Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources 
© 2...
SSSSmmmmaaaallllllll eeeennnnggggiiiinnnneeee RRRREEEEXXXX to increase the City EV range 
5 Pierre DURET – SETC Pisa – Nov...
EV city car 
Requested specifications for 
9 Pierre DURET – SETC Pisa – November 2014 
the thermal engine 
 2-cylinder 250...
EV city car 
13 Pierre DURET – SETC Pisa – November 2014 
Energy management 
optimization 
 To determine the optimized REX...
3 case studies of DI 2-stroke REX 
+ + + 
17 Pierre DURET – SETC Pisa – November 2014 
Multi-usage high 
performance 
luxu...
21 Pierre DURET – SETC Pisa – November 2014 
Selected Plug-in Hybrid 
architecture 
Lightweight 
urban sport 
plug-in hybr...
25 
Energy 
management optimization 
Lightweight 
urban sport 
plug-in hybrid 
240 
250 
260 
270 
270 
280 
280 
280 
290...
Choice of the engine architecture 
adapted for REX application 
Multi-usage high 
performance 
luxury sport car 
EEEEnnnng...
Acknowledgements 
 IFP School students project teams: 
 Alexandre BORIE, Thomas BRICHARD, Thomas CREMILLEUX, Samuel 
QUESA...
Prochain SlideShare
Chargement dans…5
×

2014 SETC - Small gasoline direct fuel injection two-stroke engines for range extender applications

1 393 vues

Publié le

The main purpose of this presentation will be to discuss various possibilities of using a small gasoline direct injected two-stroke engine as a range extender for electric vehicles.

Publié dans : Industrie automobile
  • Soyez le premier à commenter

2014 SETC - Small gasoline direct fuel injection two-stroke engines for range extender applications

  1. 1. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources © 2014 – Pierre DURET – IFP School Small gasoline direct fuel injection two-stroke engines for range extender applications PPPPiiiieeeerrrrrrrreeee DDDDUUUURRRREEEETTTT – Director Center for "Engines & Utilization of Hydrocarbons" IFP School, France Pierre DURET – SETC Pisa – November 2014 Future mobility solutions will be more adapted to the needs Source ERTRAC (European Road transport Research Advisory Council) - 2010 2 Pierre DURET – SETC Pisa – November 2014 with a long term diversification of energy & powertrains Source ERTRAC (European Road transport Research Advisory Council) - 2010 3 Pierre DURET – SETC Pisa – November 2014 Range Extender (REX) for vehicle applications EV with thermal engine electric generator Generally no mechanical link between the thermal engine and the wheels When battery SOC too low REX start to maintain vehicle mobility Rather poor overall efficiency in REX mode / several steps of energy conversion: thermal mechanical electrical mechanical 4 Pierre DURET – SETC Pisa – November 2014 Source Véhicule 2030 Jean Syrota report - 2008 Thermal engine Electric Electric power supply unit Mechanical driving Electrical power generator Electric motor / generator
