 
Data Visualisation.pdf
Data Visualisation.pdfData Visualisation.pdf
Data Visualisation.pdfThiyagu K
 
Building a performing Machine Learning model from A to Z
Building a performing Machine Learning model from A to ZBuilding a performing Machine Learning model from A to Z
Building a performing Machine Learning model from A to ZCharles Vestur
 
DATA MINING TOOL- ORANGE
DATA MINING TOOL- ORANGEDATA MINING TOOL- ORANGE
DATA MINING TOOL- ORANGENeeraj Goswami
 
Introduction to data analytics
Introduction to data analyticsIntroduction to data analytics
Introduction to data analyticsSSaudia
 
Data mining , Knowledge Discovery Process, Classification
Data mining , Knowledge Discovery Process, ClassificationData mining , Knowledge Discovery Process, Classification
Data mining , Knowledge Discovery Process, ClassificationDr. Abdul Ahad Abro
 
DATA WRANGLING presentation.pptx
DATA WRANGLING presentation.pptxDATA WRANGLING presentation.pptx
DATA WRANGLING presentation.pptxAbdullahAbbasi55
 
OLAP & DATA WAREHOUSE
OLAP & DATA WAREHOUSEOLAP & DATA WAREHOUSE
OLAP & DATA WAREHOUSEZalpa Rathod
 
Data Wrangling
Data WranglingData Wrangling
Data WranglingGramener
 

Tendances (20)

The Growing Importance of Data Cleaning
The Growing Importance of Data CleaningThe Growing Importance of Data Cleaning
The Growing Importance of Data Cleaning
 
Data science life cycle
Data science life cycleData science life cycle
Data science life cycle
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Classification of data
Classification of dataClassification of data
Classification of data
 
Data Science Lifecycle
Data Science LifecycleData Science Lifecycle
Data Science Lifecycle
 
Exploratory data analysis
Exploratory data analysisExploratory data analysis
Exploratory data analysis
 
Missing data handling
Missing data handlingMissing data handling
Missing data handling
 
Statistics for data science
Statistics for data science Statistics for data science
Statistics for data science
 
Introduction to Data Visualization
Introduction to Data VisualizationIntroduction to Data Visualization
Introduction to Data Visualization
 
Data Visualisation.pdf
Data Visualisation.pdfData Visualisation.pdf
Data Visualisation.pdf
 
Building a performing Machine Learning model from A to Z
Building a performing Machine Learning model from A to ZBuilding a performing Machine Learning model from A to Z
Building a performing Machine Learning model from A to Z
 
DATA MINING TOOL- ORANGE
DATA MINING TOOL- ORANGEDATA MINING TOOL- ORANGE
DATA MINING TOOL- ORANGE
 
Data Visualization
Data VisualizationData Visualization
Data Visualization
 
Introduction to data analytics
Introduction to data analyticsIntroduction to data analytics
Introduction to data analytics
 
Data mining , Knowledge Discovery Process, Classification
Data mining , Knowledge Discovery Process, ClassificationData mining , Knowledge Discovery Process, Classification
Data mining , Knowledge Discovery Process, Classification
 
DATA WRANGLING presentation.pptx
DATA WRANGLING presentation.pptxDATA WRANGLING presentation.pptx
DATA WRANGLING presentation.pptx
 
Data Preprocessing
Data PreprocessingData Preprocessing
Data Preprocessing
 
OLAP & DATA WAREHOUSE
OLAP & DATA WAREHOUSEOLAP & DATA WAREHOUSE
OLAP & DATA WAREHOUSE
 
Data visualization
Data visualizationData visualization
Data visualization
 
Data Wrangling
Data WranglingData Wrangling
Data Wrangling
 

Similaire à DMTM Lecture 19 Data exploration

DMTM 2015 - 04 Data Exploration
DMTM 2015 - 04 Data ExplorationDMTM 2015 - 04 Data Exploration
DMTM 2015 - 04 Data ExplorationPier Luca Lanzi
 
Exploring Data (1).pptx
Exploring Data (1).pptxExploring Data (1).pptx
Exploring Data (1).pptxgina458018
 
