Heat optimisation pradeep kumar

Optimisation of heat
consumption
Heat loss from shell radiation
Heat loss in
product
Heat loss in
Preheater
Exit gas
Cooler exit air
Where does the heat go ?
For perpetual pyro process in a kiln the heat
required is only heat of clinker mineral formation,
ie., 380 - 400 Kcal/kg clinker. 280 – 350 Kcal/kg
clinker is wasted which is about 40 - 45 % .
The dream of design engineer is to make heat
losses to minimum and how to optimize the heat
consumption.
The preheater heat losses
Pre heater gas temperature
Design of cyclones
No of stages
Dust loss
Inlet / out let velocity ratio
Location of meal distribution boxes
Preheater( Surface) heat losses through radiation
Calciner gas retention time
Combustion effciency
Coal residue & raw meal residue
Location of firing nozzles
Different flames
Normal flame
Flame with low
Secondary air temp
Distorted nozzle
Flame –poor
hood geometry
Or distorted nozzle
Flame at the center
Flame downward
Flame upward
Flame length
Long flame, unstable coating,
High back end temp
Low shell temperature
Short intense divergent flame
Good for burning
Low back end temperature
Poor refractory life, high
Shell temperature
Convergent flame
Good for burning
Good for refractory
Stable coating
Low shell temperature
The Ideal Flame
hot !
short !
stable !
T"long" flame
"short" flame
Complete combustion:
- CO = 0
- SO2, NOX ↓
Homogeneous:
- no temperature peaks
- no local CO on the clinker bed
Longer flame increase the back end temperature resulting in
Heat loss at kiln exit and hot meal clogging
Burning zone, Flame-profile
• Low momentum burner
• High momentum burner
rings12m (~3xD) burning zone
Rotaflam
~16 m
Flame !☺!
rings
~23 m Flame
17m (~4xD) burning zone
! !
Burner Operation
Duo Flex burner
M.A.S burner, unitherm
Pyrojet
Greco
Lafarge Multi Channel burner
Pillard Roto Flame
Cement kiln flame types
Straight flame – essentially external recirculation
Type-1 flame
Weak internal recirculation & external recirculation
Type-2 flame
Strong internal recirculation & external recirculation
Heat optimisation  pradeep kumar
Objectives
“It is desirable to operate the kiln at the
lowest fuel consumption. This must be
consistent with the highest practical output
at an acceptable market quality.”
WHY TO DO IT
• To get a detailed view of the kiln line performance
• Evaluate exact data for heat consumption,
production,...
• Basis for comparison
– impact of investment or modifications carried
out
– comparison to other plants
• Detect weak points - Action Plan
• Detect optimization potential
• Check of sensors, weigh feeder,...
Σ massin = Σ massout
MASS BALANCE
Σ heatin = Σ heatout
HEAT BALANCE
“Energy cannot be created or destroyed but may be
converted from one form to another”
Energy in = Energy out
Boundary selection
• Any boundary shape can be chosen.
• Every stream that crosses the envelope must be taken into
account.
• The boundary line is chosen so that the boundary points
are:
– useful for the balance goals
– easily accessible for reliable measurements
KilnKiln
P/HP/H
CoolerCooler
Boundary selection
Dust Exists System Dust Does Not Exit Boundary
Kiln
System
Dust
Kiln
Feed
Measuring
point (t/h)
Kiln
System
Dust
Kiln
Feed
Clinker Clinker
Boundary selection and streams
Kiln System
Primary air
Clinker
Fuel
cooling
air
False air
Kiln feed
Kiln exit
gases
Water
spray
Exit dust
Return
dust
S heatin = S heatout
Wall
losses
Heat balance
Cooler exhaust gas
Bypass gas and dust
Heat Transfer MechanismsHeat Transfer Mechanisms
• Conduction
• Convection
• Radiation
200°C 50°C
heat
ConductionConduction
• Transfer of heat from the hotter to colder
part of a body
• By direct molecular contact
Furnace wall
Hot gas
1200°C
Cold air
25°C
L
Q kA
T T
L
h c
=
−Q
ConvectionConvection
• Natural convection:
– fluid moving from difference of density due to different
temperatures
• Forced convection:
– fluid is moved by the action of an external device
hot air
hot aircold air cold air
natural convection forced convection
( )Q hA T Tw f= −
RadiationRadiation
• Energy transferred by electro-magnetic
radiation
( )Q A T T= −σ 1
4
2
4
2000°C 50°C
Q
HEAT TRANSFER
• Radiant heat transfer
• Free convection
(occurs by natural
thermal draft, at low
wind velocities)
• Forced convection
(occurs at high wind
velocities)
Convection
Radiation
Air
Chemical Reaction
• Endothermic reaction - heat is consumed
– Calcium Carbonate breaks down to CaO (lime)
and CO2 when heated
– it takes heat in Þ the reaction is endothermic.
• Exothermic reaction - heat is released
– CaO (lime) reacts with Silica and the cement
minerals are formed
– the process gives out heat Þ the chemical
reactions is exothermic.
Two types of heat
Latent Heat
Linked to modification by chemical reaction,
change in state, change in structure
Sensible Heat
Absorbed or released by a
substance
The heat to remove from a material to cool it down to the
reference temperature (usually 0ºC).
Q = M × Cp (T) × (T - T0)
M = specific mass
Cp (T) = specific heat of a material at temperature T
T = temperature of M
Sensible heat
Qf = mf × ( LHVf + Cpmean f (Tf) × Tf )
Qf : heat from fuel (kcal/h)
mf : fuel flow rate (kg/h)
LHVf : fuel low heat value (kcal/kg)
Cpmean f : mean specific heat of fuel (kcal/kg.ºC)
Tf : fuel temperature (ºC)
OR
h = m • CV
h : heat from fuel (kcal/kg clk)
m : specific fuel consumption (kg/kg clk)
CV : calorific value of fuel (kcal/kg fuel)
Heat from fuel
Incomplete combustion
• The kiln exit gases might contain some un burnt gases (CO,
H2, CH4)
• The combustion heat from those fuels must be included as a
out stream
Qic = mCO ×LHVCO + mH2 × LHVH2 + mCH4 ×LHVCH4
The heat loss through the gas can be calculated to:
h = m•(CO%•12640+H2%•10800+ CH4% • 35 840)
m = specific gas quantity (Nm3/kg clk)
Heat of Reaction
• Heat of reaction is the difference between the heat
absorbed in decarbonating the limestone and the heat
released in forming the clinker minerals
• It should be noted that raw meal chemistry affects the
reaction heat, the heat absorbed by the process gets
bigger as the LSF of the materials rises
• 420 kcals/kg clinker is used if little else is known
Clinker theoretical heat of formation
• The heat required to form clinker from dry raw mix
• ZKG formula (German formula):
Qt = 4.11 Al2O3 + 6.47 MgO + 7.64 CaO - 5.11 SiO2 - 0.60 Fe2O3
• If no clinker analysis: assume Qt = 420 kcal/kg ck
• Must be added to the clinker heat content as latent heat or as a separate
output heat stream.
CaF2 addition reduce the heat of reaction considerably but
It has the other implications.
Heat of formation
• Heat of dehydration of clay (endothermic)
• Heat of decarbonation of CaCO3 + MgCO3 (endothermic)
• Heat of formation of clinker (exothermic!)
• General assumption for the three: 1750 kJ / kg clk 0r
• 400 Kcal/kg cl
Qw : heat loss through wall (W)
atot : total heat transfer coefficient (W/m².C)
A : shell area (m²)
