Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Data Governance

558 vues

Publié le

DATA GOVERNANCE : กฎ กติกา เพื่อการจัดการข้อมูลองค์กร

Publié dans : