SlideShare a Scribd company logo
1 of 66
Download to read offline
GILLESANIA Engineering
Review & Training Center
September 2022
F2F Refresher
Week 4 ( PSAD )
Next
1. Given the following data of the solid
circular pole shown:
  250 mm   0.45 kN
  3 m   100 mm
  3 kN
Weight of pole = 22 kg/m
Determine the maximum compressive
stress (MPa) at the base of the pole.
A. 0.954 B. 0.941
C. 0.806 D. 1.150
P
H
L
e
D
1. Given the following data of the solid
circular pole shown:
  250 mm   0.45 kN
  3 m   100 mm
  3 kN
Weight of pole = 22 kg/m
Determine the maximum compressive
stress (MPa) at the base of the pole.
A. 0.954 B. 0.941
C. 0.806 D. 1.150
P = 3
H=0.45
L=3
e=0.1
D=250
Wp
  22 9.81 3  647.46 N
  0.64746 kN
D=250
y
x


b
a
  3  0.64746  3.64746 kN
  0.45 3  3 0.1
  1.65 kN m
 !
 #  $

%
$

'(
 !
 $
3647.46
)
* 250 + $
1.65 10, 250/2
)
,* 250 *
 !
 $.. ./ 012
Next
2. Refer to the figure shown:
Given:  = 2 m
Bar diameter = 20 mm
Concrete cover, 3 = 65 mm
Length of extension bar, 4 = 80 mm
Radius of bend = 45#
’
= 20.7MPa; (
= 414 MPa
According to 412.6 of NSCP, Development
length 78 for deformed bars in tension
terminating in a standard hook shall not be
less than:
1.
(5#
4.17 
9
2. 8 5#
3. 150 mm
Determine the total length (m) of the bar.
A. 2.53 C. 2.87
B. 3.03 D. 3.36
a
L
b
Ldh
r
2. Refer to the figure shown:
Given:  = 2 m
Bar diameter = 20 mm
Concrete cover, 3 = 65 mm
Length of extension bar, 4 = 80 mm
Radius of bend = 45#

9
 20.7MPa; ( 414 MPa
According to 412.6 of NSCP, Development
length 78 for deformed bars in tension
terminating in a standard hook shall not be
less than:
1.
(5#
4.17 
9
2. 8 5#
3. 150 mm
Determine the total length (m) of the bar.
A. 2.53 C. 2.87
B. 3.03 D. 3.36
65
L = 2
b=80
Ldh
r=4db
db = 20mm

414 20
4.17 20.7
 436.4 mm
 8 20  160
← 78
;  4 20  80
x1
x2 x3
=  65  ;  +
+
 155
+  2000  1845
?  436.4
?  346.4
1845  346.4  2191.4
@; @;
4  80 4  80
#AB  2191.4  @ 80 2  2 80
#AB  2854 mm
$155
$ ;
 C. D/E F
Q2 C 46.08 14.81 28.94 9.68
$+
+
Next
3. A 100-mm thick one-way slab is
reinforced with 12 mm bars spaced at
200 mm on centers. Given that 
9  20.7
MPa, (  275 MPa, compute the design
moment (kN-m) of the slab. Assume 20
mm concrete cover.
A. 10.82 C. 10.58
B. 11.75 D. 9.74
4  1000
ℎ

100
20
12‡ 5
5  100 $ 20 $ 12/2  74 mm
%#  )
* 12 +  113.1 mm+
%H 
1000%#
I
Consider 1 m slab width

1000 113.1
200
 565.5 mm+
Assuming steel yields:
3 
%H(
0.85
9
4

565.5 275
0.85 20.7 1000
3  8.838 mm
  3/J=  8.838/0.85
 10.4 mm ?
K
5  27.75 Tension controlled
L  M 5 $ 3/2  0.85
934 5 $ 3/2
 0.85 20.7 8.838 1000 74 $
8.838
2
L  10.82 kN m
NL  0.9 10.82  O. PQD RS F
T
Q3 D 21.01 18.68 35.53 23.23
Next
Situation 2 –
Dimensions:
3  4  5  0.4 m;   3.5 m
Footing width,   2 m
Effective depth = 500 mm
Uniform soil pressure
(from factored loads) = 196 kPa
Shear diagram:
 156.8 kN; U  761.2 kN;   -610.8 kN

9
 27.5 MPa; (  414 MPa
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
Shear = 0.75
7. Determine the required number of bars at
critical moment.
A. 10 B. 12 C. 11 D. 13
8. Determine the spacing of bars, in mm, at the
face of the column. Use 75 mm clear cover.
A. 90 B. 180 C. 95 D. 105
9. Determine the critical wide beam shear
stress, in MPa.
A. 1.02 B. 0.75 C. 0.81 D. 0.57
a b c d
W
column column
e
f
g
h
Situation 2 –
Dimensions:
3  4  5  0.4 m;   3.5 m
Footing width,   2 m
Effective depth = 500 mm
Uniform soil pressure
(from factored loads) = 196 kPa
Shear diagram:
 156.8 kN; U  761.2 kN;   -610.8 kN

9
 27.5 MPa; (  414 MPa
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
Shear = 0.75
0.4 0.4 3.5
2
column column
156.8
-610.8
761.2
h
0.4
wu
Solving for wu:
$610.8  VW 3.5  761.2
VW  392 kN/m
OR: 0  VW 0.4  156.8
VW  392 kN/m
OR: VW  XW 
VW  196 2  392 kN/m
Situation 2 –
Effective depth = 500 mm
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
Shear = 0.75
9. Determine the critical wide beam shear
stress, in MPa.
A. 1.02 B. 0.75 C. 0.81 D. 0.57
0.4 0.4 3.5
2
column column
156.8
-610.8
761.2
h
0.4
wu
VW  392 kN/m
deff=0.5
Y
W
Y
W  761.2 $ VW5
 761.2 $ 392 0.5
Y
W  565.2 kN
ZW[ 
Y
W
4[5
4
[

2000
mm
ZW[ 
565,200
2000 500
5  500 mm
ZW[  ]. /^/ 012
Q9 D 30.3 24.69 30.11 13.94
Situation 2 –
Effective depth = 500 mm
0.4 0.4 3.5
2
column column
156.8
-610.8
761.2
h
0.4
wu
VW  392 kN/m
4
[

2000
mm
5  500 mm
4  2000 mm
156.8
-610.8
761.2
0.4
x

156.8

0.4
156.8  610.8
  0.0817 m
0.4
A1
%=  =
+
0.4  0.0817 156.8
%=  37.765 kN m
0.4+x
156.8
-610.8
0.4-x=0.3183
A2
%+ 
=
+
0.3183 $610.8
%+  $97.21 kN m
610.8/VW
1.558
3.5 $ 1.558
 1.942
A3
A4
%? 
=
+ 1.558 $610.8  $475.81 kN m
%* 
=
+
1.942 761.2
%*  739.13 kN m
Situation 2 –
Effective depth = 500 mm
0.4 0.4 3.5
2
column column
0.4
VW  392 kN/m
4
[

2000
mm
5  500 mm
4  2000 mm
A1
%=  37.765 kN m
A2
%+  $97.21 kN m
A3
A4
%? 
 $475.81 kN m
%*  739.13 kN m
=
+
?
=  %=  QP. P^/ RS F
+  %=  %+  %?
 $/Q/. C^ RS F
?  +  %*  C]Q. DP RS F
Situation 2 – 
9
 27.5 MPa; (  414 MPa
Effective depth = 500 mm
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
7. Determine the required number of bars at
critical moment.
A. 10 B. 12 C. 11 D. 13
8. Determine the spacing of bars, in mm, at the
face of the column. Use 75 mm clear cover.
A. 90 B. 180 C. 95 D. 105
0.4 0.4 3.5
2
column column
0.4
5  500 mm
4  2000 mm
=
+
?
 $/Q/. C^ RS F
 C]Q. DP RS F
At critical moment:
W  +  535.26 kN m
_L 
W
N45+ 
535.26 10,
0.9 2000 500 +
 1.189 MPa
c 
0.85
9
(
1 $ 1 $
2_L
0.85
9
c  0.00295 cdeL  1.4/(  0.00338 ◄Use this
%H 
 QP. P^/ RS F
c45  0.00338 2000 500
%H  3380 mm+
f+ 
3380
)
* 20 +  10.75 use 11
Q7 C 15.88 42.88 28.94 11.42
Situation 2 – 
9
 27.5 MPa; (  414 MPa
Effective depth = 500 mm
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
8. Determine the spacing of bars, in mm, at the
face of the column. Use 75 mm clear cover.
A. 90 B. 180 C. 95 D. 105
0.4 0.4 3.5
2
column column
0.4
5  500 mm
4  2000 mm
=
+
?
 $/Q/. C^ RS F
 C]Q. DP RS F
cdeL  1.4/(  0.00338
 QP. P^/ RS F
%H  3380 mm+
f+ 
3380
)
* 20 +  10.75 use 11
75 75
20‡
2000
2000 $2 75 $20  1830 mm
gh3ijU, I 
1830
11 $ 1
 .DQ FF
Q8 B 21.49 18.97 28.56 30.01
Next
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
10. Compute the value of the maximum
ordinate of influence diagram of
member lm.
A. 1.5 C. 0.75
B. 0.5 D. 1.00
11. Compute the axial load in member lm
(kN) due to a standard wheel base 4.3
m apart, front wheel load = 72.4 kN
and rear wheel load = 19.6 kN.
A. 63.25 C C. 81.47 C
B. 63.25 T D. 81.47 T
12. Compute the axial load in member lm
(kN) due to a uniform moving load of
9.35 kN/m.
A. 74.8 C C. 52.6 T
B. 74.8 T D. 52.6 C
P
A
B C D
E
F G H I
J K
k k
s s s s
L
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
10. Compute the value of the maximum
ordinate of influence diagram of
member lm.
A. 1.5 C. 0.75
B. 0.5 D. 1.00
11. Compute the axial load in member lm
(kN) due to a standard wheel base 4.3
m apart, front wheel load = 72.4 kN
and rear wheel load = 19.6 kN.
A. 63.25 C C. 81.47 C
B. 63.25 TC D. 81.47 T
12. Compute the axial load in member lm
(kN) due to a uniform moving load of
9.35 kN/m.
A. 74.8 C C. 52.6 T
B. 74.8 T D. 52.6 C
A
B C D
E
F G H I
J K
k  45° k
4 4 4 4
8
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
10. Compute the value of the maximum
ordinate of influence diagram of
member lm.
A. 1.5 C. 0.75
B. 0.5 D. 1.00
A
B C D
E
F G H I
J K
k  45° k
4 4 4 4
8
h
FJK
a = 8 b = 8
L = 16
ℎ  4 tan 45°  4 m
q
q 
34