T : shell temperature (ºC)
Ta : ambient temperature (ºC)
( )Q A T Tw tot a= −α
Heat loss through kiln shell
0
5
10
15
20
25
30
35
40
45
50
55
60
65
100 200 300 400 500 600
T - T° (C)
W/M2C
v = 14 m/s wind
13
12
11
10
9
8
7
6
5
4
3
2
1
v = 0 m/s (free convection)
SS = 0.9
Ambient T° - 20°C
Global heat transfer coefficient
Radiation and convection
heat transfer coeffcient
( Total)
Radiation and Convection
Shell Losses vs Shell Temperatures
Wind Velocity 0 m/s
Wind Velocity 1.5 m/S
SHELL TEMPERATURE ºC
Kcal/(m2.min)
25
0
22
5
20
0
17
5
15
0
12
5
10
50 100 150 200 250 300 350 400
Radiation losses = 4*10 -8 * ( T4- Ta4) Kcal/h m2
Convection losses = 80.33*((T+Ta)/2) -0.724*(T-Ta)1.333
Convection losses = 28.03*((T+Ta)/2) -0.351*V 0.805(T-Ta) *D -0.195*(T –Ta)
If wind velocity is > 3 m/s
Surface heat losses
0 2 4 6 8
1680
1690
1700
1710
1720
1730
700
750
800
850
900
950
1000
Exit Oxygen %
kcal/kgwet
kcals/kg(dry)
WET
DRY
Kiln Heat Consumption
Effect of Kiln Exit Oxygen
How is cooling accomplishedHow is cooling accomplished
Heat transfer
by radiation
and convectionHeat moves
to clinker edge
by conduction
Air flows over
clinker cooling
surface
Heat Transfer in ClinkerHeat Transfer in Clinker
• Convection - Surface to Air
• Conduction - Inside to Surface
• Heat transfer is driven by temperature difference
• Takes place at the clinker surface
• To maximize it:
– Increase the air/material contact time with:
• Deeper bed ( ⇒ more power)
• Slower air flow (⇒ larger cooler)
Heat Exchanger TypesHeat Exchanger Types
CounterflowParallel flow
Co-current
Air
Material
Air
Material
Cross-flow
Material
Air
material
air
T
material
air
T
material
T
Old conventional grate plates
create sand blasting effect or fluidization
This creates poor heat exchange
Modern cooler plates flow resistance
branch off the air , creates
less fluidization , better heat exchange
Cross flow
Counter current
Mechanical flow regulator
Heat Exchange Between Clinker and AirHeat Exchange Between Clinker and Air
Temperature
Bedthickness
clinker
air
Fixed bed
Fluidized bed
Air in
Air out
Clinker
Air in
Air out
Clinker
Temperature
Bedthickness
clinker
air
More efficient recovery with fixed
bed
General Truths (All Coolers)General Truths (All Coolers)
1. The hotter the inlet temperature the hotter the clinker
outlet temperature.
2. The hotter the cooling air temperature the hotter the
clinker outlet temperature.
3. The longer the air/material contact time the cooler the
clinker outlet temperature.
SYSTEM DATA COLLECTION
• Process
• Type of kiln
• Nominal capacity
• Supplier
• Fuel and firing system
• Type of burner nozzle
• Dust reintroduction system
• Dimensions of main equipment
• Data on fans, drives, etc.
OPERATING DATA
• Various operating data (rpm, kW, temperature and
pressure profiles along kiln system, grate speed,
undergrate pressures, etc.)
• Electric power readings (before / after test)
• Chemical analysis of raw meal, dust(s) and clinker,
LSF, SR, AR, etc.
Kiln
Gas outlet
Wall losses
misc
Clinker formation
Clinker heat
Cooler vent
Sec.air
Tert.air
fuel
Sec.air
misc
Tertiary air
Kiln Heat balance
Cooler heat losses
Optimised air flow &
air distribution & sealing
Clinker nodules
Finer fraction &
big balls causes
bad heat exchange
Radiation losses from walls
Exit air temperature
Measurement Plan
• Duration of an audit ?
• What to measure? How to measure?
– Material balance
– Gas flows
– Heat Balance
• Frequency of sampling and measurements?
• Which analyses have to be carried out ?
• Which further data are to be collected ?
• All referred to 1 kg clinker Production = .... t/h
• Reference temperature = 0°C Specific
• Ambient temperature = ...°C Heat cons. = .... kJ/kg clk
Specification Heat
(kg/kg clk), Temp.
(Nm3/kg clk)
(kW etc.) °C (kJ/kg clk) (%)
Fuel combustion - primary firing -
- secondary firing -
Burnable matter in kiln feed -
Raw meal: sensible heat
Fuel: sensible heat
Primary air: sensible heat
Cooler air: sensible heat -
Total of inputs -
100%
INPUT DATA SUMMARY
Specification Temp. Heat
(kg/kg clk),
(Nm3/kg clk) °C (kJ/kg clk) (%)
(kW etc.)
Heat of formation
Water evaporation: - kiln feed
- water spray (s)
Exhaust gas: - sensible heat
- dust sensible heat
- dust CaO-loss
- unburnt gases (CO, etc)
Cooler: - waste air sensible heat
- middle air sensible heat
- clinker exit sensible heat
Bypass losses: - sensible heat
- dust sensible heat
- dust CaO-loss
- unburnt gases (CO, etc)
Radiation and Convection: - Preheater
- Rotary kiln
- Cooler
- Tert air duct
Rest (difference)
Total of outputs
100%
OUTPUT DATA SUMMARY
1. INPUT from sensible heat
FUEL from combustion
RAW MEAL from sensible heat
from sensible heat of water
COMBUSTION AIR from sensible heat of all the
air supplied (prim. sec.)
Total input
2. OUTPUT
Heat of formation
Evaporation of water from raw meal
Exhaust gas sensible heat
Dust sensible heat
Incomplete combustion (CO)
Clinker exit temperature
Cooler exhaust gases
Losses due to radiation and convection
Water cooling (Recupol inlet chute)
Difference
Total output
kJ/kg clk
25
5560
25
71
67
5750
1750
2370
754
25
—
59
100
540
—
152
5750
%
0.4
96.7
0.4
0.2
1.2
100
30.4
41.2
13.1
0.4
—
1.0
1.7
9.4
—
2.6
100
Wet Process
kJ/kg clk
15
3343
30
17
20
3425
1750
506
314
21
—
50
276
452
42
14
3425
%
0.4
97.6
0.9
0.5
0.6
100
51.1
14.8
9.2
0.6
—
1.5
8.1
13.2
1.2
0.4
100
Semi-Dry (Lepol)
kJ/kg clk
13
3150
54
—
6
3223
1750
13
636
18
—
63
423
297
—
23
3223
%
0.4
97.6
1.7
—
0.2
100
54.3
0.4
19.7
0.6
—
2.0
13.1
9.2
—
0.7
100
Dry Preheater (4-Stage)
HEAT BALANCE EXAMPLES
Cooler Balance
Tertiary air Vent air
0,65 Nm³/kgck 1,14 Nm³/kgck
Secondary air 719°C 293°C
0,27 Nm³/kgck Coal mill Raw mill
1029°C 0,00 Nm³/kgck 0,00 Nm³/kgck
Clinker
95.600
1465°C
Grate surface 52,20 m²
Standard load 44,0 t/d/m²
Cooling air Clinker
2,07 Nm³/kgck 95.600
4°C 107°C
Elements of Mass BalanceElements of Mass Balance
Tertiary air
Vent
air
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8
Secondary
air
clinker
clinker
mCK1
mCK2
mSA mTA mCM
mVA
mF1 mF2 mF3 mF4 mF5 mF6 mF7 mF8
Coal
mill air
Raw
mill air
mRM
Elements of Heat BalanceElements of Heat Balance
Tertiary air
Vent
air
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8
Secondar
y
air
clinker
clinker
HCK1
HCK2
HSA HTA HCM
HVA
HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8
Wall
losses
HWL
Coal
mill air
Raw
mill air
HRM
Mass BalanceMass Balance
In Out
clinker (mCK1) clinker (mCK2)
cooling air (SmFi) secondary air (mSA)
tertiary air (mTA)
coal mill air (mCM)
raw mill air (mRM)
vent air (mVA)
In = Out
secondary air flow: calculated by difference
should be validated against a kiln balance
Heat BalanceHeat Balance
In Out
clinker (HCK1) clinker (HCK2)
cooling air (SHFi) secondary air (HSA)
tertiary air (HTA)
coal mill air (HCM)
raw mill air (HRM)
vent air (HVA)
wall losses (HWL)
In = Out
secondary air heat : calculated by difference
good to validate it against kiln heat balance