  2. 2. SSSSmmmmaaaallllllll eeeennnnggggiiiinnnneeee RRRREEEEXXXX to increase the City EV range 5 Pierre DURET – SETC Pisa – November 2014 Why is there an interest in considering two-stroke engine for REX of electric cars ? In 1998, PSA presented at the Paris Auto Show an EV-prototype with extended range, the Saxo DYNAvolt but it was not the right period for electric vehicles and 2-stroke gasoline DI technology was not yet mature ! why not reconsidering now DI 2-stroke for EV range extender ? 6 Pierre DURET – SETC Pisa – November 2014 Auxiliary Power Unit • prototype DI 2-stroke technology • 2 cyl. opposite 200 cc , 6,5 kW • direct coupling with starter generator • vol. 30x30x25 cm mass of 20 kg • under the rear seat Pure EV range: 80 km Extended range up to 340 km Max speed 120 km/h Vehicle mass 1050 kg 3 case studies of DI 2-stroke REX + + + 7 Pierre DURET – SETC Pisa – November 2014 Multi-usage high performance luxury EV sport car Lightweight urban sport plug-in hybrid EV city car 58 kW 3-cylinder outboard based DI 2-stroke 30 kW 2-cylinder snowmobile based DI 2-stroke 15 kW 2-cylinder scooter based DI 2-stroke 3 case studies of DI 2-stroke REX + + + 8 Pierre DURET – SETC Pisa – November 2014 Multi-usage high performance luxury sport car Lightweight urban sport plug-in hybrid EV city car 58 kW 3-cylinder outboard based DI 2-stroke 30 kW 2-cylinder snowmobile based DI 2-stroke 15 kW 2-cylinder scooter based DI 2-stroke
  3. 3. EV city car Requested specifications for 9 Pierre DURET – SETC Pisa – November 2014 the thermal engine 2-cylinder 250 cc DI 2-stroke Based on the use of 125 cc Honda Pantheon production components (piston, rod, CAI-AR valve,…) 15 kW at moderate engine speed (noise control) Operating point in CAI “Controlled Auto-Ignition” (NOx PM control) Euro 6 emissions standards Minimum packaging in 160 liters “box” of the complete REX kit (including, engine with intake, exhaust, fuel circuit, cooling system, generator, fuel tank,…) Benchmark: AVL EVARE (Wankel based) 160 liters EV city car Engine architecture for REX Possible 2-cylinder designs considered In-line, combustion phasing @ 180 deg In-line, combustion phasing @ 0 deg In-line, combustion phasing @ 90 deg V2 90° Opposed cylinders (boxer) Opposed pistons 10 Pierre DURET – SETC Pisa – November 2014 application EV city car Engine architecture for REX Most important selection criteria considered for a range extender application NVH / balancing: with balancing shaft for in-line configurations NVH / torque fluctuation: combustion frequency and phasing Packaging / volume: intake exhaust systems, accessories,… Packaging / weight: engine, exhaust system, balancing shaft,… Cost: complexity of manufacturing of the engine and components (exhaust system, balancing shaft, belts accessories,…) Efficiency: scavenging process, exhaust tuning,… 11 Pierre DURET – SETC Pisa – November 