8 8
16
 4
r  $
q
ℎ
 $
4
4
 $.
Influence line for FJK:
Q10 D 13.17 23.81 22.75 39.59
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
11. Compute the axial load in member lm
(kN) due to a standard wheel base 4.3
m apart, front wheel load = 72.4 kN
and rear wheel load = 19.6 kN.
A. 63.25 C C. 81.47 C
B. 63.25 T D. 81.47 T
r  $1
Influence line for FJK:
A
B C D
E
F G H I
J K
k k
4 4 4 4
L
72.4 19.6
4.3
3.7
r=
r=
3.7

$1
8
r=  $0.4625
stu !
 72.4 $1  19.6 $0.4625
stu !
 D.. E^/ RS v
Q11 C 28.07 11.23 43.56 16.17
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
12. Compute the axial load in member lm
(kN) due to a uniform moving load of
9.35 kN/m.
A. 74.8 C C. 52.6 T
B. 74.8 T D. 52.6 C
r  $1
Influence line for FJK:
A
B C D
E
F G H I
J K
k k
4 4 4 4
L
w = 9.35 kN/m
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
12. Compute the axial load in member lm
(kN) due to a uniform moving load of
9.35 kN/m.
A. 74.8 C C. 52.6 T
B. 74.8 T D. 52.6 C
r  $1
Influence line for FJK:
A
B C D
E
F G H I
J K
k k
4 4 4 4
L
w = 9.35 kN/m
% 
1
2
16 $1  $D
stu !
 V%  9.35 $8
 PE. D RS v
Q12 A 43.08 21.59 15.68 18.78
Next
Situation 6 - The pile footing supports a
column, 600 mm 600 mm at the center.
The piles are precast concrete with 350
mm 350 mm dimension. Given:
Net load on the footing at Ultimate
Condition:
W  2700 kN; Ww 108 kN-m
W(  165 kN-m
Effective depth of the footing = 400 mm
Dimensions: 3  0.6 m   1.2 m
4  1 m 5  0.6 m
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
19. Determine the critical punching shear
stress (MPa) of one pile due to axial load.
A. 0.54 B. 0.68 C. 0.25 D. 0.33
20. Determine the punching shear stress (MPa)
of the column due to axial load.
A. 1.5 B. 2.0 C. 2.5 D. 3.0
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5
x
y
a
b
b
a
d d
c
c
Situation 6 - The pile footing supports a
column, 600 mm 600 mm at the center.
The piles are precast concrete with 350
mm 350 mm dimension. Given:
Net load on the footing at Ultimate
Condition:
W  2700 kN; Ww 108 kN-m
W(  165 kN-m
Effective depth of the footing = 400 mm
Dimensions: 3  0.6 m   1.2 m
4  1 m 5  0.6 m
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
19. Determine the critical punching shear
stress (MPa) of one pile due to axial load.
A. 0.54 B. 0.68 C. 0.25 D. 0.33
20. Determine the punching shear stress (MPa)
of the column due to axial load.
A. 1.5 B. 2.0 C. 2.5 D. 3.0
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5
x
y
0.6
0.6
1
1
0.6
1.2 1.2
0.6
Pu = 2700
Part 1: due to axial load only
_ 
W
f

2700
9
 300 kN
350+400
350+400
 Y
W
ZW 
Y
W
4x5

300,000
4 750 400
 ]. C/ 012
Q19 C 23.52 20.81 20.81 33.88
Situation 6 - The pile footing supports a
column, 600 mm 600 mm at the center.
The piles are precast concrete with 350
mm 350 mm dimension. Given:
Net load on the footing at Ultimate
Condition:
W  2700 kN; Ww 108 kN-m
W(  165 kN-m
Effective depth of the footing = 400 mm
Dimensions: 3  0.6 m   1.2 m
4  1 m 5  0.6 m
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
19. Determine the critical punching shear
stress (MPa) of one pile due to axial load.
A. 0.54 B. 0.68 C. 0.25 D. 0.33
20. Determine the punching shear stress (MPa)
of the column due to axial load.
A. 1.5 B. 2.0 C. 2.5 D. 3.0
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5
x
y
0.6
0.6
1
1
0.6
1.2 1.2
0.6
Pu = 2700
Part 2: due to axial load only
600+400
600+400
_ 
 300 kN
ZW 
Y
W
4x5

2,400,000
4 1000 400
 .. / 012
Y
W  W $ _  2700 $ 300  2400 kN
Q20 A 24.1 33.3 28.36 13.36
Situation 6 –
Effective depth of the footing = 400 mm
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5 x
y
0.6
0.6
1
1
0.6
1.2 1.2
0.6
Pu = 2700
Mux = 108
Muy = 165
A
B
C
D
E
F
G
H
I
350+400
350+400
_ 
W
f
y
Wwz
Σz+ y
W(
Σ+
_ | 
2700
9

108 1
1 + 6

165 1.2
1.2 + 6
_ |  340.92 kN  Y
W
ZW 
Y
W
4x5

340,920
4 750 400
 ]. CDE 012
On the heavily loaded pile:
Situation 6 –
Effective depth of the footing = 400 mm
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5 x
y
0.6
0.6
1
1
0.6
1.2 1.2
0.6
Pu = 2700
Mux = 108
Muy = 165
A
B
C
D
E
F
G
H
I
ZW 
 ]. CDE 012
On the heavily loaded pile:
On the column:
_ } 
2700
9
 0  0  300 kN
600+400
600+400
ZW 
Y
W
4x5

2,400,000
4 1000 400
 .. / 012
Y
W  W $ _ }  2700 $ 300  2400 kN
_ 
W
f
y
Wwz
Σz+ y
W(
Σ+
  0; z  0
Q21 C 22.75 25.17 24.2 26.91
Next
Situation 8 – For the rectangular tied column
shown in the figure.
Given:

9
 27.5 MPa mL  0.80
(  414 MPa _L  0.205
Reinforcement steel ratio, c  0.05
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
25. How many 20 mm diameter bars are
required for the rectangular tied column?
A. 40 B. 36 C. 30 D. 28
26. What is the maximum nominal axial load
L (kN) that the column could carry?
A. 7542 B. 5354 C. 8238 D. 9236
27. If reinforcement steel ratio, c  0.03,
what is the required length (mm) of the
long side of the column?
A. 620 B. 700 C. 650 D. 670
Situation 8 – For the rectangular tied column
shown in the figure.
Given:

9
 27.5 MPa mL  0.80
(  414 MPa _L  0.205
Reinforcement steel ratio, c  0.05
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
25. How many 20 mm diameter bars are
required for the rectangular tied column?
A. 40 B. 36 C. 30 D. 28
%  600 400  240,000 mm+
%H  c%  0.05 240,000
%H  12,000 mm+
f+ 
12000
)
*
20 +  38.2 Use 40
Q25 A 27.98 24.1 20.72 26.23
Situation 8 – For the rectangular tied column
shown in the figure.
Given:

9
 27.5 MPa mL  0.80
(  414 MPa _L  0.205
Reinforcement steel ratio, c  0.05
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
26. What is the maximum nominal axial load
L (kN) that the column could carry?
A. 7542 B. 5354 C. 8238 D. 9236
%  600 400  240,000 mm+
x  0.85
9 % $ %H (%H
x  0.85 27.5 240,000 $ 12,000
%H  12,000 mm+
 414 12,000
x 
L  0.8x  D, CQD RS
10,297,500 N  10,297.5 kN
Q26 C 24.1 35.14 29.53 9.97
Situation 8 –
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
27. If reinforcement steel ratio, c  0.03,
what is the required length (mm) of the
long side of the column?
A. 620 B. 700 C. 650 D. 670
%  240,000 mm+
ℎ  400 mm c  0.03
L  mL
9%  0.8 27.5 240,000
L  5280 kN
L  L  _L
9%ℎ
 0.205 27.5 240000 400
mL  0.8 _L  0.205
L  541.2 kN m
€  ]. D
‚  ]. C]/
€  ]. PC
% 
L
mL
9 
5,280,000
0.72 27.5
 266,667 mm+
%  4ℎ  4 400  266,667 mm+
4  ^^^. P FF Q27 D 19.17 25.75 31.46 22.17
Situation 8 –
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
27. If reinforcement steel ratio, c  0.03,
what is the required length (mm) of the
long side of the column?
A. 620 B. 700 C. 650 D. 670
ℎ  400 mm
c  0.03
€  ]. D
‚  ]. C]/
€  ]. PC
% 
 266,667 mm+
4  ^^^. P FF
‚