DMTM 2015 - 16 Data Preparation
DMTM 2015 - 16 Data PreparationDMTM 2015 - 16 Data Preparation
DMTM 2015 - 16 Data PreparationPier Luca Lanzi
 
DMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph miningDMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph miningPier Luca Lanzi
 
DMTM Lecture 20 Data preparation
DMTM Lecture 20 Data preparationDMTM Lecture 20 Data preparation
DMTM Lecture 20 Data preparationPier Luca Lanzi
 
DMTM 2015 - 06 Introduction to Clustering
DMTM 2015 - 06 Introduction to ClusteringDMTM 2015 - 06 Introduction to Clustering
DMTM 2015 - 06 Introduction to ClusteringPier Luca Lanzi
 
Tda presentation
Tda presentationTda presentation
Tda presentationHJ van Veen
 
DMTM Lecture 11 Clustering
DMTM Lecture 11 ClusteringDMTM Lecture 11 Clustering
DMTM Lecture 11 ClusteringPier Luca Lanzi
 
chi03-tutorial.ppt
chi03-tutorial.pptchi03-tutorial.ppt
chi03-tutorial.pptKumarVijay54
 
Lec 3 knowledge acquisition representation and inference
Lec 3  knowledge acquisition representation and inferenceLec 3  knowledge acquisition representation and inference
Lec 3 knowledge acquisition representation and inferenceEyob Sisay
 
DMTM 2015 - 19 Graph Mining
DMTM 2015 - 19 Graph MiningDMTM 2015 - 19 Graph Mining
DMTM 2015 - 19 Graph MiningPier Luca Lanzi
 
DMTM Lecture 05 Data representation
DMTM Lecture 05 Data representationDMTM Lecture 05 Data representation
DMTM Lecture 05 Data representationPier Luca Lanzi
 
Biostatistics_descriptive stats.pptx
Biostatistics_descriptive stats.pptxBiostatistics_descriptive stats.pptx
Biostatistics_descriptive stats.pptxMohammedAbdela7
 
Forty Years of the OTA
Forty Years of the OTAForty Years of the OTA
Forty Years of the OTAMartin Wynne
 
Talk at MCubed London about Manifold Learning and Applications
Talk at MCubed London about Manifold Learning and ApplicationsTalk at MCubed London about Manifold Learning and Applications
Talk at MCubed London about Manifold Learning and ApplicationsStefan Kühn
 
Exploratory computing: designing discovery-driven user experiences
Exploratory computing: designing discovery-driven user experiencesExploratory computing: designing discovery-driven user experiences
Exploratory computing: designing discovery-driven user experiencesLuigi Spagnolo
 
DMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clusteringDMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clusteringPier Luca Lanzi
 
The Complexity of Data: Computer Simulation and “Everyday” Social Science
The Complexity of Data: Computer Simulation and “Everyday” Social ScienceThe Complexity of Data: Computer Simulation and “Everyday” Social Science
The Complexity of Data: Computer Simulation and “Everyday” Social ScienceEdmund Chattoe-Brown
 

Similaire à DMTM Lecture 19 Data exploration (20)

DMTM 2015 - 04 Data Exploration
DMTM 2015 - 04 Data ExplorationDMTM 2015 - 04 Data Exploration
DMTM 2015 - 04 Data Exploration
 
Exploring Data (1).pptx
Exploring Data (1).pptxExploring Data (1).pptx
Exploring Data (1).pptx
 
DMTM 2015 - 16 Data Preparation
DMTM 2015 - 16 Data PreparationDMTM 2015 - 16 Data Preparation
DMTM 2015 - 16 Data Preparation
 
DMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph miningDMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph mining
 
DMTM Lecture 20 Data preparation
DMTM Lecture 20 Data preparationDMTM Lecture 20 Data preparation
DMTM Lecture 20 Data preparation
 
DMTM 2015 - 06 Introduction to Clustering
DMTM 2015 - 06 Introduction to ClusteringDMTM 2015 - 06 Introduction to Clustering
DMTM 2015 - 06 Introduction to Clustering
 