2014 application EV city car EEEEnnnnggggiiiinnnneeee NNNNVVVVHHHH BBBBaaaallllaaaannnncccciiiinnnngggg NNNNVVVVHHHH TTTToooorrrrqqqquuuueeee fffflllluuuuccccttttuuuuaaaattttiiiioooonnnn Engine architecture for REX VVVVoooolllluuuummmmeeee WWWWeeeeiiiigggghhhhtttt CCCCoooosssstttt EEEEffffffffiiiicccciiiieeeennnnccccyyyy RRRRaaaattttiiiinnnngggg I2 @ 180° + ++ - - + 0 2 I2 @ 0° + -- 0 0 + + 3 I2 @ 90° + - -- -- - -- 5 V2 90° 0 - -- -- - -- 6 Boxer 0 -- 0 0 0 + 4 Opp. pistons ++ -- + 0 - ++ 1 with balancing shaft 12 Pierre DURET – SETC Pisa – November 2014 application
  4. 4. EV city car 13 Pierre DURET – SETC Pisa – November 2014 Energy management optimization To determine the optimized REX operating TTTooo dddeeettteeerrrmmmiiinnneee ttthhheee oooppptttiiimmmiiizzzeeeddd RRREEEXXX ooopppeeerrraaatttiiinnnggg ppppooooiiiinnnntttt nnnneeeecccceeeessssssssaaaarrrryyyy ttttoooo uuuunnnnddddeeeerrrrttttaaaakkkkeeee tttthhhheeee NNNNEEEEDDDDCCCC wwwwiiiitttthhhh mmmmaaaaiiiinnnnttttaaaaiiiinnnneeeedddd bbbbaaaatttttttteeeerrrryyyy SSSSOOOOCCCC taking into account efficiency of the whole chain from the requested power at the wheels to the corresponding power of the REX thermal engine TTTToooo eeeessssttttiiiimmmmaaaatttteeee ((((bbbbaaaasssseeeedddd oooonnnn IIIIFFFFPPPP eeeexxxxppppeeeerrrriiiimmmmeeeennnnttttaaaallll DDDDIIII CCCCAAAAIIII 2222-ssssttttrrrrooookkkkeeee ddddaaaattttaaaabbbbaaaasssseeee)))) the pollutant emissions / Euro 6 the fuel consumption and EV range extension WWWWiiiitttthhhh 4444 eeeexxxxaaaammmmpppplllleeeessss ooooffff vvvveeeehhhhiiiicccclllleeee aaaapppppppplllliiiiccccaaaattttiiiioooonnnn VVVVeeeehhhhiiiicccclllleeee ddddaaaattttaaaa RRRReeeennnnaaaauuuulllltttt ZZZZOOOOEEEE BBBBMMMMWWWW iiii3333 CCCCiiiittttrrrrooooeeeennnn CCCC0000 SSSSeeeegggguuuullllaaaa HHHHaaaaggggoooorrrraaaa Weight (kg) 1468 1190 1120 925 Estimated SCx (m2) 0,75 0,69 0,69 0,67 EV city car Energy management optimization MMMMaaaaxxxxiiiimmmmuuuummmm vvvveeeehhhhiiiicccclllleeee ssssppppeeeeeeeedddd aaaacccchhhhiiiieeeevvvvaaaabbbblllleeee iiiinnnn RRRREEEEXXXX mmmmooooddddeeee ((((wwwwiiiitttthhhh ΔΔΔΔ SSSSOOOOCCCC====0000)))) wwwwiiiitttthhhh 11115555 kkkkWWWW @@@@ tttthhhheeee eeeennnnggggiiiinnnneeee 11111111,,,,33333333 kkkkWWWW @@@@ tttthhhheeee wwwwhhhheeeeeeeellllssss VVVVeeeehhhhiiiicccclllleeee ssssppppeeeeeeeedddd ((((kkkkmmmm////hhhh)))) RRRReeeennnnaaaauuuulllltttt ZZZZOOOOEEEE BBBBMMMMWWWW iiii3333 CCCCiiiittttrrrrooooeeeennnn CCCC0000 SSSSeeeegggguuuullllaaaa HHHHaaaaggggoooorrrraaaa 0% slope 98,6 101,3 101,3 102,2 2% slope 73,4 78,4 80,3 84,8 4 % slope 53,4 59,3 62,3 69,2 140 120 100 80 60 40 20 0 NEDC saturé à 90km/h 0 200 400 600 800 1000 1200 Speed Vites se ((km/h) km/h) Temp s (s) Time (s) choice to limit 14 Pierre DURET – SETC Pisa – November 2014 the vehicle speed to 90 km/h in REX mode EV city car Energy