].
.D/
L  5280 kN L  541.2 kN m
L  L  _L
9
%ℎ
L  0.185 27.5 266,667 400
L  /EC. P RS F
Next
Situation 4 – The beam ƒM shown is
supported by a quarter-circular arc %M
having a radius of 4 m. The frame is pin-
supported at %, ƒ and M. The pins at % and
ƒ are in single shear while the pin at M is
in double shear. Allowable shear stress of
the pin is 112 MPa. V  3 kN/m.
13. Determine the minimum diameter (mm)
of the pin at ƒ.
A. 10 B. 12 C. 8 D. 6
14. Determine the minimum diameter (mm)
of the pin at M.
A. 8 B. 6 C. 12 D. 10
15. Determine the resultant reaction (kN) at
%.
A. 12 B. 8.49 C. 9.36 D. 6
A
B
C
w
R
Situation 4 – The beam ƒM shown is
supported by a quarter-circular arc %M
having a radius of 4 m. The frame is pin-
supported at %, ƒ and M. The pins at % and
ƒ are in single shear while the pin at M is
in double shear. Allowable shear stress of
the pin is 112 MPa. V  3 kN/m.
A
B
C
w = 3 kN/m
4 m
4
m
Av
Ah
Bh
Bv
Σ„  0
3 4 4/2 $ %8 4  0
%8  6 kN
Σs8  0
ƒ8  %8  6 kN
6
6
Situation 4 – The beam ƒM shown is
supported by a quarter-circular arc %M
having a radius of 4 m. The frame is pin-
supported at %, ƒ and M. The pins at % and
ƒ are in single shear while the pin at M is
in double shear. Allowable shear stress of
the pin is 112 MPa. V  3 kN/m.
13. Determine the minimum diameter (mm)
of the pin at ƒ.
A. 10 B. 12 C. 8 D. 6
14. Determine the minimum diameter (mm)
of the pin at M.
A. 8 B. 6 C. 12 D. 10
15. Determine the resultant reaction (kN) at
%.
A. 12 B. 8.49 C. 9.36 D. 6
A
B C
w = 3 kN/m
4 m
Av
Ah
Bh
Bv
6
6
Cv
Ch
C
Cv
Ch
In beam BC:
3 4 4/2
Σ„  0 $ M 4  0
M  6 kN
Σs8  0 M8  ƒ8  6 kN
6
6
 ƒ
6
6
6
6
_„  6+  6+
_„  8.48 kN
_|  _q  _„  8.48 kN
Diameter of pin @ B (single shear):
 
_„
% eL
† 112 MPa
% eLdeL

8480
112
 75.71 mm+
)
*
5 eL
+
 75.71
5 eLdeL
 9.82 mm
use 10 mm
Q13 A 40.17 21.88 26.23 11.13
Q15 B 17.23 39.79 17.23 25.07
Situation 4 – The beam ƒM shown is
supported by a quarter-circular arc %M
having a radius of 4 m. The frame is pin-
supported at %, ƒ and M. The pins at % and
ƒ are in single shear while the pin at M is
in double shear. Allowable shear stress of
the pin is 112 MPa. V  3 kN/m.
14. Determine the minimum diameter (mm)
of the pin at M.
A. 8 B. 6 C. 12 D. 10
15. Determine the resultant reaction (kN) at
%.
A. 12 B. 8.49 C. 9.36 D. 6
A
B C
w = 3 kN/m
4 m
Av
Ah
Bh
Bv
6
6
Cv
Ch
C
Cv
Ch
6
6
6
6
6
6
_„  6+  6+
_„  8.48 kN
_|  _q  _„  8.48 kN
Diameter of pin @ C (double shear):
 
_
2% eL
† 112 MPa
% eLdeL

8480
112 2
 37.9 mm+
)
*
5 eL
+
 37.9 5 eLdeL
 6.9 mm use 8 mm
Q14 A 29.82 31.56 18.59 19.55
Next
Situation 7 – A flag pole is supported by tension
wires %ƒ, %M and % to resist an uplift force
of 185 N acting on the axis of the pole. In
this problem, 3  3 m, 4  4 m and ℎ  12
m.
22. Calculate the tension (kN) in wire %ƒ.
A. 82.46 C. 47.43
B. 65.00 D. 58.42
23. Calculate the tension (kN) in wire %M.
A. 58.42 C. 65.00
B. 47.43 D. 82.46
24. Calculate the tension (kN) in wire %.
A. 47.43 C. 58.42
B. 82.46 D. 65.00
z

‡
%
ƒ

M
3
4
3
4
Situation 7 – A flag pole is supported by tension
wires %ƒ, %M and % to resist an uplift force
of 185 N acting on the axis of the pole. In
this problem, 3  3 m, 4  4 m and ℎ  12
m.
22. Calculate the tension (kN) in wire %ƒ.
A. 82.46 C. 47.43
B. 65.00 D. 58.42
23. Calculate the tension (kN) in wire %M.
A. 58.42 C. 65.00
B. 47.43 D. 82.46
24. Calculate the tension (kN) in wire %.
A. 47.43 C. 58.42
B. 82.46 D. 65.00
z

‡
%
ƒ

M
3
4
3
4
12
Situation 7 – A flag pole is supported by tension
wires %ƒ, %M and % to resist an uplift force
of 185 N acting on the axis of the pole. In
this problem, 3  3 m, 4  4 m and ℎ  12
m.
z

‡
%
ƒ

M
3
4
3
4
  185 f
ˆ„
ˆq
ˆ‰
%ƒ 
Using matrix:
3i  0Š 12
$ 12‹ %ƒ  153
%M  $4i  3Š $ 12‹ %M  13
%  0i $ 4Š $ 12‹ %  160
3Œ% 
?
=?

=?
Ž=+
=?
Ž*
=?
?
=?
Ž=+
=?

=,
Ž*
=,
Ž=+
=,
3Œƒ 
0
0
185
$Trn Inv MatA MatB
ˆ„  82.462 kN
ˆq  65 kN
ˆ‰  47.43 kN
Situation 7 – A flag pole is supported by tension
wires %ƒ, %M and % to resist an uplift force
of 185 N acting on the axis of the pole. In
this problem, 3  3 m, 4  4 m and ℎ  12
m.
22. Calculate the tension (kN) in wire %ƒ.
A. 82.46 C. 47.43
B. 65.00 D. 58.42
23. Calculate the tension (kN) in wire %M.
A. 58.42 C. 65.00
B. 47.43 D. 82.46
24. Calculate the tension (kN) in wire %.
A. 47.43 C. 58.42
B. 82.46 D. 65.00
z

‡
%
ƒ

M
3
4
3
4
  185 f
ˆ„
ˆq
ˆ‰
12
$Trn Inv MatA MatB
ˆ„  82.462 kN
ˆq  65 kN
ˆq  47.43 kN
Q22 A 30.69 25.27 26.72 16.46
Q23 C 23.62 24.88 33.01 17.62
Q24 A 34.17 19.75 24.98 20.33
Next
Situation 9 – Refer to the Figure shown.
Given:
ℎ=  125 mm; ℎ+  475 mm;   60 mm
Clear concrete cover = 40 mm
Tension bars, %H  8 – 28 mm diameter
Compression bars, %H
9
 4 – 28 mm diameter
Stirrups = 12 mm diameter
Concrete 28-day compressive strength = 28 MPa
Steel strength, (8  275 MPa
Reduction factor for shear = 0.75
28. What is minimum beam width “4” (mm) based on
spacing and concrete cover according to NSCP.
A. 300 B. 320 C. 280 D. 340
29. Given: Factored shear, Y
W  480 kN
Spacing of 4 legs of stirrups = 160 mm
How much is the minimum beam width “4” (mm)?
A. 350 B. 600 C. 550 D. 500
30. Given: Factored shear, Y
W  480 kN
Spacing of 2 legs of stirrups = 70 mm
How much is the minimum beam width “4” (mm)?
A. 400 B. 450 C. 375 D. 425
h1
h2
c
b
Situation 9 – Refer to the Figure shown.
Given:
ℎ=  125 mm; ℎ+  475 mm;   60 mm
Clear concrete cover = 40 mm
Tension bars, %H  8 – 28 mm diameter
Compression bars, %H
9
 4 – 28 mm diameter
Stirrups = 12 mm diameter
Concrete 28-day compressive strength = 28 MPa
Steel strength, (8  275 MPa
Reduction factor for shear = 0.75
28. What is minimum beam width “4” (mm) based on
spacing and concrete cover according to NSCP.
A. 300 B. 320 C. 280 D. 340
125
475
60
bw
40
40
40
40
x
  largest of 5#, 25 mm and *
?5A
  28 mm
4[ œ
 40 2  12 2
←12‡
5#  28 mm
 28 4  28 3
4[ œ
 Q]] FF
Q28 A 45.5 23.52 18.97 11.23
Situation 9 – Refer to the Figure shown.
Stirrups = 12 mm diameter
Concrete 28-day compressive strength = 28 MPa
Steel strength, (8  275 MPa
Reduction factor for shear = 0.75
29. Given: Factored shear, Y
W  480 kN
Spacing of 4 legs of stirrups = 160 mm
How much is the minimum beam width “4” (mm)?
A. 350 B. 600 C. 550 D. 500
125
475
60
bw
40
40
40
40
←12‡
d
5  125  475 $ 40  12  28/2  60/2
5  504 mm
%  4 )
* 12 +  452.4 mm+
Y
H 
% (5
I