Tda presentation
Tda presentationTda presentation
Tda presentation
 
DMTM Lecture 11 Clustering
DMTM Lecture 11 ClusteringDMTM Lecture 11 Clustering
DMTM Lecture 11 Clustering
 
chi03-tutorial.ppt
chi03-tutorial.pptchi03-tutorial.ppt
chi03-tutorial.ppt
 
Lec 3 knowledge acquisition representation and inference
Lec 3  knowledge acquisition representation and inferenceLec 3  knowledge acquisition representation and inference
Lec 3 knowledge acquisition representation and inference
 
DMTM 2015 - 19 Graph Mining
DMTM 2015 - 19 Graph MiningDMTM 2015 - 19 Graph Mining
DMTM 2015 - 19 Graph Mining
 
DMTM Lecture 05 Data representation
DMTM Lecture 05 Data representationDMTM Lecture 05 Data representation
DMTM Lecture 05 Data representation
 
Rm17 45 121-160
Rm17 45 121-160Rm17 45 121-160
Rm17 45 121-160
 
Biostatistics_descriptive stats.pptx
Biostatistics_descriptive stats.pptxBiostatistics_descriptive stats.pptx
Biostatistics_descriptive stats.pptx
 
Forty Years of the OTA
Forty Years of the OTAForty Years of the OTA
Forty Years of the OTA
 
Talk at MCubed London about Manifold Learning and Applications
Talk at MCubed London about Manifold Learning and ApplicationsTalk at MCubed London about Manifold Learning and Applications
Talk at MCubed London about Manifold Learning and Applications
 
Exploratory computing: designing discovery-driven user experiences
Exploratory computing: designing discovery-driven user experiencesExploratory computing: designing discovery-driven user experiences
Exploratory computing: designing discovery-driven user experiences
 
DMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clusteringDMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clustering
 
The Complexity of Data: Computer Simulation and “Everyday” Social Science
The Complexity of Data: Computer Simulation and “Everyday” Social ScienceThe Complexity of Data: Computer Simulation and “Everyday” Social Science
The Complexity of Data: Computer Simulation and “Everyday” Social Science
 
Research Methodology
Research MethodologyResearch Methodology
Research Methodology
 

Plus de Pier Luca Lanzi

11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i VideogiochiPier Luca Lanzi
 
Breve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei VideogiochiBreve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei VideogiochiPier Luca Lanzi
 
Global Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning WelcomeGlobal Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning WelcomePier Luca Lanzi
 
Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018Pier Luca Lanzi
 
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...Pier Luca Lanzi
 
GGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di aperturaGGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di aperturaPier Luca Lanzi
 
Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018Pier Luca Lanzi
 
DMTM Lecture 17 Text mining
DMTM Lecture 17 Text miningDMTM Lecture 17 Text mining
DMTM Lecture 17 Text miningPier Luca Lanzi
 
DMTM Lecture 16 Association rules
DMTM Lecture 16 Association rulesDMTM Lecture 16 Association rules
DMTM Lecture 16 Association rulesPier Luca Lanzi
 
DMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluationDMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluationPier Luca Lanzi
 
DMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringDMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringPier Luca Lanzi
 
DMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clusteringDMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clusteringPier Luca Lanzi
 
DMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesDMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesPier Luca Lanzi
 
DMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethodsDMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethodsPier Luca Lanzi
 
DMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rulesDMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rulesPier Luca Lanzi
 
DMTM Lecture 07 Decision trees
DMTM Lecture 07 Decision treesDMTM Lecture 07 Decision trees
DMTM Lecture 07 Decision treesPier Luca Lanzi
 
DMTM Lecture 06 Classification evaluation
DMTM Lecture 06 Classification evaluationDMTM Lecture 06 Classification evaluation
DMTM Lecture 06 Classification evaluationPier Luca Lanzi
 
DMTM Lecture 04 Classification
DMTM Lecture 04 ClassificationDMTM Lecture 04 Classification
DMTM Lecture 04 ClassificationPier Luca Lanzi
 