management optimization CCCChhhhooooiiiicccceeee ooooffff tttthhhheeee RRRREEEEXXXX ooooppppeeeerrrraaaattttiiiinnnngggg ppppooooiiiinnnntttt ttttoooo mmmmeeeeeeeetttt tttthhhheeee EEEEuuuurrrroooo 6666 lllleeeeggggiiiissssllllaaaattttiiiioooonnnn AAAAvvvveeeerrrraaaaggggeeee ppppoooowwwweeeerrrr ((((kkkkWWWW)))) wwwwiiiitttthhhh ΔΔΔΔ SSSSOOOOCCCC ==== 0000 RRRReeeennnnaaaauuuulllltttt ZZZZOOOOEEEE BBBBMMMMWWWW iiii3333 CCCCiiiittttrrrrooooeeeennnn CCCC0000 SSSSeeeegggguuuullllaaaa HHHHaaaaggggoooorrrraaaa NEDC 2,82 2,61 2,58 2,47 TTTTrrrraaaaddddeeee-ooooffffffff bbbbeeeettttwwwweeeeeeeennnn NNNNOOOOxxxx ((((↘↘↘↘ wwwwhhhheeeennnn rrrrppppmmmm ↗↗↗↗)))) aaaannnndddd nnnnooooiiiisssseeee ((((↗ wwwwhhhheeeennnn rrrrppppmmmm ↗↗↗↗)))) choice of 4444000000000000 rrrrppppmmmm mmmmaaaaxxxx ppppoooowwwweeeerrrr ooooffff 2222,,,,99997777 kkkkWWWW (1,78 bar BEMP) achievable (sufficient for all vehicles) in CCCCAAAAIIII ccccoooommmmbbbbuuuussssttttiiiioooonnnn wwwwiiiitttthhhhoooouuuutttt DDDDeeeeNNNNOOOOxxxx EEEEssssttttiiiimmmmaaaatttteeeedddd eeeemmmmiiiissssssssiiiioooonnnnssss NNNNEEEEDDDDCCCC ((((99990000kkkkmmmm////hhhh)))) EEEEUUUURRRROOOO 6666 lllliiiimmmmiiiittttssss HC (mg/km) 555599995555 111100000000 CO ( mg/km) 1111000044446666 1111000000000000 NOx (mg/km) 55559999,,,,6666 66660000 15 Pierre DURET – SETC Pisa – November 2014 Oxi. cat required EV city car 16 Pierre DURET – SETC Pisa – November 2014 Vehicle integration CATIA pre-design study of the REX packaging in a 160 liters volume including: DI/CAI 250cc 2-stroke with intake exhaust systems generator and its coupling with the engine cooling system with radiator and fan DC/DC convertor fuel tank (10 liters) NNNNEEEEDDDDCCCC ooooppppeeeerrrraaaattttiiiinnnngggg ppppooooiiiinnnntttt SSSSiiiimmmmuuuullllaaaattttiiiioooonnnn rrrreeeessssuuuullllttttssss Engine Power 2,97 kW Engine BMEP 1,78 bar @ 4000 rpm Fuel consumption REX mode only 3,6 l / 100 km 293 g/kWh Average CO2 emissions (with 125 km EV range) 15 g/km Corresponding extended vehicle range 280 km
  5. 5. 3 case studies of DI 2-stroke REX + + + 17 Pierre DURET – SETC Pisa – November 2014 Multi-usage high performance luxury sport car Lightweight urban sport plug-in hybrid EV city car 58 kW 3-cylinder outboard based DI 2-stroke 30 kW 2-cylinder snowmobile based DI 2-stroke 15 kW 2-cylinder scooter based DI 2-stroke Requested specifications for the vehicle thermal engine Lightweight urban sport plug-in hybrid Vehicle specifications (Segula Hagora project): Lightweight 3-seat mid-size vehicle Plug-in hybrid 25 km electric range Acceleration: 0-100 km/h 10s Top speed: 185 km/h Average fuel consumption target : 2 l/100 km Thermal engine specifications based on a 2-cylinder snowmobile ROTAX 600 HO engine High power / weight Longest stroke available engine Already equipped with direct injection (E-Tec) Modified for high