452.4 275 504
160
 391.89 kN
Y
L  Y
W/N  480/0.75  640 kN
Y
  Y
L $ Y
H  640 $ 391.89  248.11 kN
Y
  0.17 
9
4[5
4[deL

ž 248.11 kN
248,110
0.17 28 504
4[deL
 /EP. Q FF
Q29 C 19.36 15.68 46.37 17.81
Situation 9 – Refer to the Figure shown.
Stirrups = 12 mm diameter
Concrete 28-day compressive strength = 28 MPa
Steel strength, (8  275 MPa
Reduction factor for shear = 0.75
30. Given: Factored shear, Y
W  480 kN
Spacing of 2 legs of stirrups = 70 mm
How much is the minimum beam width “4” (mm)?
A. 400 B. 450 C. 375 D. 425
125
475
60
bw
40
40
40
40
←12‡
d
5  504 mm
%  2 )
*
12 +  226.2 mm+
Y
H 
% (5
I

226.2 275 504
70
 447.88 kN
Y
L  Y
W/N  480/0.75  640 kN
Y
  Y
L $ Y
H  640 $ 447.88  192.12 kN
Y
  0.17 
9
4[5
4[deL

ž 192.12 kN
192,120
0.17 28 504
4[deL
 ECE FF
Q30 D 13.94 15.3 27.98 41.63
Next
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
4. Determine the axial force (kN) in
member '.
A. 4 T C. 6 T
B. 4 C D. 6 C
5. Determine the axial force (kN) in
member lŸ.
A. 3.35 T C. 7.83 C
B. 3.35 C D. 7.83 T
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P P P P P
s s s s s s
h
A
B C D E F
G
H I J
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
4. Determine the axial force (kN) in
member '.
A. 4 T C. 6 T
B. 4 C D. 6 C
5. Determine the axial force (kN) in
member lŸ.
A. 3.35 T C. 7.83 C
B. 3.35 C D. 7.83 T
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P P P P P
s s s s s s
h
A
B C D E F
G
H I J
R=2.5P R=2.5P
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
4. Determine the axial force (kN) in
member '.
A. 4 T C. 6 T
B. 4 C D. 6 C
5. Determine the axial force (kN) in
member lŸ.
A. 3.35 T C. 7.83 C
B. 3.35 C D. 7.83 T
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P P P P P
s s s s s s
h
A
B C D E F
G
H I J
R=2.5P R=2.5P
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
4. Determine the axial force (kN) in
member '.
A. 4 T C. 6 T
B. 4 C D. 6 C
5. Determine the axial force (kN) in
member lŸ.
A. 3.35 T C. 7.83 C
B. 3.35 C D. 7.83 T
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P=2
s s=3 s
h=6
D E F
G
I J
R=2.5P=5
FIJ = FHI
FJE
FEF
k
k
tan k  6/3 k  63.43°
Σs  0
st} sin 63.43°  2 $ 5  0
st}  Q. Q/ RS T
Σ}  0
s¡t 6  2 3 $ 5 6  0
s¡t  E RS C  s¡¢
Q4 B 13.07 60.41 13.17 13.17
Q5 A 55.37 19.46 11.71 13.26
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P P P P P=2
s s s s s s
h
A
B C D E F
G
H I J
R=2.5P R=5
2 2
s s=3
6
D E F
G
I J
R=5
k
FIE
Σs  0
s¡} sin 63.43°
k  63.43°
k
 2  2 $ 5  0
s¡}  .. ..D RS C
Q6 D 10.45 16.46 27.59 45.11
Next
Situation 5 - A man weighing 1.2 kN walks
through a log of wood 250 mm in
diameter and simply supported at a
length of 3 m.
16. What is the maximum shear (kN)?
A. 0.6 B. 0.8 C. 1.2 D. 1.8
17. What is the maximum moment (kN-m)?
A. 1.5 B. 0.8 C. 1.2 D. 0.9
18. If the log is replaced with 300 mm wide
by 100 mm thick section of wood, what
is the maximum weight of a man can
walk through the log if the allowable
flexural stress, s#  4.2 MPa?
A. 4.1 B. 2.4 C. 2.8 D. 3.2
P = 1.2 kN
L = 3
D=250
A B
Maximum shear
Situation 5 - A man weighing 1.2 kN walks
through a log of wood 250 mm in
diameter and simply supported at a
length of 3 m.
16. What is the maximum shear (kN)?
A. 0.6 B. 0.8 C. 1.2 D. 1.8
17. What is the maximum moment (kN-m)?
A. 1.5 B. 0.8 C. 1.2 D. 0.9
18. If the log is replaced with 300 mm wide
by 100 mm thick section of wood, what
is the maximum weight of a man can
walk through the log if the allowable
flexural stress, s#  4.2 MPa?
A. 4.1 B. 2.4 C. 2.8 D. 3.2
P = 1.2 kN
L = 3
D=250
A B
Maximum shear
Y
dAw   .. C RS
Maximum moment:
L/2 L/2
dAw 

4

 ]. O RS F
Q16 C 28.75 6.97 50.24 13.75
Q17 D 10.45 9.78 14.62 64.76
Situation 5 - A man weighing 1.2 kN walks
through a log of wood 250 mm in
diameter and simply supported at a
length of 3 m.
16. What is the maximum shear (kN)?
A. 0.6 B. 0.8 C. 1.2 D. 1.8
17. What is the maximum moment (kN-m)?
A. 1.5 B. 0.8 C. 1.2 D. 0.9
18. If the log is replaced with 300 mm wide
by 100 mm thick section of wood, what
is the maximum weight of a man can
walk through the log if the allowable
flexural stress, s#  4.2 MPa?
A. 4.1 B. 2.4 C. 2.8 D. 3.2
L = 3
D=250
A B
Maximum shear
Y
dAw   .. C RS
Maximum moment:
P
L/2 L/2
dAw 

4

 ]. O RS F
Part 3:
4  300
5  100
# 
6
45+ † 4.2
dAw 
4.2 300 100 +
6
 2,100,000 N mm
dAw  2.1 kN m
de7 

4
† 2.1 kN m
dAw 
4 2.1
3
 C. D RS
Q18 C 14.71 21.3 44.05 19.07
Next
Situation 10 - Refer to the figure
shown.
The stresses in a bar subjected to
uniaxial stress is plotted as shown.
Given, 3  40 MPa.
31. Determine the maximum normal
stress (MPa).
A. 50 C. 80
B. 60 D. 40
32. Determine the maximum shear
stress (MPa).
A. 40 C. 60
B. 20 D. 80
33. What angle does the maximum
shear stress occur from the origin.
A. 90° C. 60°
B. 30° D. 45°
£
¤
a a

z

z
40
40
Maximum normal stress:
£dAw  80 MPa
Maximum shear stress:
¤dAw
¤dAw  40 MPa
£dAw
90°
45°
z
z
Q31 C 2.03 3.39 73.86 20.23
Q32 A 77.06 3.1 6.49 12.97
Q33 D 33.98 3.48 4.74 57.5
???

More Related Content

What's hot

Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)
Raul Garcia
 
Flexural safety cost of optimized reinforced concrete beams
Flexural safety cost of optimized reinforced concrete beamsFlexural safety cost of optimized reinforced concrete beams
Flexural safety cost of optimized reinforced concrete beams
IAEME Publication
 
Foundation and Retaining Wall Design Presentation 2.pptx
Foundation and Retaining Wall Design Presentation 2.pptxFoundation and Retaining Wall Design Presentation 2.pptx
Foundation and Retaining Wall Design Presentation 2.pptx
yeah43
 

What's hot (20)

Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam KassimaliSolution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
 
structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.
 