DMTM Lecture 03 Regression
DMTM Lecture 03 RegressionDMTM Lecture 03 Regression
DMTM Lecture 03 RegressionPier Luca Lanzi
 
DMTM Lecture 01 Introduction
DMTM Lecture 01 IntroductionDMTM Lecture 01 Introduction
DMTM Lecture 01 IntroductionPier Luca Lanzi
 

Plus de Pier Luca Lanzi (20)

11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi
 
Breve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei VideogiochiBreve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei Videogiochi
 
Global Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning WelcomeGlobal Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning Welcome
 
Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018
 
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
 
GGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di aperturaGGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di apertura
 
Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018
 
DMTM Lecture 17 Text mining
DMTM Lecture 17 Text miningDMTM Lecture 17 Text mining
DMTM Lecture 17 Text mining
 
DMTM Lecture 16 Association rules
DMTM Lecture 16 Association rulesDMTM Lecture 16 Association rules
DMTM Lecture 16 Association rules
 
DMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluationDMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluation
 
DMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringDMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clustering
 
DMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clusteringDMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clustering
 
DMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesDMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensembles
 
DMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethodsDMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethods
 
DMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rulesDMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rules
 
DMTM Lecture 07 Decision trees
DMTM Lecture 07 Decision treesDMTM Lecture 07 Decision trees
DMTM Lecture 07 Decision trees
 
DMTM Lecture 06 Classification evaluation
DMTM Lecture 06 Classification evaluationDMTM Lecture 06 Classification evaluation
DMTM Lecture 06 Classification evaluation
 
DMTM Lecture 04 Classification
DMTM Lecture 04 ClassificationDMTM Lecture 04 Classification
DMTM Lecture 04 Classification
 
DMTM Lecture 03 Regression
DMTM Lecture 03 RegressionDMTM Lecture 03 Regression
DMTM Lecture 03 Regression
 
DMTM Lecture 01 Introduction
DMTM Lecture 01 IntroductionDMTM Lecture 01 Introduction
DMTM Lecture 01 Introduction
 

Dernier

Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleCeline George
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1GloryAnnCastre1
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Developmentchesterberbo7
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...DhatriParmar
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 

Dernier (20)

Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP Module
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Development
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 