torque at low speed and limited maximum speed Euro 6 emissions capability (exhaust valve for ultra low NOx CAI) 18 Pierre DURET – SETC Pisa – November 2014 Lightweight urban sport plug-in hybrid Requested specifications for PPPPrrrroooodddduuuuccccttttiiiioooonnnn RRRRoooottttaaaaxxxx 666600000000 HHHHOOOO MMMMooooddddiiiiffffiiiieeeedddd eeeennnnggggiiiinnnneeee Displacement 594 cc 594 cc Bore x stroke 72 mm * 73 mm 72 mm x 73 mm Power output 85 kW @ 8000 rpm 30-35 kW @ 5500 rpm BMEP @ 2500 rpm 4 bar 6,5 bar Idle speed 1200 rpm 800 rpm Emissions Euro 6 19 Pierre DURET – SETC Pisa – November 2014 the thermal engine MMMMoooottttiiiivvvvaaaattttiiiioooonnnn ffffoooorrrr eeeennnnggggiiiinnnneeee mmmmooooddddiiiiffffiiiiccccaaaattttiiiioooonnnnssss ↘ maximum engine speed ↗ low speed torque ↘ of raw emissions (HC) Improved ability to CAI combustion TTTToooo rrrreeeeaaaacccchhhh eeeeffffffffiiiicccciiiieeeennnnccccyyyy eeeemmmmiiiissssssssiiiioooonnnnssss ooooffff IIIIFFFFPPPP eeeexxxxppppeeeerrrriiiimmmmeeeennnnttttaaaallll DDDDIIII CCCCAAAAIIII 2222-ssssttttrrrrooookkkkeeee ddddaaaattttaaaa bbbbaaaasssseeee 20 Pierre DURET – SETC Pisa – November 2014 GT Power modeling of modified configuration / performance targets Lightweight urban sport plug-in hybrid + 30 kW + 20 kW + 10 kW MMMMaaaaiiiinnnn eeeennnnggggiiiinnnneeee mmmmooooddddiiiiffffiiiiccccaaaattttiiiioooonnnnssss PPPPrrrroooodddduuuuccccttttiiiioooonnnn RRRRoooottttaaaaxxxx 666600000000 HHHHOOOO MMMMooooddddiiiiffffiiiieeeedddd eeeennnnggggiiiinnnneeee Exhaust opening 82 deg. CA ATDC 110 deg. CA ATDC Transfer opening 110 deg. CA ATDC 125 deg. CA ATDC Exhaust tuning 7900 rpm 4500 rpm speed
  6. 6. 21 Pierre DURET – SETC Pisa – November 2014 Selected Plug-in Hybrid architecture Lightweight urban sport plug-in hybrid 2 stroke ICE E-motor Gear 1.41:1 for vehicle top speed with 32 kW e-motor + 30 kW ICE CVT Final drive of 3.6 for lowest CVT reduction ratio at vehicle top speed 32 kW max. 8000 rpm 30 kW @ 5500 rpm E-motor Clutch for full EV mode 22 Simulink Energy management optimization Optimized hybrid mode strategy for best fuel consumption / NOx trade-off Lightweight urban sport plug-in hybrid 23 Lightweight urban sport plug-in hybrid 1sssstttt NNNNEEEEDDDDCCCC ccccyyyycccclllleeee ((((EEEEVVVV)))) 2nnnndddd NNNNEEEEDDDDCCCC ccccyyyycccclllleeee WWWWeeeeiiiigggghhhhtttteeeedddd aaaavvvveeeerrrraaaaggggeeee TTTTaaaarrrrggggeeeetttt FFFFuuuueeeellll ccccoooonnnnssssuuuummmmppppttttiiiioooonnnn [[[[llll////111100000000kkkkmmmm]]]] 0 3.30 1111....55556666 2 NNNNOOOOxxxx [[[[mmmmgggg////kkkkmmmm]]]] 0 222255556666 60 HHHHCCCC [[[[mmmmgggg////kkkkmmmm]]]] 0 969 100 CCCCOOOO [[[[mmmmgggg////kkkkmmmm]]]] 0 5566 1000 OOOOppppttttiiiimmmmiiiizzzzeeeedddd hhhhyyyybbbbrrrriiiidddd mmmmooooddddeeee ssssttttrrrraaaatttteeeeggggyyyy ffffoooorrrr bbbbeeeesssstttt ffffuuuueeeellll