secondary air temperature: calculated from secondary air heat
Temperature Stratification of air above Clinker BedTemperature Stratification of air above Clinker Bed
Secondary &
Tertiary air
Air to
coal mill
Vent
air
1400°C
300°C 250°C
200°C
175°C 125°C
100°C
1000°C
700° C
500°C
400°C 150°C
Measuring Actual Bed DepthMeasuring Actual Bed Depth
floor
Cooling EfficiencyCooling Efficiency
clinkerininputheat
clinkerbylostheat
=η
inck
outck
inck
outckinck
h
h
1
h
hh
−=
−
=η
Qualifies the cooling of the clinker but not the clinker cooler.
More cooling is possible with more air but that does not
improve the cooler efficiency.
An efficient cooler would give same cooling with less air.
Cooler lossCooler loss
cooler loss = all heat not recovered by combustion air
(secondary or tertiary)
cooler loss = heat content of clinker leaving cooler (hck out)
+ heat content of vent air
+ heat content of coal mill air
+ heat content of raw mill air
+ wall heat losses
Often a specification in supplier process performance guarantee
Operating results cooler
Coolerefficiency[%]
Combustion air Nm³/kgKl.
0,75 0,8 0,85 0,9 0,95
60
65
70
75
80
85
Standard - cooler New - competition REPOL RS
New-type coolers
Old-type coolers
Heat saving
1.Run the plant stable , continously with consistent production
2.Minimise the false air ingress by giving efficient seals
3.Optimise the flame as per our requirement
4.Minimise the variation in airflow, meal flow and fuel flow rate
5.Reduce the radiation losses by giving proper insulation
6.Optimise the cooler operation and cooler efficiency
7.Optimise the cyclone efficiency in the preheater
8.Minimise the variation in chemistry of raw meal and ash in fuel
by efficient blending.
9. Addition of mineralisers reduce the heat of reaction by 20 – 30 Kcal/ kg.cl after
thorough study on the rheological properties of cement. CaF2, Dolomite and
slag are good mineralisers.
Set point
Natural
and acceptable
variation
high variation
Not acceptable Variation is a devil in any process
Heat optimisation  pradeep kumar
Heat optimisation  pradeep kumar
Satellite cooler
rotary cooler
grate cooler
Recuperation zone Cooling zone
static grate
direct aeration chamber aerationchamber aeration
Grate cooler
With stationary
inlet
Walking floor
pyrofloor
Cross bar cooler
Im
provem
ent in
technology
Rotary disc cooler
MMD cross bar
IKN
Poly track
Pyro floor
?
Pyro step
1.31Kg/kg cl0.1Dust in tertiary duct7
0.180.16%1Excess air in kiln12
-0.1-0.17Deg C10Temperature of primary
air
11
0.220.22%1Excess air in calciner13
-0.25-0.17Kcal/kgcoal100Heat content in coal9
1615.7Kg/kgcl0.1False air through hood14
1918.7Kg / kg cl0.1False air through inlet
seal
15
0.680.66%1Amount of primary air10
0.470.45%1Moisture in coal8
1.30.12Kg/kg cl0.1Dust from kiln6
1.11.11Kcal/kgcl1Heat of reaction5
-73-74.37%1Carbon in rawmeal4
5.65.6%1Hydrate water3
1.81.8%1Feed moisture2
-0.5- 0.57Deg c10Feed temperature1
Heat, kcal/kgcl
ILC
Heat, kcal/kgcl
SLC
unitbyA change ins.no
Heat calculation
1.11.1Kg / kg cl0.1Raw meal27
1.2Kg/ kg cl0.1False air cyclone C122
19.1Kg/ kg cl0.1False air cyclone C526
1.21.1Kcal/kg cl1standard Cooler loss28
7.2Kg/ kg cl0.1False air cyclone C324
Cyclone efficiency29
- 0.1%1Cyclone- K129
12.4Kg/ kg cl0.1False air cyclone C425
3.4Kg/ kg cl0.1False air cyclone C223
1918.8Kg/ kg cl0.1False air cyclone K521
1210.9Kg/ kg cl0.1False air cyclone K420
6.95.8Kg/ kg cl0.1False air cyclone K319
3.32.6Kg/ kg cl0.1False air cyclone K218
1.10.82Kg/ kg cl0.1False air cyclone K117
1615.7Kg / kg cl0.1False air calciner16
Heat, kcal/kgcl
ILC
Heat, kcal/kg cl
SLC
unitbyA change ins.no
-0.26%1Cyclone- K533
-0.38-0.28%1Cyclone- C436
-23-21.8Change from 4 to 5 stage41
1.61.6%1By pass of kiln gases40
-11-10.0Change from 5 to 6
stages
42
0.13%1Recarbonation, KS38
43
44
0.510.37%1Recarbonation, CS39
0.82-0.74%1Cyclone- C537
-0.34- 0.24%1Cyclone- C335
-0.27-0.18%1Cyclone- C234
-0.21-0.14%1Cyclone- C134
-0.12%1Cyclone- K432
-0.10%1Cyclone- K331
-0.08%1Cyclone- K230
Heat, kcal/kgcl
ILC
Heat, kcal/kg cl
SLC
unitbyA change ins.no
Heat loss from shell radiation
Insulation effect of refractories
optimised coating ,300mm thk
Flame Shape & flame length
Ring formation shoots
the gas velocity
takes the heat farther
into the kiln, increases
the back end temperature
Exit gas velocity at kiln inlet
= 10 m/s
v=15 -16 m/s
Steady
Feed rate
With less
Fluctuation
Of
calcination
Heat losses from kiln
Parasite air ( ingress of false
air entry) at inlet , outlet hood&
preheater.
Primary air & coal transport
air are all false entry.
Fluctuations
In process
Hood take off
V=5 m/s
Well controlled air flow
Fuel flow
4 –stage preheater
5 –stage preheater
6 –stage preheater
Conversion of 4 stage preheater
To 5 stage preheater saves 28 Kcal/kg cl
Conversion of 5 stage preheater
To 6 stage preheater saves 14 Kcal/kg cl
calciner
769.34.40Total Output
6.0Radiation Loss from Cooler
20.2Radiation Loss from Kiln
37.1Radiation Loss from Preheater
4.8Heat of Evaporation of Moisture
20.91110.1881.0Heat Through Clinker
91.62930.2521.2Heat Through Cooler Vent
410.0Heat of Clinkerisation
7.93360.2360.1Heat of PH Exit Dust
170.83360.2472.1Heat of PH Exit Gases
Kcal/kg clinkerdeg CKcal/kg degCkg/kg clinker
HeatTemperatureSp.heat capacityMass flow
Heat Output relative to 0 deg C
769.34.40Total Input
412.3Heat of Coal Combustion in Calciner
295.7Heat of Coal Combustion in Kiln
1.1560.2380.1Sensible heat of Coal and Conveying Air
2.8600.2870.2Sensible heat of Coal
1.3460.2380.1Sensible Heat of PH Leak Air
27.1460.2472.4Sensible heat of Cooling air
8.1Heat through combustibles in raw meal
21.0600.2121.6Sensible heat of Kiln Feed
kcal/kg Clinkerdeg CKcal/kg degCkg/kg clinker
HeatTemperatureSp.heat capacityMass flow
Heat Input relative to 0 deg C
Specific heat
Consumption=
Total heat output –
Total sensible heat
769.3-61.3 = 709
Kcal/kg cl
433.63.43Total Heat output
6.0Radiation
20.90.1881111.00Clinker
91.60.2522931.24Excess air
6.70.2369490.03Tertiary air dust
176.30.2689490.69Tertiary air
5.00.2410490.02Secondary air dust
127.10.27110490.45Secondary air
kcal/kg clinkerkcal/kg oCdeg Ckg/kg cl
HeatSpecific heatTemperatureMass flow
reference: 0 deg CHEAT OUTPUT
433.63.43Total Heat Input
4.6Fan energy
27.10.247462.38Cooling air
19.10.26414500.05Dust
382.80.26414501.00Clinker
kcal/kg clinkerkcal/kg oCdeg Ckg/kg cl
HeatSpecific heatTemperatureMass flow
reference: 0 deg CHEAT INPUT
NORMAL OPERATING CONDITION
Automation further helps to run the plant more stable
by reducing the meal, fuel flow and air flow.
Running the kiln continuously with
consistent production is the best way to
reduce the fuel and power bills.
For consistent production we must have short ,
Convergent and intense flame, less chemistry variation
of raw meal , less variation in ash content of fuel
and stable cooler operation. Automation further helps
to run
Thanks for your attention
1 sur 76