DMTM Lecture 19 Data exploration

  • 1. Prof. Pier Luca Lanzi Data Exploration Data Mining andText Mining (UIC 583 @ Politecnico di Milano)
  • 2. Prof. Pier Luca Lanzi Readings • “Data Mining and Analysis” – Chapter 2 & 3 • Loading Data and Basic Formatting in R http://flowingdata.com/2015/02/18/loading-data-and-basic-formatting-in-r/ 2
  • 3. Prof. Pier Luca Lanzi http://www.kdnuggets.com/2015/03/cartoon-us-chief-data-scientist-challenge.html
  • 4. Prof. Pier Luca Lanzi Before trying anything, you should know your data!
  • 5. Prof. Pier Luca Lanzi What is Data Exploration? • It is the preliminary exploration of the data aimed at identifying their most relevant characteristics • What the key motivations? §Helping to select the right tool for preprocessing and data mining §Exploiting humans’ abilities to recognize patterns not captured by automatic tools • Related to Exploratory Data Analysis (EDA), created by statistician John Tukey 5
  • 6. Prof. Pier Luca Lanzi Exploratory Data Analysis • “An approach of analyzing data to summarize their main characteristics without using a statistical model or having formulated a prior hypothesis.” • “Exploratory data analysis was promoted by John Tukey to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments.” • Seminal book is “Exploratory Data Analysis” by Tukey • Nice online introduction in Chapter 1 of the NIST Engineering Statistics Handbook http://www.itl.nist.gov/div898/handbook/index.htm • http://en.wikipedia.org/wiki/Exploratory_data_analysis 6
  • 7. Prof. Pier Luca Lanzi http://vis.stanford.edu/files/2012-EnterpriseAnalysisInterviews-VAST.pdf
  • 8. Prof. Pier Luca Lanzi What Data Exploration Techniques? • Exploratory Data Analysis (as originally defined by Tukey), was mainly focused on §Visualization §Clustering and anomaly detection (viewed as exploratory techniques) §In data mining, clustering and anomaly detection are major areas of interest, and not thought of as just exploratory • In this section, we focus on data exploration using §Summary statistics §Visualization • We will come back later to data exploration when discussing clustering 8
  • 9. Prof. Pier Luca Lanzi Numerical Attributes 9
  • 19. Prof. Pier Luca Lanzi Geometric Interpretation of Correlation • The correlation coefficient is simply the cosine of the angle between the two centered attribute vectors 19
  • 20. Prof. Pier Luca Lanzi Normalization 20
  • 23. Prof. Pier Luca Lanzi Summary Statistics • They are numbers that summarize properties of the data • Summarized properties include location, mean, spread, skewness, standard deviation • Most summary statistics can be calculated in a single pass 23
  • 24. Prof. Pier Luca Lanzi Frequency and Mode • The frequency of an attribute value is the percentage of time the value occurs in the data set • For example, given the attribute ‘gender’ and a representative population of people, the gender ‘female’ occurs about 50% of the time. • The mode of an attribute is the most frequent attribute value • The notions of frequency and mode are typically used with categorical data 24
  • 25. Prof. Pier Luca Lanzi Measures of Location: Mean and Median • The mean is the most common measure of the location of a set of points • However, the mean is very sensitive to outliers • Thus, the median or a trimmed mean is also commonly used 25
  • 26. Prof. Pier Luca Lanzi Measures of Spread: Range and Variance • Range is the difference between the max and min • The variance or standard deviation is the most common measure of the spread of a set of points • However, this is also sensitive to outliers, so that other measures are often used 26
  • 27. Prof. Pier Luca Lanzi Percentiles • For continuous data, the notion of a percentile is veryuseful • Given an ordinal or continuous attribute x and a number p between 0 and 100, the p-th percentile is a value xp of x such that p% of the observed values of x are less than xp • For instance, the 50th percentile is the value x50% such that 50% of all values of x are less than x50% 27
  • 28. Prof. Pier Luca Lanzi Visualization • Visualization is the conversion of data into a visual or tabular format so that the characteristics of the data and the relationships among data items or attributes can be analyzed or reported • Data visualization is one of the most powerful and appealing techniques for data exploration §Humans have a well developed ability to analyze large amounts of information that is presented visually §Can detect general patterns and trends §Can detect outliers and unusual patterns 28
  • 29. Prof. Pier Luca Lanzi Barplots • They use horizontal or vertical bars to compare categories. • One axis shows the compared categories, the other axis represents a discrete value • Some bar graphs present bars clustered in groups of more than one (grouped bar graphs), and others show the bars divided into subparts to show cumulate effect (stacked bar graphs) 29
  • 30. Prof. Pier Luca Lanzi Histograms • They are a graphical representation of the distribution of data introduced by Karl Pearson in 1895 • They estimate the probability distribution of a continuous variables • They are representations of tabulated frequencies depicted as adjacent rectangles, erected over discrete intervals (bins). Their areas are proportional to the frequency of the observations in the interval. 30