ccccoooonnnnssssuuuummmmppppttttiiiioooonnnn //// NNNNOOOOxxxx ttttrrrraaaaddddeeee-ooooffffffff Very good fuel consumption Too high NOx emissions EEEEuuuurrrroooo 6666 nnnnooootttt aaaacccchhhhiiiieeeevvvvaaaabbbblllleeee wwwwiiiitttthhhhoooouuuutttt DDDDeeeeNNNNOOOOxxxx Oxi cat for CO HC conversion Pierre DURET – SETC Pisa – November 2014 Energy management optimization 24 Lightweight urban sport plug-in hybrid CVT tuned for lowest NOx emissions DI 2-stroke supplies constant power all the time ~ Average power to cover the NEDC cycle with ICE only Low load working point in CAI combustion for ultra low NOx Battery used as a buffer E-motor also used as a generator when ICE power vehicle demand Globally charge sustaining Batteries slowly charged during urban part of NEDC Battery depletion during extra-urban part of NEDC Range Extender Strategy Pierre DURET – SETC Pisa – November 2014 Energy management optimization
  7. 7. 25 Energy management optimization Lightweight urban sport plug-in hybrid 240 250 260 270 270 280 280 280 290 290 300 310 320 360 400 440 500 560 620 Engine RPM Engine Torque [N.m] BSFC (g/kWh) 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 60 50 40 30 20 10 5 6 0.2 0.2 3 2 0.4 0.4 0.6 0.6 0.8 1 4 7 7 7 8 8 8 9 9 10 10 11 11 12 13 Engine RPM Engine Torque [N.m] NOx emission (g/kWh) 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 60 50 40 30 20 10 150 100 50 0 -50 Range Extender Strategy 0 200 400 600 800 1000 1200 t [s] S p e e d [ m / s ] Vehicle speed 30 20 10 0 0 200 400 600 800 1000 1200 t [s] T o r q u e [ N . m ] Engine torque 40 20 0 -20 0 200 400 600 800 1000 1200 t [s] P o w e r [ k W ] Engine (red) motor power (blue) 0.5 0.45 0.4 0.35 0 200 400 600 800 1000 1200 t [s] S o C [ - ] Battery state of char ge ICE power E-motor power 26 Lightweight urban sport plug-in hybrid 1sssstttt NNNNEEEEDDDDCCCC ccccyyyycccclllleeee ((((EEEEVVVV)))) 2nnnndddd NNNNEEEEDDDDCCCC ccccyyyycccclllleeee WWWWeeeeiiiigggghhhhtttteeeedddd aaaavvvveeeerrrraaaaggggeeee TTTTaaaarrrrggggeeeetttt FFFFuuuueeeellll ccccoooonnnnssssuuuummmmppppttttiiiioooonnnn [[[[llll////111100000000kkkkmmmm]]]] 0 4.00 1111....99990000 2 NNNNOOOOxxxx [[[[mmmmgggg////kkkkmmmm]]]] 0 28.4 60 HHHHCCCC [[[[mmmmgggg////kkkkmmmm]]]] 0 698 100 CCCCOOOO [[[[mmmmgggg////kkkkmmmm]]]] 0 1508 1000 RRRRaaaannnnggggeeee eeeexxxxtttteeeennnnddddeeeerrrr ssssttttrrrraaaatttteeeeggggyyyy Slightly increased fuel consumption but still below the target Ultra low NOx emissions EEEEuuuurrrroooo 6666 aaaacccchhhhiiiieeeevvvvaaaabbbblllleeee wwwwiiiitttthhhhoooouuuutttt DDDDeeeeNNNNOOOOxxxx Easiest CO HC conversion with oxi cat Pierre DURET – SETC Pisa – November 2014 Energy management optimization 3 case studies of DI 2-stroke REX + + + 27 Pierre DURET – SETC Pisa – November 2014 Multi-usage high performance luxury EV sport car Lightweight urban sport plug-in hybrid EV