Recommandé

ENERGY MODELING OF THE PYROPROCESSING OF CLINKER IN A ROTARY CEMENT KILN par
ENERGY MODELING OF THE PYROPROCESSING OF CLINKER IN A ROTARY CEMENT KILNENERGY MODELING OF THE PYROPROCESSING OF CLINKER IN A ROTARY CEMENT KILN
ENERGY MODELING OF THE PYROPROCESSING OF CLINKER IN A ROTARY CEMENT KILNISA Interchange
7.8K vues16 diapositives
Red river in clinker cooler par
Red river in clinker  coolerRed river in clinker  cooler
Red river in clinker coolerpradeepdeepi
10.3K vues16 diapositives
Snow ball formation pradeep kumar par
Snow ball formation  pradeep kumarSnow ball formation  pradeep kumar
Snow ball formation pradeep kumarpradeepdeepi
7.4K vues12 diapositives
Burning and cooling par
Burning and coolingBurning and cooling
Burning and coolingirrraju1976
10.6K vues12 diapositives
Cement rotary kiln questions & answers par
Cement rotary kiln questions & answersCement rotary kiln questions & answers
Cement rotary kiln questions & answersNael Shabana
23.3K vues37 diapositives
Ln clinker cooler golden rules 2010 11 17 par
Ln clinker cooler golden rules 2010 11 17Ln clinker cooler golden rules 2010 11 17
Ln clinker cooler golden rules 2010 11 17mkpq pasha
800 vues89 diapositives

Contenu connexe

Tendances

Process Optimization-Pyrosection(2-11-20).pdf par
Process Optimization-Pyrosection(2-11-20).pdfProcess Optimization-Pyrosection(2-11-20).pdf
Process Optimization-Pyrosection(2-11-20).pdfHari krushna Panigrahy
737 vues195 diapositives
Ring formation in kilns par
Ring formation in kilnsRing formation in kilns
Ring formation in kilnspradeepdeepi
47K vues39 diapositives
Clinker formation par
Clinker formationClinker formation
Clinker formationmkpq pasha
2.4K vues120 diapositives
54666070 kiln-operation par
54666070 kiln-operation54666070 kiln-operation
54666070 kiln-operationDin Sokreach
753 vues98 diapositives
Raw mix characteristics final par
Raw mix characteristics  finalRaw mix characteristics  final
Raw mix characteristics finalpradeepdeepi
27.4K vues96 diapositives
Cement plant-operation-handbook by yaser elkelawy par
Cement plant-operation-handbook by yaser elkelawyCement plant-operation-handbook by yaser elkelawy
Cement plant-operation-handbook by yaser elkelawyYasser Mohamed abbas elkelawy
4.7K vues317 diapositives

Tendances(20)

Clinker formation par mkpq pasha
Clinker formationClinker formation
Clinker formation
mkpq pasha2.4K vues
Raw mix characteristics final par pradeepdeepi
Raw mix characteristics  finalRaw mix characteristics  final
Raw mix characteristics final
pradeepdeepi27.4K vues
Sulfur formation par mkpq pasha
Sulfur formationSulfur formation
Sulfur formation
mkpq pasha1.5K vues
Influence of process on quality par pradeepdeepi
Influence of process on qualityInfluence of process on quality
Influence of process on quality
pradeepdeepi2.8K vues
Kiln Training Module - kali.pptx par Ja Ti
Kiln Training Module - kali.pptxKiln Training Module - kali.pptx
Kiln Training Module - kali.pptx
Ja Ti636 vues
Granulometry of clinker par rrvc
Granulometry of clinkerGranulometry of clinker
Granulometry of clinker
rrvc9.8K vues
Clinker Liquid Phase par RicardoMosci
Clinker Liquid PhaseClinker Liquid Phase
Clinker Liquid Phase
RicardoMosci16.8K vues
Burning zone ref failue f par pradeepdeepi
Burning zone ref failue fBurning zone ref failue f
Burning zone ref failue f
pradeepdeepi3.7K vues
Snowman formation pradeep kumar par pradeepdeepi
Snowman formation pradeep kumarSnowman formation pradeep kumar
Snowman formation pradeep kumar
pradeepdeepi10.4K vues
Heat & Mass Balance in Cement Plant par NITIN ASNANI
Heat & Mass Balance in Cement PlantHeat & Mass Balance in Cement Plant
Heat & Mass Balance in Cement Plant
NITIN ASNANI5.8K vues
Clinker cooler's efficiency par Emad Sabri
Clinker cooler's efficiencyClinker cooler's efficiency
Clinker cooler's efficiency
Emad Sabri3.1K vues
Cement Process Chemistry par Shambhudayal
Cement Process ChemistryCement Process Chemistry
Cement Process Chemistry
Shambhudayal43.3K vues
Clinker formation-concepts par mkpq pasha
Clinker formation-conceptsClinker formation-concepts
Clinker formation-concepts
mkpq pasha1.9K vues

En vedette

Enter a New Dimension - LOESCHE CCG Plant par
Enter a New Dimension - LOESCHE CCG PlantEnter a New Dimension - LOESCHE CCG Plant
Enter a New Dimension - LOESCHE CCG PlantLOESCHE
2.3K vues12 diapositives
Bearing 2007 08 par
Bearing 2007 08Bearing 2007 08
Bearing 2007 08Vijay Kumar
2.4K vues60 diapositives
Fl smidth o&m 2015 afcm in hanoi - public par
Fl smidth o&m   2015 afcm in hanoi - publicFl smidth o&m   2015 afcm in hanoi - public
Fl smidth o&m 2015 afcm in hanoi - publicFLSmidth & Co. A/S.
1.7K vues28 diapositives
aixergee - Process Optimization for the Cement Industry par
aixergee - Process Optimization for the Cement Industryaixergee - Process Optimization for the Cement Industry
aixergee - Process Optimization for the Cement IndustryLOESCHE
4.7K vues17 diapositives
Cement mill notebook par
Cement mill notebookCement mill notebook
Cement mill notebookNael Shabana
25.7K vues32 diapositives
Cement Plant Process and Instruments Used par
Cement Plant Process and Instruments UsedCement Plant Process and Instruments Used
Cement Plant Process and Instruments UsedRavi Roy
25.1K vues59 diapositives

En vedette(8)

Enter a New Dimension - LOESCHE CCG Plant par LOESCHE
Enter a New Dimension - LOESCHE CCG PlantEnter a New Dimension - LOESCHE CCG Plant
Enter a New Dimension - LOESCHE CCG Plant
LOESCHE2.3K vues
aixergee - Process Optimization for the Cement Industry par LOESCHE
aixergee - Process Optimization for the Cement Industryaixergee - Process Optimization for the Cement Industry
aixergee - Process Optimization for the Cement Industry
LOESCHE4.7K vues
Cement mill notebook par Nael Shabana
Cement mill notebookCement mill notebook
Cement mill notebook
Nael Shabana25.7K vues
Cement Plant Process and Instruments Used par Ravi Roy
Cement Plant Process and Instruments UsedCement Plant Process and Instruments Used
Cement Plant Process and Instruments Used
Ravi Roy25.1K vues

Similaire à Heat optimisation pradeep kumar

wasteheatrecovery.pptx par
wasteheatrecovery.pptxwasteheatrecovery.pptx
wasteheatrecovery.pptxrajarawat12
62 vues30 diapositives
Thermal Power Plants par
Thermal Power PlantsThermal Power Plants
Thermal Power Plantspeeyush95
9.9K vues47 diapositives
Boiler thermalpowerplants 12898051220529-phpapp02 par
Boiler thermalpowerplants 12898051220529-phpapp02Boiler thermalpowerplants 12898051220529-phpapp02
Boiler thermalpowerplants 12898051220529-phpapp02akjshare
451 vues47 diapositives
Unit 2 par
Unit 2Unit 2
Unit 2neetu meena
1.1K vues84 diapositives
Steam Reforming - Practical Operations par
Steam Reforming - Practical OperationsSteam Reforming - Practical Operations
Steam Reforming - Practical OperationsGerard B. Hawkins
32.9K vues193 diapositives
Conserve energy par
Conserve energyConserve energy
Conserve energyH Janardan Prabhu
3.4K vues84 diapositives