  • 31. Prof. Pier Luca Lanzi Histograms • The height of each bar indicates the number of objects • Shape of histogram depends on the number of bins 31 Example: Petal Width (10 and 20 bins, respectively)
  • 32. Prof. Pier Luca Lanzi Maps • Maps are a very effective communications tool that can visualize thousands of data points in just one figure 32
  • 33. Prof. Pier Luca Lanzi Mapping Data for Visualization • Data objects, their attributes, and the relationships among data objects are translated into graphical elements such as points, lines, shapes, and colors • Objects are often represented as points • Their attribute values can be represented as the position of the points or the characteristics of the points, e.g., color, size, and shape • If position is used, then the relationships of points, i.e., whether they form groups or a point is an outlier, is easily perceived. 33
  • 34. Prof. Pier Luca Lanzi Data Arrangement • Is the placement of visual elements within a display • Influence on how easy it is to understand the data 34
  • 35. Prof. Pier Luca Lanzi Selection • Is the elimination or the de-emphasis of certain objects and attributes • Selection may involve choosing a subset of attributes §Dimensionality reduction is often used to reduce the number of dimensions to two or three §Alternatively, pairs of attributes can be considered • Selection may also involve choosing a subset of objects § A region of the screen can only show so many points §Can sample, but want to preserve points in sparse areas 35
  • 36. Prof. Pier Luca Lanzi Box Plots • Box Plots (invented by Tukey) • Another way of displaying the distribution of data • Following figure shows the basic part of a box plot • IQR is the interquartile range or Q3-Q1 36 outlier Min (> Q1 -1.5 IQR) 1st quartile (Q1) 3rd quartile (Q3) 2nd quartile (Q2) Max ( < Q3 +1.5 IQR)
  • 37. Prof. Pier Luca Lanzi Box Plot Example 37
  • 38. Prof. Pier Luca Lanzi Scatter Plots • Attributes values determine the position • Two-dimensional scatter plots most common, but can have three-dimensional scatter plots • Often additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects • It is useful to have arrays of scatter plots can compactly summarize the relationships of several pairs of attributes • Examples: http://www.statmethods.net/graphs/scatterplot.html 38
  • 39. Prof. Pier Luca Lanzi Scatter Plots 39
  • 40. Prof. Pier Luca Lanzi Scatter Plots 40
  • 41. Prof. Pier Luca Lanzi Scatter Plot Array for Iris 41
  • 42. Prof. Pier Luca Lanzi Scatter Plot Combined with Box Plots 42
  • 43. Prof. Pier Luca Lanzi Contour Plots • Useful for continuous attributes measured on a spatial grid • They partition the plane into regions of similar values • The contour lines that form the boundaries of these regions connect points with equal values • The most common example is contour maps of elevation • Can also display temperature, rainfall, air pressure, etc. 43
  • 44. Prof. Pier Luca Lanzi Celsius
  • 45. Prof. Pier Luca Lanzi Matrix Plots • Can plot the data matrix • This can be useful when objects are sorted according to class • Typically, the attributes are normalized to prevent one attribute from dominating the plot • Plots of similarity or distance matrices can also be useful for visualizing the relationships between objects 45
  • 46. Prof. Pier Luca Lanzi Heatmaps 46
  • 47. Prof. Pier Luca Lanzi Other Visualization Techniques • Star Plots §Similar approach to parallel coordinates, but axes radiate from a central point §The line connecting the values of an object is a polygon • Chernoff Faces §Approach created by Herman Chernoff §This approach associates each attribute with a characteristic of a face §The values of each attribute determine the appearance of the corresponding facial characteristic §Each object becomes a separate face §Relies on human’s ability to distinguish faces 47
  • 50. Prof. Pier Luca Lanzi Chernoff Faces • More dimensions are plotted using several features of human faces 50
  • 51. Prof. Pier Luca Lanzi http://cartastrophe.files.wordpress.com/2010/06/spinelli.png
  • 53. Prof. Pier Luca Lanzi Examples
  • 54. Prof. Pier Luca Lanzi do we read the articles we share? does my banner work?
  • 55. Prof. Pier Luca Lanzi “When we combined attention and traffic to find the story that had the largest volume of total engaged time, we found that it had fewer than 100 likes and fewer than 50 tweets. Conversely, the story with the largest number of tweets got about 20% of the total engaged time that the most engaging story received.”
  • 56. Prof. Pier Luca Lanzi “Here’s the skinny, 66% of attention on a normal media page is spent below the fold.That leaderboard at the top of the page? People scroll right past that and spend their time where the content not the cruft is. .”
  • 57. Prof. Pier Luca Lanzi http://time.com/12933/what-you-think-you-know-about-the-web-is-wrong/?iid=biz-category-mostpop2
  • 58. Prof. Pier Luca Lanzi http://apps.startribune.com/news/20140313-beer-me-minnesota/
  • 62. Prof. Pier Luca Lanzi Run the Python notebooks for this lecture