city car 58 kW 3-cylinder outboard based DI 2-stroke 30 kW 2-cylinder snowmobile based DI 2-stroke 15 kW 2-cylinder scooter based DI 2-stroke Multi-usage high performance luxury EV sport car E-VVVVeeeehhhhiiiicccclllleeee ssssppppeeeecccciiiiffffiiiiccccaaaattttiiiioooonnnnssss:::: Weight: 1950 kg SCx: 0,81 m2 Electric motors: 250 kW Electric range: 300 km – NEDC 197 km @ 130 km/h EEEExxxxtttteeeennnnddddeeeedddd ssssppppeeeecccciiiiffffiiiiccccaaaattttiiiioooonnnnssss wwwwiiiitttthhhh RRRREEEEXXXX Vmax 140 km/h in REX mode + 300 km – NEDC + 247 km range @ 130 km/h with 30 l fuel tank 28 Pierre DURET – SETC Pisa – November 2014
  8. 8. Choice of the engine architecture adapted for REX application Multi-usage high performance luxury sport car EEEEnnnnggggiiiinnnneeee ttttyyyyppppeeee 3333 ccccyyyylllliiiinnnnddddeeeerrrr iiiinnnn-lllliiiinnnneeee 2222-ssssttttrrrrooookkkkeeee Power output 58,8 kW @ 5500 rpm Displacement 1025 cc Bore x stroke 80 mm x 68 mm Fuel system IAPAC LPDI MMMMaaaaiiiinnnn rrrreeeeqqqquuuuiiiirrrreeeedddd eeeennnnggggiiiinnnneeee mmmmooooddddiiiiffffiiiiccccaaaattttiiiioooonnnnssss////aaaaddddaaaappppttttaaaattttiiiioooonnnnssss:::: No change of the thermodynamics/scavenging characteristics Use of existing production DI system (IAPAC compressed air assisted fuel injection) Implementation of exhaust throttling valves for CAI combustion New exhaust system including oxi cat 29 Pierre DURET – SETC Pisa – November 2014 Multi-usage high performance luxury sport car One single operating point in CAI combustion for ultra low NOx Same battery SOC at the beginning end of the NEDC cycle NNNNEEEEDDDDCCCC ooooppppeeeerrrraaaattttiiiinnnngggg ppppooooiiiinnnntttt SSSSiiiimmmmuuuullllaaaattttiiiioooonnnn rrrreeeessssuuuullllttttssss Engine BMEP 1,5 bar @ 3000 rpm Engine Power 7,68 kW Fuel consumption - REX mode only 9,9 l / 100 km 320 g/kWh Average CO2 emissions 18 g / km EEEEmmmmiiiissssssssiiiioooonnnnssss ccccoooommmmpppplllliiiiaaaannnncccceeee EEEEUUUURRRROOOO 6666 lllliiiimmmmiiiitttt NOx emissions 45,8 mg / km 60 mg / km NOx emissions can meet the legislation without DeNOx and with regulated vehicle CO2 emissions of 18 g/km 30 Pierre DURET – SETC Pisa – November 2014 CONCLUSIONS “Small Engines Leaning towards Sustainable Mobility” To be able to propose eeeelllleeeeccccttttrrrriiiicccc vvvveeeehhhhiiiicccclllleeeessss eeeeqqqquuuuiiiippppppppeeeedddd wwwwiiiitttthhhh aaaa rrrraaaannnnggggeeee eeeexxxxtttteeeennnnddddeeeerrrr will help to develop the EEEEVVVV ccccuuuussssttttoooommmmeeeerrrr aaaacccccccceeeeppppttttaaaannnncccceeee SSSSmmmmaaaallllllll EEEEnnnnggggiiiinnnneeee TTTTeeeecccchhhhnnnnoooollllooooggggiiiieeeessss are well adapted for such application and will therefore bring their contribution for future SSSSuuuussssttttaaaaiiiinnnnaaaabbbblllleeee MMMMoooobbbbiiiilllliiiittttyyyy Among those