Similaire à Heat optimisation pradeep kumar(20)

Thermal Power Plants par peeyush95
Thermal Power PlantsThermal Power Plants
Thermal Power Plants
peeyush959.9K vues
Boiler thermalpowerplants 12898051220529-phpapp02 par akjshare
Boiler thermalpowerplants 12898051220529-phpapp02Boiler thermalpowerplants 12898051220529-phpapp02
Boiler thermalpowerplants 12898051220529-phpapp02
akjshare451 vues
28. WASTE HEAT RECOVERY.ppt par RENERGISTICS
28. WASTE HEAT RECOVERY.ppt28. WASTE HEAT RECOVERY.ppt
28. WASTE HEAT RECOVERY.ppt
RENERGISTICS561 vues
waste heat recovery par Sagar Joshi
waste heat recovery waste heat recovery
waste heat recovery
Sagar Joshi138 vues
Post-combustion CO2 capture and its effects on power plants par Hamid Abroshan
Post-combustion CO2 capture and its effects on power plantsPost-combustion CO2 capture and its effects on power plants
Post-combustion CO2 capture and its effects on power plants
Hamid Abroshan88 vues
Heat Pumps.pptx par Wilade
Heat Pumps.pptxHeat Pumps.pptx
Heat Pumps.pptx
Wilade27 vues
Energy conservation boiler par MANJUNATH N
Energy conservation boilerEnergy conservation boiler
Energy conservation boiler
MANJUNATH N10.1K vues
Theory and Operation - Secondary Reformers - par Gerard B. Hawkins
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers -
Gerard B. Hawkins18.4K vues

Plus de pradeepdeepi

Use of diverting_gatesfor_kiln_preheater (1) par
Use of diverting_gatesfor_kiln_preheater (1)Use of diverting_gatesfor_kiln_preheater (1)
Use of diverting_gatesfor_kiln_preheater (1)pradeepdeepi
2.1K vues9 diapositives
Vertical raw mill pradeep kumar par
Vertical raw mill pradeep kumarVertical raw mill pradeep kumar
Vertical raw mill pradeep kumarpradeepdeepi
39.3K vues88 diapositives
Bag filter operation pradeep kumar par
Bag filter operation  pradeep kumarBag filter operation  pradeep kumar
Bag filter operation pradeep kumarpradeepdeepi
25.8K vues109 diapositives
Bag filter operation pradeep kumar par
Bag filter operation pradeep kumarBag filter operation pradeep kumar
Bag filter operation pradeep kumarpradeepdeepi
5.1K vues109 diapositives
Influence of process on quality par
Influence of process on qualityInfluence of process on quality
Influence of process on qualitypradeepdeepi
4.4K vues96 diapositives
Cement raw mix characteristics par
Cement raw mix characteristicsCement raw mix characteristics
Cement raw mix characteristicspradeepdeepi
11.9K vues96 diapositives

Plus de pradeepdeepi(18)

Use of diverting_gatesfor_kiln_preheater (1) par pradeepdeepi
Use of diverting_gatesfor_kiln_preheater (1)Use of diverting_gatesfor_kiln_preheater (1)
Use of diverting_gatesfor_kiln_preheater (1)
pradeepdeepi2.1K vues
Vertical raw mill pradeep kumar par pradeepdeepi
Vertical raw mill pradeep kumarVertical raw mill pradeep kumar
Vertical raw mill pradeep kumar
pradeepdeepi39.3K vues
Bag filter operation pradeep kumar par pradeepdeepi
Bag filter operation  pradeep kumarBag filter operation  pradeep kumar
Bag filter operation pradeep kumar
pradeepdeepi25.8K vues
Bag filter operation pradeep kumar par pradeepdeepi
Bag filter operation pradeep kumarBag filter operation pradeep kumar
Bag filter operation pradeep kumar
pradeepdeepi5.1K vues
Influence of process on quality par pradeepdeepi
Influence of process on qualityInfluence of process on quality
Influence of process on quality
pradeepdeepi4.4K vues
Cement raw mix characteristics par pradeepdeepi
Cement raw mix characteristicsCement raw mix characteristics
Cement raw mix characteristics
pradeepdeepi11.9K vues
Reffailue nosering pradeep kumar par pradeepdeepi
Reffailue nosering  pradeep kumarReffailue nosering  pradeep kumar
Reffailue nosering pradeep kumar
pradeepdeepi5.3K vues
Ref failur e analysis tip casting & retainer area f par pradeepdeepi
Ref failur e analysis tip casting & retainer area  fRef failur e analysis tip casting & retainer area  f
Ref failur e analysis tip casting & retainer area f
pradeepdeepi5.8K vues
Process for non process1 par pradeepdeepi
Process for non process1Process for non process1
Process for non process1
pradeepdeepi5.7K vues
Refractory manufcturing,properties par pradeepdeepi
Refractory  manufcturing,propertiesRefractory  manufcturing,properties
Refractory manufcturing,properties
pradeepdeepi15.8K vues
Anchor design-pradeep kumar par pradeepdeepi
Anchor design-pradeep kumarAnchor design-pradeep kumar
Anchor design-pradeep kumar
pradeepdeepi1.4K vues
Lump formation in cement silo par pradeepdeepi
Lump formation in  cement siloLump formation in  cement silo
Lump formation in cement silo
pradeepdeepi1.4K vues
Lump formation in cement silo par pradeepdeepi
Lump formation in  cement siloLump formation in  cement silo
Lump formation in cement silo
pradeepdeepi997 vues
Lump formation in cement silo par pradeepdeepi
Lump formation in  cement siloLump formation in  cement silo
Lump formation in cement silo
pradeepdeepi10.9K vues
Microsoft power point dip tube failure par pradeepdeepi
Microsoft power point   dip tube failureMicrosoft power point   dip tube failure
Microsoft power point dip tube failure
pradeepdeepi3K vues
Microsoft power point bag house corrosion par pradeepdeepi
Microsoft power point   bag house corrosionMicrosoft power point   bag house corrosion
Microsoft power point bag house corrosion
pradeepdeepi1.9K vues

Dernier

Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ... par
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...ShapeBlue
121 vues15 diapositives
Data Integrity for Banking and Financial Services par
Data Integrity for Banking and Financial ServicesData Integrity for Banking and Financial Services
Data Integrity for Banking and Financial ServicesPrecisely
76 vues26 diapositives
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT par
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITShapeBlue
138 vues8 diapositives
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ... par
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...ShapeBlue
52 vues10 diapositives
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue par
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueCloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueShapeBlue
63 vues15 diapositives
Kyo - Functional Scala 2023.pdf par
Kyo - Functional Scala 2023.pdfKyo - Functional Scala 2023.pdf
Kyo - Functional Scala 2023.pdfFlavio W. Brasil
443 vues92 diapositives

Dernier(20)

Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ... par ShapeBlue
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
ShapeBlue121 vues
Data Integrity for Banking and Financial Services par Precisely
Data Integrity for Banking and Financial ServicesData Integrity for Banking and Financial Services
Data Integrity for Banking and Financial Services
Precisely76 vues
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT par ShapeBlue
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
ShapeBlue138 vues
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ... par ShapeBlue
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
ShapeBlue52 vues
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue par ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueCloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
ShapeBlue63 vues
State of the Union - Rohit Yadav - Apache CloudStack par ShapeBlue
State of the Union - Rohit Yadav - Apache CloudStackState of the Union - Rohit Yadav - Apache CloudStack
State of the Union - Rohit Yadav - Apache CloudStack
ShapeBlue218 vues
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ... par ShapeBlue
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
ShapeBlue114 vues
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ... par ShapeBlue
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...
ShapeBlue48 vues
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda... par ShapeBlue
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
ShapeBlue93 vues
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P... par ShapeBlue
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
ShapeBlue120 vues
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue par ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlueMigrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
ShapeBlue147 vues
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit... par ShapeBlue
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...
ShapeBlue86 vues
The Power of Heat Decarbonisation Plans in the Built Environment par IES VE
The Power of Heat Decarbonisation Plans in the Built EnvironmentThe Power of Heat Decarbonisation Plans in the Built Environment
The Power of Heat Decarbonisation Plans in the Built Environment
IES VE67 vues
Declarative Kubernetes Cluster Deployment with Cloudstack and Cluster API - O... par ShapeBlue
Declarative Kubernetes Cluster Deployment with Cloudstack and Cluster API - O...Declarative Kubernetes Cluster Deployment with Cloudstack and Cluster API - O...
Declarative Kubernetes Cluster Deployment with Cloudstack and Cluster API - O...
ShapeBlue59 vues
"Surviving highload with Node.js", Andrii Shumada par Fwdays
"Surviving highload with Node.js", Andrii Shumada "Surviving highload with Node.js", Andrii Shumada
"Surviving highload with Node.js", Andrii Shumada
Fwdays49 vues
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti... par ShapeBlue
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
ShapeBlue69 vues