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
 
300 solved-problems
300 solved-problems300 solved-problems
300 solved-problems
 
Design of a circular raft for a cylindrical core
Design of a circular raft for a cylindrical coreDesign of a circular raft for a cylindrical core
Design of a circular raft for a cylindrical core
 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidation
 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
 
Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)
 
Flexural safety cost of optimized reinforced concrete beams
Flexural safety cost of optimized reinforced concrete beamsFlexural safety cost of optimized reinforced concrete beams
Flexural safety cost of optimized reinforced concrete beams
 
Foundation and Retaining Wall Design Presentation 2.pptx
Foundation and Retaining Wall Design Presentation 2.pptxFoundation and Retaining Wall Design Presentation 2.pptx
Foundation and Retaining Wall Design Presentation 2.pptx
 
Lecture 7 stress distribution in soil
Lecture 7 stress distribution in soilLecture 7 stress distribution in soil
Lecture 7 stress distribution in soil
 
Shear Force and Bending moment Diagram
Shear Force and Bending moment DiagramShear Force and Bending moment Diagram
Shear Force and Bending moment Diagram
 
Geotech2.pptx
Geotech2.pptxGeotech2.pptx
Geotech2.pptx
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)
 
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
 
Mecanica
MecanicaMecanica
Mecanica
 
One way slab load calculation
One way slab load calculation One way slab load calculation
One way slab load calculation
 
Soluc porticos
Soluc porticosSoluc porticos
Soluc porticos
 
Examples on seepage
Examples on seepageExamples on seepage
Examples on seepage
 

Similar to Ref F2F Week 4 - Solution_unlocked.pdf

INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDER
Harsh Shani
 
Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection Calcs
Magdel Kotze
 

Similar to Ref F2F Week 4 - Solution_unlocked.pdf (20)

2 compression
2  compression2  compression
2 compression
 
Ch 8.pdf
Ch 8.pdfCh 8.pdf
Ch 8.pdf
 
INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDER
 
Mechanics of materials
Mechanics of materialsMechanics of materials
Mechanics of materials
 
C09 m-403032016 som
C09 m-403032016 somC09 m-403032016 som
C09 m-403032016 som
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Week 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfWeek 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdf
 
Precast driven pile 450 x450
Precast driven pile 450 x450Precast driven pile 450 x450
Precast driven pile 450 x450
 
Foundationeng deep-foundations_ps
Foundationeng deep-foundations_psFoundationeng deep-foundations_ps
Foundationeng deep-foundations_ps
 
Theatre building PPT.pptx
Theatre building PPT.pptxTheatre building PPT.pptx
Theatre building PPT.pptx
 
Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection Calcs
 
Gantry girder Analyse & design
Gantry girder Analyse & designGantry girder Analyse & design
Gantry girder Analyse & design
 
Design calculations of raft foundation
Design calculations of raft foundationDesign calculations of raft foundation
Design calculations of raft foundation
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
2008 - NOV.pdf
2008 - NOV.pdf2008 - NOV.pdf
2008 - NOV.pdf
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Structural Design
Structural DesignStructural Design
Structural Design
 
PLASTIC BEAM in design of stell beam design
PLASTIC BEAM in design of stell beam designPLASTIC BEAM in design of stell beam design
PLASTIC BEAM in design of stell beam design
 
Lecture-3-Column-Design.pdf
Lecture-3-Column-Design.pdfLecture-3-Column-Design.pdf
Lecture-3-Column-Design.pdf
 
Structural design of 350 kl overhead water tank at telibagh,lucknow
Structural design of 350 kl overhead water tank at telibagh,lucknowStructural design of 350 kl overhead water tank at telibagh,lucknow
Structural design of 350 kl overhead water tank at telibagh,lucknow
 

Recently uploaded

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 

Recently uploaded (20)

Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 

Ref F2F Week 4 - Solution_unlocked.pdf

  • 1. GILLESANIA Engineering Review & Training Center September 2022 F2F Refresher Week 4 ( PSAD )
  • 2.
  • 4. 1. Given the following data of the solid circular pole shown: 250 mm 0.45 kN 3 m 100 mm 3 kN Weight of pole = 22 kg/m Determine the maximum compressive stress (MPa) at the base of the pole. A. 0.954 B. 0.941 C. 0.806 D. 1.150 P H L e D
  • 5. 1. Given the following data of the solid circular pole shown: 250 mm 0.45 kN 3 m 100 mm 3 kN Weight of pole = 22 kg/m Determine the maximum compressive stress (MPa) at the base of the pole. A. 0.954 B. 0.941 C. 0.806 D. 1.150 P = 3 H=0.45 L=3 e=0.1 D=250 Wp 22 9.81 3 647.46 N 0.64746 kN D=250 y x b a 3 0.64746 3.64746 kN 0.45 3 3 0.1 1.65 kN m ! # $ % $ '( ! $ 3647.46 ) * 250 + $ 1.65 10, 250/2 ) ,* 250 * ! $.. ./ 012
  • 7. 2. Refer to the figure shown: Given: = 2 m Bar diameter = 20 mm Concrete cover, 3 = 65 mm Length of extension bar, 4 = 80 mm Radius of bend = 45# ’ = 20.7MPa; ( = 414 MPa According to 412.6 of NSCP, Development length 78 for deformed bars in tension terminating in a standard hook shall not be less than: 1. (5# 4.17 9 2. 8 5# 3. 150 mm Determine the total length (m) of the bar. A. 2.53 C. 2.87 B. 3.03 D. 3.36 a L b Ldh r
  • 8. 2. Refer to the figure shown: Given: = 2 m Bar diameter = 20 mm Concrete cover, 3 = 65 mm Length of extension bar, 4 = 80 mm Radius of bend = 45# 9 20.7MPa; ( 414 MPa According to 412.6 of NSCP, Development length 78 for deformed bars in tension terminating in a standard hook shall not be less than: 1. (5# 4.17 9 2. 8 5# 3. 150 mm Determine the total length (m) of the bar. A. 2.53 C. 2.87 B. 3.03 D. 3.36 65 L = 2 b=80 Ldh r=4db db = 20mm 414 20 4.17 20.7 436.4 mm 8 20 160 ← 78 ; 4 20 80 x1 x2 x3 = 65 ; + + 155 + 2000 1845 ? 436.4 ? 346.4 1845 346.4 2191.4 @; @; 4 80 4 80 #AB 2191.4 @ 80 2 2 80 #AB 2854 mm $155 $ ; C. D/E F Q2 C 46.08 14.81 28.94 9.68 $+ +
  • 9.
  • 10. Next
  • 11. 3. A 100-mm thick one-way slab is reinforced with 12 mm bars spaced at 200 mm on centers. Given that 9 20.7 MPa, ( 275 MPa, compute the design moment (kN-m) of the slab. Assume 20 mm concrete cover. A. 10.82 C. 10.58 B. 11.75 D. 9.74 4 1000 ℎ 100 20 12‡ 5 5 100 $ 20 $ 12/2 74 mm %# ) * 12 + 113.1 mm+ %H 1000%# I Consider 1 m slab width 1000 113.1 200 565.5 mm+ Assuming steel yields: 3 %H( 0.85 9 4 565.5 275 0.85 20.7 1000 3 8.838 mm 3/J= 8.838/0.85 10.4 mm ? K 5 27.75 Tension controlled L M 5 $ 3/2 0.85 934 5 $ 3/2 0.85 20.7 8.838 1000 74 $ 8.838 2 L 10.82 kN m NL 0.9 10.82 O. PQD RS F T Q3 D 21.01 18.68 35.53 23.23
  • 12. Next
  • 13. Situation 2 – Dimensions: 3 4 5 0.4 m; 3.5 m Footing width, 2 m Effective depth = 500 mm Uniform soil pressure (from factored loads) = 196 kPa Shear diagram: 156.8 kN; U 761.2 kN; -610.8 kN 9 27.5 MPa; ( 414 MPa Main bar diameter = 20 mm Reduction factors: Moment = 0.90 Shear = 0.75 7. Determine the required number of bars at critical moment. A. 10 B. 12 C. 11 D. 13 8. Determine the spacing of bars, in mm, at the face of the column. Use 75 mm clear cover. A. 90 B. 180 C. 95 D. 105 9. Determine the critical wide beam shear stress, in MPa. A. 1.02 B. 0.75 C. 0.81 D. 0.57 a b c d W column column e f g h
  • 14. Situation 2 – Dimensions: 3 4 5 0.4 m; 3.5 m Footing width, 2 m Effective depth = 500 mm Uniform soil pressure (from factored loads) = 196 kPa Shear diagram: 156.8 kN; U 761.2 kN; -610.8 kN 9 27.5 MPa; ( 414 MPa Main bar diameter = 20 mm Reduction factors: Moment = 0.90 Shear = 0.75 0.4 0.4 3.5 2 column column 156.8 -610.8 761.2 h 0.4 wu Solving for wu: $610.8 VW 3.5 761.2 VW 392 kN/m OR: 0 VW 0.4 156.8 VW 392 kN/m OR: VW XW VW 196 2 392 kN/m
  • 15. Situation 2 – Effective depth = 500 mm Main bar diameter = 20 mm Reduction factors: Moment = 0.90 Shear = 0.75 9. Determine the critical wide beam shear stress, in MPa. A. 1.02 B. 0.75 C. 0.81 D. 0.57 0.4 0.4 3.5 2 column column 156.8 -610.8 761.2 h 0.4 wu VW 392 kN/m deff=0.5 Y W Y W 761.2 $ VW5 761.2 $ 392 0.5 Y W 565.2 kN ZW[ Y W 4[5 4 [ 2000 mm ZW[ 565,200 2000 500 5 500 mm ZW[ ]. /^/ 012 Q9 D 30.3 24.69 30.11 13.94
  • 16. Situation 2 – Effective depth = 500 mm 0.4 0.4 3.5 2 column column 156.8 -610.8 761.2 h 0.4 wu VW 392 kN/m 4 [ 2000 mm 5 500 mm 4 2000 mm 156.8 -610.8 761.2 0.4 x 156.8 0.4 156.8 610.8 0.0817 m 0.4 A1 %= = + 0.4 0.0817 156.8 %= 37.765 kN m 0.4+x 156.8 -610.8 0.4-x=0.3183 A2 %+ = + 0.3183 $610.8 %+ $97.21 kN m 610.8/VW 1.558 3.5 $ 1.558 1.942 A3 A4 %? = + 1.558 $610.8 $475.81 kN m %* = + 1.942 761.2 %* 739.13 kN m
  • 17. Situation 2 – Effective depth = 500 mm 0.4 0.4 3.5 2 column column 0.4 VW 392 kN/m 4 [ 2000 mm 5 500 mm 4 2000 mm A1 %= 37.765 kN m A2 %+ $97.21 kN m A3 A4 %? $475.81 kN m %* 739.13 kN m = + ? = %= QP. P^/ RS F + %= %+ %? $/Q/. C^ RS F ? + %* C]Q. DP RS F
  • 18. Situation 2 – 9 27.5 MPa; ( 414 MPa Effective depth = 500 mm Main bar diameter = 20 mm Reduction factors: Moment = 0.90 7. Determine the required number of bars at critical moment. A. 10 B. 12 C. 11 D. 13 8. Determine the spacing of bars, in mm, at the face of the column. Use 75 mm clear cover. A. 90 B. 180 C. 95 D. 105 0.4 0.4 3.5 2 column column 0.4 5 500 mm 4 2000 mm = + ? $/Q/. C^ RS F C]Q. DP RS F At critical moment: W + 535.26 kN m _L W N45+ 535.26 10, 0.9 2000 500 + 1.189 MPa c 0.85 9 ( 1 $ 1 $ 2_L 0.85 9 c 0.00295 cdeL 1.4/( 0.00338 ◄Use this %H QP. P^/ RS F c45 0.00338 2000 500 %H 3380 mm+ f+ 3380 ) * 20 + 10.75 use 11 Q7 C 15.88 42.88 28.94 11.42
  • 19. Situation 2 – 9 27.5 MPa; ( 414 MPa Effective depth = 500 mm Main bar diameter = 20 mm Reduction factors: Moment = 0.90 8. Determine the spacing of bars, in mm, at the face of the column. Use 75 mm clear cover. A. 90 B. 180 C. 95 D. 105 0.4 0.4 3.5 2 column column 0.4 5 500 mm 4 2000 mm = + ? $/Q/. C^ RS F C]Q. DP RS F cdeL 1.4/( 0.00338 QP. P^/ RS F %H 3380 mm+ f+ 3380 ) * 20 + 10.75 use 11 75 75 20‡ 2000 2000 $2 75 $20 1830 mm gh3ijU, I 1830 11 $ 1 .DQ FF Q8 B 21.49 18.97 28.56 30.01
  • 20. Next
  • 21. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 10. Compute the value of the maximum ordinate of influence diagram of member lm. A. 1.5 C. 0.75 B. 0.5 D. 1.00 11. Compute the axial load in member lm (kN) due to a standard wheel base 4.3 m apart, front wheel load = 72.4 kN and rear wheel load = 19.6 kN. A. 63.25 C C. 81.47 C B. 63.25 T D. 81.47 T 12. Compute the axial load in member lm (kN) due to a uniform moving load of 9.35 kN/m. A. 74.8 C C. 52.6 T B. 74.8 T D. 52.6 C P A B C D E F G H I J K k k s s s s L
  • 22. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 10. Compute the value of the maximum ordinate of influence diagram of member lm. A. 1.5 C. 0.75 B. 0.5 D. 1.00 11. Compute the axial load in member lm (kN) due to a standard wheel base 4.3 m apart, front wheel load = 72.4 kN and rear wheel load = 19.6 kN. A. 63.25 C C. 81.47 C B. 63.25 TC D. 81.47 T 12. Compute the axial load in member lm (kN) due to a uniform moving load of 9.35 kN/m. A. 74.8 C C. 52.6 T B. 74.8 T D. 52.6 C A B C D E F G H I J K k 45° k 4 4 4 4 8
  • 23. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 10. Compute the value of the maximum ordinate of influence diagram of member lm. A. 1.5 C. 0.75 B. 0.5 D. 1.00 A B C D E F G H I J K k 45° k 4 4 4 4 8 h FJK a = 8 b = 8 L = 16 ℎ 4 tan 45° 4 m q q 34 8 8 16 4 r $ q ℎ $ 4 4 $. Influence line for FJK: Q10 D 13.17 23.81 22.75 39.59
  • 24. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 11. Compute the axial load in member lm (kN) due to a standard wheel base 4.3 m apart, front wheel load = 72.4 kN and rear wheel load = 19.6 kN. A. 63.25 C C. 81.47 C B. 63.25 T D. 81.47 T r $1 Influence line for FJK: A B C D E F G H I J K k k 4 4 4 4 L 72.4 19.6 4.3 3.7 r= r= 3.7 $1 8 r= $0.4625 stu ! 72.4 $1 19.6 $0.4625 stu ! D.. E^/ RS v Q11 C 28.07 11.23 43.56 16.17
  • 25. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 12. Compute the axial load in member lm (kN) due to a uniform moving load of 9.35 kN/m. A. 74.8 C C. 52.6 T B. 74.8 T D. 52.6 C r $1 Influence line for FJK: A B C D E F G H I J K k k 4 4 4 4 L w = 9.35 kN/m
  • 26. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 12. Compute the axial load in member lm (kN) due to a uniform moving load of 9.35 kN/m. A. 74.8 C C. 52.6 T B. 74.8 T D. 52.6 C r $1 Influence line for FJK: A B C D E F G H I J K k k 4 4 4 4 L w = 9.35 kN/m % 1 2 16 $1 $D stu ! V% 9.35 $8 PE. D RS v Q12 A 43.08 21.59 15.68 18.78