technologies, the DDDDIIII 2222-ssssttttrrrrooookkkkeeee eeeennnnggggiiiinnnneeee represents a rrrreeeelllleeeevvvvaaaannnntttt ccccaaaannnnddddiiiiddddaaaatttteeee thanks to its aaaaddddvvvvaaaannnnttttaaaaggggeeeessss of lightweight, compactness, double cycle frequency and NVH, cost and efficiency One of the mmmmaaaajjjjoooorrrr cccchhhhaaaalllllllleeeennnnggggeeee of the use of DDDDIIII 2222-ssssttttrrrrooookkkkeeee engines ffffoooorrrr aaaauuuuttttoooommmmoooottttiiiivvvveeee range extender application is the NNNNOOOOxxxx PPPPMMMM eeeemmmmiiiissssssssiiiioooonnnnssss iiiissssssssuuuueeee Energy management optimization of 3 examples of DI 2-stroke REX / EV combination shows that, when combined with part load CCCCoooonnnnttttrrrroooolllllllleeeedddd AAAAuuuuttttoooo IIIIggggnnnniiiittttiiiioooonnnn, EEEEuuuurrrroooo 6666 NNNNOOOOxxxx eeeemmmmiiiissssssssiiiioooonnnnssss can be achieved wwwwiiiitttthhhhoooouuuutttt DDDDeeeeNNNNOOOOxxxx aftertreatment And after a Technical proposal of contribution to CO2 mitigation an EEEEdddduuuuccccaaaattttiiiioooonnnn iiiinnnniiiittttiiiiaaaattttiiiivvvveeee towards SSSSuuuussssttttaaaaiiiinnnnaaaabbbblllleeee MMMMoooobbbbiiiilllliiiittttyyyy ………….... 31 Pierre DURET – SETC Pisa – November 2014 Massive Open On-line Course A new eeeedddduuuuccccaaaattttiiiioooonnnnaaaallll tool designed by IFP School SSSSuuuussssttttaaaaiiiinnnnaaaabbbblllleeee MMMMoooobbbbiiiilllliiiittttyyyy Technical and environmental challenges for the automotive sector ► Week 1 : Global energy context and environmental issues ► Week 2 : Fuel and engine basics ► Week 3 : Engine technology and reduction of pollutant emissions ► Week 4 : Tomorrow’s mobility : what are the solutions ? IIIInnnn pppprrrraaaaccccttttiiiicccceeee :::: FFFFrrrroooommmm 3333rrrrdddd ttttoooo 33330000tttthhhh NNNNoooovvvveeeemmmmbbbbeeeerrrr 2222000011114444 ((((rrrreeeeggggiiiissssttttrrrraaaattttiiiioooonnnn cccclllloooosssseeeedddd oooonnnn NNNNoooovvvv.... 22225555 !!!!)))) ►Who is it for ? • Prerequisite : 1 or 2 years of higher education • Language : English ►An innovating and interactive learning environment with a serious game as a case study ! ►A certificate of participation and achievement will be issued by IFP School ►It’s time to join at http://mooc.sustainable-mobility.ifp-school.com
  9. 9. Acknowledgements IFP School students project teams: Alexandre BORIE, Thomas BRICHARD, Thomas CREMILLEUX, Samuel QUESADA Félix GALLIENNE, Sébastien LEMOINE, Adrian MIGUEL SANCHEZ Ivo LANIAR, Thomas LE BIHAN, Quentin PIRAUD Estelle GRILLIERES, Vijaykannan MOHAN, Vincent ROVERE, Michel SANCHO The students project supervisors: Prakash DEWANGAN – IFP School Lorenzo SERRAO – DANA Stéphane VENTURI – IFP Energies Nouvelles The support from industry Benoit BAGUR – Exagon Motors Pascal GIRARD – Segula Technologies 33 Pierre DURET – SETC Pisa – November 2014

×