Heat optimisation pradeep kumar

  • 2. Heat loss from shell radiation Heat loss in product Heat loss in Preheater Exit gas Cooler exit air Where does the heat go ?
  • 3. For perpetual pyro process in a kiln the heat required is only heat of clinker mineral formation, ie., 380 - 400 Kcal/kg clinker. 280 – 350 Kcal/kg clinker is wasted which is about 40 - 45 % . The dream of design engineer is to make heat losses to minimum and how to optimize the heat consumption.
  • 4. The preheater heat losses Pre heater gas temperature Design of cyclones No of stages Dust loss Inlet / out let velocity ratio Location of meal distribution boxes Preheater( Surface) heat losses through radiation Calciner gas retention time Combustion effciency Coal residue & raw meal residue Location of firing nozzles
  • 5. Different flames Normal flame Flame with low Secondary air temp Distorted nozzle Flame –poor hood geometry Or distorted nozzle Flame at the center Flame downward Flame upward
  • 6. Flame length Long flame, unstable coating, High back end temp Low shell temperature Short intense divergent flame Good for burning Low back end temperature Poor refractory life, high Shell temperature Convergent flame Good for burning Good for refractory Stable coating Low shell temperature
  • 7. The Ideal Flame hot ! short ! stable ! T"long" flame "short" flame Complete combustion: - CO = 0 - SO2, NOX ↓ Homogeneous: - no temperature peaks - no local CO on the clinker bed Longer flame increase the back end temperature resulting in Heat loss at kiln exit and hot meal clogging
  • 8. Burning zone, Flame-profile • Low momentum burner • High momentum burner rings12m (~3xD) burning zone Rotaflam ~16 m Flame !☺! rings ~23 m Flame 17m (~4xD) burning zone ! ! Burner Operation
  • 9. Duo Flex burner M.A.S burner, unitherm
  • 13. Cement kiln flame types Straight flame – essentially external recirculation Type-1 flame Weak internal recirculation & external recirculation Type-2 flame Strong internal recirculation & external recirculation
  • 15. Objectives “It is desirable to operate the kiln at the lowest fuel consumption. This must be consistent with the highest practical output at an acceptable market quality.”
  • 16. WHY TO DO IT • To get a detailed view of the kiln line performance • Evaluate exact data for heat consumption, production,... • Basis for comparison – impact of investment or modifications carried out – comparison to other plants • Detect weak points - Action Plan • Detect optimization potential • Check of sensors, weigh feeder,...
  • 17. Σ massin = Σ massout MASS BALANCE Σ heatin = Σ heatout HEAT BALANCE “Energy cannot be created or destroyed but may be converted from one form to another” Energy in = Energy out
  • 18. Boundary selection • Any boundary shape can be chosen. • Every stream that crosses the envelope must be taken into account. • The boundary line is chosen so that the boundary points are: – useful for the balance goals – easily accessible for reliable measurements
  • 20. Dust Exists System Dust Does Not Exit Boundary Kiln System Dust Kiln Feed Measuring point (t/h) Kiln System Dust Kiln Feed Clinker Clinker Boundary selection and streams
  • 21. Kiln System Primary air Clinker Fuel cooling air False air Kiln feed Kiln exit gases Water spray Exit dust Return dust S heatin = S heatout Wall losses Heat balance Cooler exhaust gas Bypass gas and dust
  • 22. Heat Transfer MechanismsHeat Transfer Mechanisms • Conduction • Convection • Radiation 200°C 50°C heat
  • 23. ConductionConduction • Transfer of heat from the hotter to colder part of a body • By direct molecular contact Furnace wall Hot gas 1200°C Cold air 25°C L Q kA T T L h c = −Q
  • 24. ConvectionConvection • Natural convection: – fluid moving from difference of density due to different temperatures • Forced convection: – fluid is moved by the action of an external device hot air hot aircold air cold air natural convection forced convection ( )Q hA T Tw f= −
  • 25. RadiationRadiation • Energy transferred by electro-magnetic radiation ( )Q A T T= −σ 1 4 2 4 2000°C 50°C Q
  • 26. HEAT TRANSFER • Radiant heat transfer • Free convection (occurs by natural thermal draft, at low wind velocities) • Forced convection (occurs at high wind velocities) Convection Radiation Air
  • 27. Chemical Reaction • Endothermic reaction - heat is consumed – Calcium Carbonate breaks down to CaO (lime) and CO2 when heated – it takes heat in Þ the reaction is endothermic. • Exothermic reaction - heat is released – CaO (lime) reacts with Silica and the cement minerals are formed – the process gives out heat Þ the chemical reactions is exothermic.
  • 28. Two types of heat Latent Heat Linked to modification by chemical reaction, change in state, change in structure Sensible Heat Absorbed or released by a substance
  • 29. The heat to remove from a material to cool it down to the reference temperature (usually 0ºC). Q = M × Cp (T) × (T - T0) M = specific mass Cp (T) = specific heat of a material at temperature T T = temperature of M Sensible heat
  • 30. Qf = mf × ( LHVf + Cpmean f (Tf) × Tf ) Qf : heat from fuel (kcal/h) mf : fuel flow rate (kg/h) LHVf : fuel low heat value (kcal/kg) Cpmean f : mean specific heat of fuel (kcal/kg.ºC) Tf : fuel temperature (ºC) OR h = m • CV h : heat from fuel (kcal/kg clk) m : specific fuel consumption (kg/kg clk) CV : calorific value of fuel (kcal/kg fuel) Heat from fuel
  • 31. Incomplete combustion • The kiln exit gases might contain some un burnt gases (CO, H2, CH4) • The combustion heat from those fuels must be included as a out stream Qic = mCO ×LHVCO + mH2 × LHVH2 + mCH4 ×LHVCH4 The heat loss through the gas can be calculated to: h = m•(CO%•12640+H2%•10800+ CH4% • 35 840) m = specific gas quantity (Nm3/kg clk)
  • 32. Heat of Reaction • Heat of reaction is the difference between the heat absorbed in decarbonating the limestone and the heat released in forming the clinker minerals • It should be noted that raw meal chemistry affects the reaction heat, the heat absorbed by the process gets bigger as the LSF of the materials rises • 420 kcals/kg clinker is used if little else is known
  • 33. Clinker theoretical heat of formation • The heat required to form clinker from dry raw mix • ZKG formula (German formula): Qt = 4.11 Al2O3 + 6.47 MgO + 7.64 CaO - 5.11 SiO2 - 0.60 Fe2O3 • If no clinker analysis: assume Qt = 420 kcal/kg ck • Must be added to the clinker heat content as latent heat or as a separate output heat stream. CaF2 addition reduce the heat of reaction considerably but It has the other implications.
  • 34. Heat of formation • Heat of dehydration of clay (endothermic) • Heat of decarbonation of CaCO3 + MgCO3 (endothermic) • Heat of formation of clinker (exothermic!) • General assumption for the three: 1750 kJ / kg clk 0r • 400 Kcal/kg cl
  • 35. Qw : heat loss through wall (W) atot : total heat transfer coefficient (W/m².C) A : shell area (m²) T : shell temperature (ºC) Ta : ambient temperature (ºC) ( )Q A T Tw tot a= −α Heat loss through kiln shell