  • 27. Next
  • 28. Situation 6 - The pile footing supports a column, 600 mm 600 mm at the center. The piles are precast concrete with 350 mm 350 mm dimension. Given: Net load on the footing at Ultimate Condition: W 2700 kN; Ww 108 kN-m W( 165 kN-m Effective depth of the footing = 400 mm Dimensions: 3 0.6 m 1.2 m 4 1 m 5 0.6 m Strength Reduction Factor For shear = 0.75; For moment = 0.90 19. Determine the critical punching shear stress (MPa) of one pile due to axial load. A. 0.54 B. 0.68 C. 0.25 D. 0.33 20. Determine the punching shear stress (MPa) of the column due to axial load. A. 1.5 B. 2.0 C. 2.5 D. 3.0 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y a b b a d d c c
  • 29. Situation 6 - The pile footing supports a column, 600 mm 600 mm at the center. The piles are precast concrete with 350 mm 350 mm dimension. Given: Net load on the footing at Ultimate Condition: W 2700 kN; Ww 108 kN-m W( 165 kN-m Effective depth of the footing = 400 mm Dimensions: 3 0.6 m 1.2 m 4 1 m 5 0.6 m Strength Reduction Factor For shear = 0.75; For moment = 0.90 19. Determine the critical punching shear stress (MPa) of one pile due to axial load. A. 0.54 B. 0.68 C. 0.25 D. 0.33 20. Determine the punching shear stress (MPa) of the column due to axial load. A. 1.5 B. 2.0 C. 2.5 D. 3.0 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y 0.6 0.6 1 1 0.6 1.2 1.2 0.6 Pu = 2700 Part 1: due to axial load only _ W f 2700 9 300 kN 350+400 350+400 Y W ZW Y W 4x5 300,000 4 750 400 ]. C/ 012 Q19 C 23.52 20.81 20.81 33.88
  • 30. Situation 6 - The pile footing supports a column, 600 mm 600 mm at the center. The piles are precast concrete with 350 mm 350 mm dimension. Given: Net load on the footing at Ultimate Condition: W 2700 kN; Ww 108 kN-m W( 165 kN-m Effective depth of the footing = 400 mm Dimensions: 3 0.6 m 1.2 m 4 1 m 5 0.6 m Strength Reduction Factor For shear = 0.75; For moment = 0.90 19. Determine the critical punching shear stress (MPa) of one pile due to axial load. A. 0.54 B. 0.68 C. 0.25 D. 0.33 20. Determine the punching shear stress (MPa) of the column due to axial load. A. 1.5 B. 2.0 C. 2.5 D. 3.0 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y 0.6 0.6 1 1 0.6 1.2 1.2 0.6 Pu = 2700 Part 2: due to axial load only 600+400 600+400 _ 300 kN ZW Y W 4x5 2,400,000 4 1000 400 .. / 012 Y W W $ _ 2700 $ 300 2400 kN Q20 A 24.1 33.3 28.36 13.36
  • 31. Situation 6 – Effective depth of the footing = 400 mm Strength Reduction Factor For shear = 0.75; For moment = 0.90 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y 0.6 0.6 1 1 0.6 1.2 1.2 0.6 Pu = 2700 Mux = 108 Muy = 165 A B C D E F G H I 350+400 350+400 _ W f y Wwz Σz+ y W( Σ+ _ | 2700 9 108 1 1 + 6 165 1.2 1.2 + 6 _ | 340.92 kN Y W ZW Y W 4x5 340,920 4 750 400 ]. CDE 012 On the heavily loaded pile:
  • 32. Situation 6 – Effective depth of the footing = 400 mm Strength Reduction Factor For shear = 0.75; For moment = 0.90 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y 0.6 0.6 1 1 0.6 1.2 1.2 0.6 Pu = 2700 Mux = 108 Muy = 165 A B C D E F G H I ZW ]. CDE 012 On the heavily loaded pile: On the column: _ } 2700 9 0 0 300 kN 600+400 600+400 ZW Y W 4x5 2,400,000 4 1000 400 .. / 012 Y W W $ _ } 2700 $ 300 2400 kN _ W f y Wwz Σz+ y W( Σ+ 0; z 0 Q21 C 22.75 25.17 24.2 26.91
  • 33. Next
  • 34. Situation 8 – For the rectangular tied column shown in the figure. Given: 9 27.5 MPa mL 0.80 ( 414 MPa _L 0.205 Reinforcement steel ratio, c 0.05 Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 25. How many 20 mm diameter bars are required for the rectangular tied column? A. 40 B. 36 C. 30 D. 28 26. What is the maximum nominal axial load L (kN) that the column could carry? A. 7542 B. 5354 C. 8238 D. 9236 27. If reinforcement steel ratio, c 0.03, what is the required length (mm) of the long side of the column? A. 620 B. 700 C. 650 D. 670
  • 35. Situation 8 – For the rectangular tied column shown in the figure. Given: 9 27.5 MPa mL 0.80 ( 414 MPa _L 0.205 Reinforcement steel ratio, c 0.05 Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 25. How many 20 mm diameter bars are required for the rectangular tied column? A. 40 B. 36 C. 30 D. 28 % 600 400 240,000 mm+ %H c% 0.05 240,000 %H 12,000 mm+ f+ 12000 ) * 20 + 38.2 Use 40 Q25 A 27.98 24.1 20.72 26.23
  • 36. Situation 8 – For the rectangular tied column shown in the figure. Given: 9 27.5 MPa mL 0.80 ( 414 MPa _L 0.205 Reinforcement steel ratio, c 0.05 Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 26. What is the maximum nominal axial load L (kN) that the column could carry? A. 7542 B. 5354 C. 8238 D. 9236 % 600 400 240,000 mm+ x 0.85 9 % $ %H (%H x 0.85 27.5 240,000 $ 12,000 %H 12,000 mm+ 414 12,000 x L 0.8x D, CQD RS 10,297,500 N 10,297.5 kN Q26 C 24.1 35.14 29.53 9.97
  • 37. Situation 8 – Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 27. If reinforcement steel ratio, c 0.03, what is the required length (mm) of the long side of the column? A. 620 B. 700 C. 650 D. 670 % 240,000 mm+ ℎ 400 mm c 0.03 L mL 9% 0.8 27.5 240,000 L 5280 kN L L _L 9%ℎ 0.205 27.5 240000 400 mL 0.8 _L 0.205 L 541.2 kN m € ]. D ‚ ]. C]/ € ]. PC % L mL 9 5,280,000 0.72 27.5 266,667 mm+ % 4ℎ 4 400 266,667 mm+ 4 ^^^. P FF Q27 D 19.17 25.75 31.46 22.17
  • 38. Situation 8 – Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 27. If reinforcement steel ratio, c 0.03, what is the required length (mm) of the long side of the column? A. 620 B. 700 C. 650 D. 670 ℎ 400 mm c 0.03 € ]. D ‚ ]. C]/ € ]. PC % 266,667 mm+ 4 ^^^. P FF ‚  ]. .D/ L 5280 kN L 541.2 kN m L L _L 9 %ℎ L 0.185 27.5 266,667 400 L /EC. P RS F
  • 39. Next
  • 40. Situation 4 – The beam ƒM shown is supported by a quarter-circular arc %M having a radius of 4 m. The frame is pin- supported at %, ƒ and M. The pins at % and ƒ are in single shear while the pin at M is in double shear. Allowable shear stress of the pin is 112 MPa. V 3 kN/m. 13. Determine the minimum diameter (mm) of the pin at ƒ. A. 10 B. 12 C. 8 D. 6 14. Determine the minimum diameter (mm) of the pin at M. A. 8 B. 6 C. 12 D. 10 15. Determine the resultant reaction (kN) at %. A. 12 B. 8.49 C. 9.36 D. 6 A B C w R
  • 41. Situation 4 – The beam ƒM shown is supported by a quarter-circular arc %M having a radius of 4 m. The frame is pin- supported at %, ƒ and M. The pins at % and ƒ are in single shear while the pin at M is in double shear. Allowable shear stress of the pin is 112 MPa. V 3 kN/m. A B C w = 3 kN/m 4 m 4 m Av Ah Bh Bv Σ„ 0 3 4 4/2 $ %8 4 0 %8 6 kN Σs8 0 ƒ8 %8 6 kN 6 6
  • 42. Situation 4 – The beam ƒM shown is supported by a quarter-circular arc %M having a radius of 4 m. The frame is pin- supported at %, ƒ and M. The pins at % and ƒ are in single shear while the pin at M is in double shear. Allowable shear stress of the pin is 112 MPa. V 3 kN/m. 13. Determine the minimum diameter (mm) of the pin at ƒ. A. 10 B. 12 C. 8 D. 6 14. Determine the minimum diameter (mm) of the pin at M. A. 8 B. 6 C. 12 D. 10 15. Determine the resultant reaction (kN) at %. A. 12 B. 8.49 C. 9.36 D. 6 A B C w = 3 kN/m 4 m Av Ah Bh Bv 6 6 Cv Ch C Cv Ch In beam BC: 3 4 4/2 Σ„ 0 $ M 4 0 M 6 kN Σs8 0 M8 ƒ8 6 kN 6 6 ƒ 6 6 6 6 _„ 6+ 6+ _„ 8.48 kN _| _q _„ 8.48 kN Diameter of pin @ B (single shear): _„ % eL † 112 MPa % eLdeL 8480 112 75.71 mm+ ) * 5 eL + 75.71 5 eLdeL 9.82 mm use 10 mm Q13 A 40.17 21.88 26.23 11.13 Q15 B 17.23 39.79 17.23 25.07
  • 43. Situation 4 – The beam ƒM shown is supported by a quarter-circular arc %M having a radius of 4 m. The frame is pin- supported at %, ƒ and M. The pins at % and ƒ are in single shear while the pin at M is in double shear. Allowable shear stress of the pin is 112 MPa. V 3 kN/m. 14. Determine the minimum diameter (mm) of the pin at M. A. 8 B. 6 C. 12 D. 10 15. Determine the resultant reaction (kN) at %. A. 12 B. 8.49 C. 9.36 D. 6 A B C w = 3 kN/m 4 m Av Ah Bh Bv 6 6 Cv Ch C Cv Ch 6 6 6 6 6 6 _„ 6+ 6+ _„ 8.48 kN _| _q _„ 8.48 kN Diameter of pin @ C (double shear): _ 2% eL † 112 MPa % eLdeL 8480 112 2 37.9 mm+ ) * 5 eL + 37.9 5 eLdeL 6.9 mm use 8 mm Q14 A 29.82 31.56 18.59 19.55
  • 44. Next
  • 45. Situation 7 – A flag pole is supported by tension wires %ƒ, %M and % to resist an uplift force of 185 N acting on the axis of the pole. In this problem, 3 3 m, 4 4 m and ℎ 12 m. 22. Calculate the tension (kN) in wire %ƒ. A. 82.46 C. 47.43 B. 65.00 D. 58.42 23. Calculate the tension (kN) in wire %M. A. 58.42 C. 65.00 B. 47.43 D. 82.46 24. Calculate the tension (kN) in wire %. A. 47.43 C. 58.42 B. 82.46 D. 65.00 z ‡ % ƒ M 3 4 3 4