  • 36. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 100 200 300 400 500 600 T - T° (C) W/M2C v = 14 m/s wind 13 12 11 10 9 8 7 6 5 4 3 2 1 v = 0 m/s (free convection) SS = 0.9 Ambient T° - 20°C Global heat transfer coefficient Radiation and convection heat transfer coeffcient ( Total) Radiation and Convection
  • 37. Shell Losses vs Shell Temperatures Wind Velocity 0 m/s Wind Velocity 1.5 m/S SHELL TEMPERATURE ºC Kcal/(m2.min) 25 0 22 5 20 0 17 5 15 0 12 5 10 50 100 150 200 250 300 350 400
  • 38. Radiation losses = 4*10 -8 * ( T4- Ta4) Kcal/h m2 Convection losses = 80.33*((T+Ta)/2) -0.724*(T-Ta)1.333 Convection losses = 28.03*((T+Ta)/2) -0.351*V 0.805(T-Ta) *D -0.195*(T –Ta) If wind velocity is > 3 m/s Surface heat losses
  • 39. 0 2 4 6 8 1680 1690 1700 1710 1720 1730 700 750 800 850 900 950 1000 Exit Oxygen % kcal/kgwet kcals/kg(dry) WET DRY Kiln Heat Consumption Effect of Kiln Exit Oxygen
  • 40. How is cooling accomplishedHow is cooling accomplished Heat transfer by radiation and convectionHeat moves to clinker edge by conduction Air flows over clinker cooling surface
  • 41. Heat Transfer in ClinkerHeat Transfer in Clinker • Convection - Surface to Air • Conduction - Inside to Surface • Heat transfer is driven by temperature difference • Takes place at the clinker surface • To maximize it: – Increase the air/material contact time with: • Deeper bed ( ⇒ more power) • Slower air flow (⇒ larger cooler)
  • 42. Heat Exchanger TypesHeat Exchanger Types CounterflowParallel flow Co-current Air Material Air Material Cross-flow Material Air material air T material air T material T
  • 43. Old conventional grate plates create sand blasting effect or fluidization This creates poor heat exchange Modern cooler plates flow resistance branch off the air , creates less fluidization , better heat exchange Cross flow Counter current Mechanical flow regulator
  • 44. Heat Exchange Between Clinker and AirHeat Exchange Between Clinker and Air Temperature Bedthickness clinker air Fixed bed Fluidized bed Air in Air out Clinker Air in Air out Clinker Temperature Bedthickness clinker air More efficient recovery with fixed bed
  • 45. General Truths (All Coolers)General Truths (All Coolers) 1. The hotter the inlet temperature the hotter the clinker outlet temperature. 2. The hotter the cooling air temperature the hotter the clinker outlet temperature. 3. The longer the air/material contact time the cooler the clinker outlet temperature.
  • 46. SYSTEM DATA COLLECTION • Process • Type of kiln • Nominal capacity • Supplier • Fuel and firing system • Type of burner nozzle • Dust reintroduction system • Dimensions of main equipment • Data on fans, drives, etc.
  • 47. OPERATING DATA • Various operating data (rpm, kW, temperature and pressure profiles along kiln system, grate speed, undergrate pressures, etc.) • Electric power readings (before / after test) • Chemical analysis of raw meal, dust(s) and clinker, LSF, SR, AR, etc.
  • 48. Kiln Gas outlet Wall losses misc Clinker formation Clinker heat Cooler vent Sec.air Tert.air fuel Sec.air misc Tertiary air Kiln Heat balance
  • 49. Cooler heat losses Optimised air flow & air distribution & sealing Clinker nodules Finer fraction & big balls causes bad heat exchange Radiation losses from walls Exit air temperature
  • 50. Measurement Plan • Duration of an audit ? • What to measure? How to measure? – Material balance – Gas flows – Heat Balance • Frequency of sampling and measurements? • Which analyses have to be carried out ? • Which further data are to be collected ?
  • 51. • All referred to 1 kg clinker Production = .... t/h • Reference temperature = 0°C Specific • Ambient temperature = ...°C Heat cons. = .... kJ/kg clk Specification Heat (kg/kg clk), Temp. (Nm3/kg clk) (kW etc.) °C (kJ/kg clk) (%) Fuel combustion - primary firing - - secondary firing - Burnable matter in kiln feed - Raw meal: sensible heat Fuel: sensible heat Primary air: sensible heat Cooler air: sensible heat - Total of inputs - 100% INPUT DATA SUMMARY
  • 52. Specification Temp. Heat (kg/kg clk), (Nm3/kg clk) °C (kJ/kg clk) (%) (kW etc.) Heat of formation Water evaporation: - kiln feed - water spray (s) Exhaust gas: - sensible heat - dust sensible heat - dust CaO-loss - unburnt gases (CO, etc) Cooler: - waste air sensible heat - middle air sensible heat - clinker exit sensible heat Bypass losses: - sensible heat - dust sensible heat - dust CaO-loss - unburnt gases (CO, etc) Radiation and Convection: - Preheater - Rotary kiln - Cooler - Tert air duct Rest (difference) Total of outputs 100% OUTPUT DATA SUMMARY
  • 53. 1. INPUT from sensible heat FUEL from combustion RAW MEAL from sensible heat from sensible heat of water COMBUSTION AIR from sensible heat of all the air supplied (prim. sec.) Total input 2. OUTPUT Heat of formation Evaporation of water from raw meal Exhaust gas sensible heat Dust sensible heat Incomplete combustion (CO) Clinker exit temperature Cooler exhaust gases Losses due to radiation and convection Water cooling (Recupol inlet chute) Difference Total output kJ/kg clk 25 5560 25 71 67 5750 1750 2370 754 25 — 59 100 540 — 152 5750 % 0.4 96.7 0.4 0.2 1.2 100 30.4 41.2 13.1 0.4 — 1.0 1.7 9.4 — 2.6 100 Wet Process kJ/kg clk 15 3343 30 17 20 3425 1750 506 314 21 — 50 276 452 42 14 3425 % 0.4 97.6 0.9 0.5 0.6 100 51.1 14.8 9.2 0.6 — 1.5 8.1 13.2 1.2 0.4 100 Semi-Dry (Lepol) kJ/kg clk 13 3150 54 — 6 3223 1750 13 636 18 — 63 423 297 — 23 3223 % 0.4 97.6 1.7 — 0.2 100 54.3 0.4 19.7 0.6 — 2.0 13.1 9.2 — 0.7 100 Dry Preheater (4-Stage) HEAT BALANCE EXAMPLES
  • 54. Cooler Balance Tertiary air Vent air 0,65 Nm³/kgck 1,14 Nm³/kgck Secondary air 719°C 293°C 0,27 Nm³/kgck Coal mill Raw mill 1029°C 0,00 Nm³/kgck 0,00 Nm³/kgck Clinker 95.600 1465°C Grate surface 52,20 m² Standard load 44,0 t/d/m² Cooling air Clinker 2,07 Nm³/kgck 95.600 4°C 107°C
  • 55. Elements of Mass BalanceElements of Mass Balance Tertiary air Vent air Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Secondary air clinker clinker mCK1 mCK2 mSA mTA mCM mVA mF1 mF2 mF3 mF4 mF5 mF6 mF7 mF8 Coal mill air Raw mill air mRM
  • 56. Elements of Heat BalanceElements of Heat Balance Tertiary air Vent air Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Secondar y air clinker clinker HCK1 HCK2 HSA HTA HCM HVA HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 Wall losses HWL Coal mill air Raw mill air HRM
  • 57. Mass BalanceMass Balance In Out clinker (mCK1) clinker (mCK2) cooling air (SmFi) secondary air (mSA) tertiary air (mTA) coal mill air (mCM) raw mill air (mRM) vent air (mVA) In = Out secondary air flow: calculated by difference should be validated against a kiln balance
  • 58. Heat BalanceHeat Balance In Out clinker (HCK1) clinker (HCK2) cooling air (SHFi) secondary air (HSA) tertiary air (HTA) coal mill air (HCM) raw mill air (HRM) vent air (HVA) wall losses (HWL) In = Out secondary air heat : calculated by difference good to validate it against kiln heat balance secondary air temperature: calculated from secondary air heat
  • 59. Temperature Stratification of air above Clinker BedTemperature Stratification of air above Clinker Bed Secondary & Tertiary air Air to coal mill Vent air 1400°C 300°C 250°C 200°C 175°C 125°C 100°C 1000°C 700° C 500°C 400°C 150°C
  • 60. Measuring Actual Bed DepthMeasuring Actual Bed Depth floor
  • 61. Cooling EfficiencyCooling Efficiency clinkerininputheat clinkerbylostheat =η inck outck inck outckinck h h 1 h hh −= − =η Qualifies the cooling of the clinker but not the clinker cooler. More cooling is possible with more air but that does not improve the cooler efficiency. An efficient cooler would give same cooling with less air.
  • 62. Cooler lossCooler loss cooler loss = all heat not recovered by combustion air (secondary or tertiary) cooler loss = heat content of clinker leaving cooler (hck out) + heat content of vent air + heat content of coal mill air + heat content of raw mill air + wall heat losses Often a specification in supplier process performance guarantee
  • 63. Operating results cooler Coolerefficiency[%] Combustion air Nm³/kgKl. 0,75 0,8 0,85 0,9 0,95 60 65 70 75 80 85 Standard - cooler New - competition REPOL RS New-type coolers Old-type coolers
  • 64. Heat saving 1.Run the plant stable , continously with consistent production 2.Minimise the false air ingress by giving efficient seals 3.Optimise the flame as per our requirement 4.Minimise the variation in airflow, meal flow and fuel flow rate 5.Reduce the radiation losses by giving proper insulation 6.Optimise the cooler operation and cooler efficiency 7.Optimise the cyclone efficiency in the preheater 8.Minimise the variation in chemistry of raw meal and ash in fuel by efficient blending. 9. Addition of mineralisers reduce the heat of reaction by 20 – 30 Kcal/ kg.cl after thorough study on the rheological properties of cement. CaF2, Dolomite and slag are good mineralisers. Set point Natural and acceptable variation high variation Not acceptable Variation is a devil in any process
  • 67. Satellite cooler rotary cooler grate cooler Recuperation zone Cooling zone static grate direct aeration chamber aerationchamber aeration Grate cooler With stationary inlet Walking floor pyrofloor Cross bar cooler Im provem ent in technology Rotary disc cooler MMD cross bar IKN Poly track Pyro floor ? Pyro step
  • 68. 1.31Kg/kg cl0.1Dust in tertiary duct7 0.180.16%1Excess air in kiln12 -0.1-0.17Deg C10Temperature of primary air 11 0.220.22%1Excess air in calciner13 -0.25-0.17Kcal/kgcoal100Heat content in coal9 1615.7Kg/kgcl0.1False air through hood14 1918.7Kg / kg cl0.1False air through inlet seal 15 0.680.66%1Amount of primary air10 0.470.45%1Moisture in coal8 1.30.12Kg/kg cl0.1Dust from kiln6 1.11.11Kcal/kgcl1Heat of reaction5 -73-74.37%1Carbon in rawmeal4 5.65.6%1Hydrate water3 1.81.8%1Feed moisture2 -0.5- 0.57Deg c10Feed temperature1 Heat, kcal/kgcl ILC Heat, kcal/kgcl SLC unitbyA change ins.no Heat calculation
  • 69. 1.11.1Kg / kg cl0.1Raw meal27 1.2Kg/ kg cl0.1False air cyclone C122 19.1Kg/ kg cl0.1False air cyclone C526 1.21.1Kcal/kg cl1standard Cooler loss28 7.2Kg/ kg cl0.1False air cyclone C324 Cyclone efficiency29 - 0.1%1Cyclone- K129 12.4Kg/ kg cl0.1False air cyclone C425 3.4Kg/ kg cl0.1False air cyclone C223 1918.8Kg/ kg cl0.1False air cyclone K521 1210.9Kg/ kg cl0.1False air cyclone K420 6.95.8Kg/ kg cl0.1False air cyclone K319 3.32.6Kg/ kg cl0.1False air cyclone K218 1.10.82Kg/ kg cl0.1False air cyclone K117 1615.7Kg / kg cl0.1False air calciner16 Heat, kcal/kgcl ILC Heat, kcal/kg cl SLC unitbyA change ins.no
  • 70. -0.26%1Cyclone- K533 -0.38-0.28%1Cyclone- C436 -23-21.8Change from 4 to 5 stage41 1.61.6%1By pass of kiln gases40 -11-10.0Change from 5 to 6 stages 42 0.13%1Recarbonation, KS38 43 44 0.510.37%1Recarbonation, CS39 0.82-0.74%1Cyclone- C537 -0.34- 0.24%1Cyclone- C335 -0.27-0.18%1Cyclone- C234 -0.21-0.14%1Cyclone- C134 -0.12%1Cyclone- K432 -0.10%1Cyclone- K331 -0.08%1Cyclone- K230 Heat, kcal/kgcl ILC Heat, kcal/kg cl SLC unitbyA change ins.no
  • 71. Heat loss from shell radiation Insulation effect of refractories optimised coating ,300mm thk Flame Shape & flame length Ring formation shoots the gas velocity takes the heat farther into the kiln, increases the back end temperature Exit gas velocity at kiln inlet = 10 m/s v=15 -16 m/s Steady Feed rate With less Fluctuation Of calcination Heat losses from kiln Parasite air ( ingress of false air entry) at inlet , outlet hood& preheater. Primary air & coal transport air are all false entry. Fluctuations In process Hood take off V=5 m/s Well controlled air flow Fuel flow
  • 72. 4 –stage preheater 5 –stage preheater 6 –stage preheater Conversion of 4 stage preheater To 5 stage preheater saves 28 Kcal/kg cl Conversion of 5 stage preheater To 6 stage preheater saves 14 Kcal/kg cl calciner
  • 73. 769.34.40Total Output 6.0Radiation Loss from Cooler 20.2Radiation Loss from Kiln 37.1Radiation Loss from Preheater 4.8Heat of Evaporation of Moisture 20.91110.1881.0Heat Through Clinker 91.62930.2521.2Heat Through Cooler Vent 410.0Heat of Clinkerisation 7.93360.2360.1Heat of PH Exit Dust 170.83360.2472.1Heat of PH Exit Gases Kcal/kg clinkerdeg CKcal/kg degCkg/kg clinker HeatTemperatureSp.heat capacityMass flow Heat Output relative to 0 deg C 769.34.40Total Input 412.3Heat of Coal Combustion in Calciner 295.7Heat of Coal Combustion in Kiln 1.1560.2380.1Sensible heat of Coal and Conveying Air 2.8600.2870.2Sensible heat of Coal 1.3460.2380.1Sensible Heat of PH Leak Air 27.1460.2472.4Sensible heat of Cooling air 8.1Heat through combustibles in raw meal 21.0600.2121.6Sensible heat of Kiln Feed kcal/kg Clinkerdeg CKcal/kg degCkg/kg clinker HeatTemperatureSp.heat capacityMass flow Heat Input relative to 0 deg C Specific heat Consumption= Total heat output – Total sensible heat 769.3-61.3 = 709 Kcal/kg cl
  • 74. 433.63.43Total Heat output 6.0Radiation 20.90.1881111.00Clinker 91.60.2522931.24Excess air 6.70.2369490.03Tertiary air dust 176.30.2689490.69Tertiary air 5.00.2410490.02Secondary air dust 127.10.27110490.45Secondary air kcal/kg clinkerkcal/kg oCdeg Ckg/kg cl HeatSpecific heatTemperatureMass flow reference: 0 deg CHEAT OUTPUT 433.63.43Total Heat Input 4.6Fan energy 27.10.247462.38Cooling air 19.10.26414500.05Dust 382.80.26414501.00Clinker kcal/kg clinkerkcal/kg oCdeg Ckg/kg cl HeatSpecific heatTemperatureMass flow reference: 0 deg CHEAT INPUT NORMAL OPERATING CONDITION
  • 75. Automation further helps to run the plant more stable by reducing the meal, fuel flow and air flow. Running the kiln continuously with consistent production is the best way to reduce the fuel and power bills. For consistent production we must have short , Convergent and intense flame, less chemistry variation of raw meal , less variation in ash content of fuel and stable cooler operation. Automation further helps to run
  • 76. Thanks for your attention