  • 46. Situation 7 – A flag pole is supported by tension wires %ƒ, %M and % to resist an uplift force of 185 N acting on the axis of the pole. In this problem, 3 3 m, 4 4 m and ℎ 12 m. 22. Calculate the tension (kN) in wire %ƒ. A. 82.46 C. 47.43 B. 65.00 D. 58.42 23. Calculate the tension (kN) in wire %M. A. 58.42 C. 65.00 B. 47.43 D. 82.46 24. Calculate the tension (kN) in wire %. A. 47.43 C. 58.42 B. 82.46 D. 65.00 z ‡ % ƒ M 3 4 3 4 12
  • 47. Situation 7 – A flag pole is supported by tension wires %ƒ, %M and % to resist an uplift force of 185 N acting on the axis of the pole. In this problem, 3 3 m, 4 4 m and ℎ 12 m. z ‡ % ƒ M 3 4 3 4 185 f ˆ„ ˆq ˆ‰ %ƒ Using matrix: 3i 0Š 12 $ 12‹ %ƒ 153 %M $4i 3Š $ 12‹ %M 13 % 0i $ 4Š $ 12‹ % 160 3Œ% ? =? =? Ž=+ =? Ž* =? ? =? Ž=+ =? =, Ž* =, Ž=+ =, 3Œƒ 0 0 185 $Trn Inv MatA MatB ˆ„ 82.462 kN ˆq 65 kN ˆ‰ 47.43 kN
  • 48. Situation 7 – A flag pole is supported by tension wires %ƒ, %M and % to resist an uplift force of 185 N acting on the axis of the pole. In this problem, 3 3 m, 4 4 m and ℎ 12 m. 22. Calculate the tension (kN) in wire %ƒ. A. 82.46 C. 47.43 B. 65.00 D. 58.42 23. Calculate the tension (kN) in wire %M. A. 58.42 C. 65.00 B. 47.43 D. 82.46 24. Calculate the tension (kN) in wire %. A. 47.43 C. 58.42 B. 82.46 D. 65.00 z ‡ % ƒ M 3 4 3 4 185 f ˆ„ ˆq ˆ‰ 12 $Trn Inv MatA MatB ˆ„ 82.462 kN ˆq 65 kN ˆq 47.43 kN Q22 A 30.69 25.27 26.72 16.46 Q23 C 23.62 24.88 33.01 17.62 Q24 A 34.17 19.75 24.98 20.33
  • 49. Next
  • 50. Situation 9 – Refer to the Figure shown. Given: ℎ= 125 mm; ℎ+ 475 mm; 60 mm Clear concrete cover = 40 mm Tension bars, %H 8 – 28 mm diameter Compression bars, %H 9 4 – 28 mm diameter Stirrups = 12 mm diameter Concrete 28-day compressive strength = 28 MPa Steel strength, (8 275 MPa Reduction factor for shear = 0.75 28. What is minimum beam width “4” (mm) based on spacing and concrete cover according to NSCP. A. 300 B. 320 C. 280 D. 340 29. Given: Factored shear, Y W 480 kN Spacing of 4 legs of stirrups = 160 mm How much is the minimum beam width “4” (mm)? A. 350 B. 600 C. 550 D. 500 30. Given: Factored shear, Y W 480 kN Spacing of 2 legs of stirrups = 70 mm How much is the minimum beam width “4” (mm)? A. 400 B. 450 C. 375 D. 425 h1 h2 c b
  • 51. Situation 9 – Refer to the Figure shown. Given: ℎ= 125 mm; ℎ+ 475 mm; 60 mm Clear concrete cover = 40 mm Tension bars, %H 8 – 28 mm diameter Compression bars, %H 9 4 – 28 mm diameter Stirrups = 12 mm diameter Concrete 28-day compressive strength = 28 MPa Steel strength, (8 275 MPa Reduction factor for shear = 0.75 28. What is minimum beam width “4” (mm) based on spacing and concrete cover according to NSCP. A. 300 B. 320 C. 280 D. 340 125 475 60 bw 40 40 40 40 x largest of 5#, 25 mm and * ?5A 28 mm 4[ œ 40 2 12 2 ←12‡ 5# 28 mm 28 4 28 3 4[ œ Q]] FF Q28 A 45.5 23.52 18.97 11.23
  • 52. Situation 9 – Refer to the Figure shown. Stirrups = 12 mm diameter Concrete 28-day compressive strength = 28 MPa Steel strength, (8 275 MPa Reduction factor for shear = 0.75 29. Given: Factored shear, Y W 480 kN Spacing of 4 legs of stirrups = 160 mm How much is the minimum beam width “4” (mm)? A. 350 B. 600 C. 550 D. 500 125 475 60 bw 40 40 40 40 ←12‡ d 5 125 475 $ 40 12 28/2 60/2 5 504 mm % 4 ) * 12 + 452.4 mm+ Y H % (5 I 452.4 275 504 160 391.89 kN Y L Y W/N 480/0.75 640 kN Y Y L $ Y H 640 $ 391.89 248.11 kN Y 0.17 9 4[5 4[deL ž 248.11 kN 248,110 0.17 28 504 4[deL /EP. Q FF Q29 C 19.36 15.68 46.37 17.81
  • 53. Situation 9 – Refer to the Figure shown. Stirrups = 12 mm diameter Concrete 28-day compressive strength = 28 MPa Steel strength, (8 275 MPa Reduction factor for shear = 0.75 30. Given: Factored shear, Y W 480 kN Spacing of 2 legs of stirrups = 70 mm How much is the minimum beam width “4” (mm)? A. 400 B. 450 C. 375 D. 425 125 475 60 bw 40 40 40 40 ←12‡ d 5 504 mm % 2 ) * 12 + 226.2 mm+ Y H % (5 I 226.2 275 504 70 447.88 kN Y L Y W/N 480/0.75 640 kN Y Y L $ Y H 640 $ 447.88 192.12 kN Y 0.17 9 4[5 4[deL ž 192.12 kN 192,120 0.17 28 504 4[deL ECE FF Q30 D 13.94 15.3 27.98 41.63
  • 54. Next
  • 55. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 4. Determine the axial force (kN) in member '. A. 4 T C. 6 T B. 4 C D. 6 C 5. Determine the axial force (kN) in member lŸ. A. 3.35 T C. 7.83 C B. 3.35 C D. 7.83 T 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P P P P P s s s s s s h A B C D E F G H I J
  • 56. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 4. Determine the axial force (kN) in member '. A. 4 T C. 6 T B. 4 C D. 6 C 5. Determine the axial force (kN) in member lŸ. A. 3.35 T C. 7.83 C B. 3.35 C D. 7.83 T 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P P P P P s s s s s s h A B C D E F G H I J R=2.5P R=2.5P
  • 57. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 4. Determine the axial force (kN) in member '. A. 4 T C. 6 T B. 4 C D. 6 C 5. Determine the axial force (kN) in member lŸ. A. 3.35 T C. 7.83 C B. 3.35 C D. 7.83 T 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P P P P P s s s s s s h A B C D E F G H I J R=2.5P R=2.5P
  • 58. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 4. Determine the axial force (kN) in member '. A. 4 T C. 6 T B. 4 C D. 6 C 5. Determine the axial force (kN) in member lŸ. A. 3.35 T C. 7.83 C B. 3.35 C D. 7.83 T 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P=2 s s=3 s h=6 D E F G I J R=2.5P=5 FIJ = FHI FJE FEF k k tan k 6/3 k 63.43° Σs 0 st} sin 63.43° 2 $ 5 0 st} Q. Q/ RS T Σ} 0 s¡t 6 2 3 $ 5 6 0 s¡t E RS C s¡¢ Q4 B 13.07 60.41 13.17 13.17 Q5 A 55.37 19.46 11.71 13.26
  • 59. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P P P P P=2 s s s s s s h A B C D E F G H I J R=2.5P R=5 2 2 s s=3 6 D E F G I J R=5 k FIE Σs 0 s¡} sin 63.43° k 63.43° k 2 2 $ 5 0 s¡} .. ..D RS C Q6 D 10.45 16.46 27.59 45.11
  • 60. Next
  • 61. Situation 5 - A man weighing 1.2 kN walks through a log of wood 250 mm in diameter and simply supported at a length of 3 m. 16. What is the maximum shear (kN)? A. 0.6 B. 0.8 C. 1.2 D. 1.8 17. What is the maximum moment (kN-m)? A. 1.5 B. 0.8 C. 1.2 D. 0.9 18. If the log is replaced with 300 mm wide by 100 mm thick section of wood, what is the maximum weight of a man can walk through the log if the allowable flexural stress, s# 4.2 MPa? A. 4.1 B. 2.4 C. 2.8 D. 3.2 P = 1.2 kN L = 3 D=250 A B Maximum shear
  • 62. Situation 5 - A man weighing 1.2 kN walks through a log of wood 250 mm in diameter and simply supported at a length of 3 m. 16. What is the maximum shear (kN)? A. 0.6 B. 0.8 C. 1.2 D. 1.8 17. What is the maximum moment (kN-m)? A. 1.5 B. 0.8 C. 1.2 D. 0.9 18. If the log is replaced with 300 mm wide by 100 mm thick section of wood, what is the maximum weight of a man can walk through the log if the allowable flexural stress, s# 4.2 MPa? A. 4.1 B. 2.4 C. 2.8 D. 3.2 P = 1.2 kN L = 3 D=250 A B Maximum shear Y dAw .. C RS Maximum moment: L/2 L/2 dAw 4 ]. O RS F Q16 C 28.75 6.97 50.24 13.75 Q17 D 10.45 9.78 14.62 64.76
  • 63. Situation 5 - A man weighing 1.2 kN walks through a log of wood 250 mm in diameter and simply supported at a length of 3 m. 16. What is the maximum shear (kN)? A. 0.6 B. 0.8 C. 1.2 D. 1.8 17. What is the maximum moment (kN-m)? A. 1.5 B. 0.8 C. 1.2 D. 0.9 18. If the log is replaced with 300 mm wide by 100 mm thick section of wood, what is the maximum weight of a man can walk through the log if the allowable flexural stress, s# 4.2 MPa? A. 4.1 B. 2.4 C. 2.8 D. 3.2 L = 3 D=250 A B Maximum shear Y dAw .. C RS Maximum moment: P L/2 L/2 dAw 4 ]. O RS F Part 3: 4 300 5 100 # 6 45+ † 4.2 dAw 4.2 300 100 + 6 2,100,000 N mm dAw 2.1 kN m de7 4 † 2.1 kN m dAw 4 2.1 3 C. D RS Q18 C 14.71 21.3 44.05 19.07
  • 64. Next
  • 65. Situation 10 - Refer to the figure shown. The stresses in a bar subjected to uniaxial stress is plotted as shown. Given, 3 40 MPa. 31. Determine the maximum normal stress (MPa). A. 50 C. 80 B. 60 D. 40 32. Determine the maximum shear stress (MPa). A. 40 C. 60 B. 20 D. 80 33. What angle does the maximum shear stress occur from the origin. A. 90° C. 60° B. 30° D. 45° £ ¤ a a z z 40 40 Maximum normal stress: £dAw 80 MPa Maximum shear stress: ¤dAw ¤dAw 40 MPa £dAw 90° 45° z z Q31 C 2.03 3.39 73.86 20.23 Q32 A 77.06 3.1 6.49 12.97 Q33 D 33.98 3.48 4.74 57.5
  • 66. ???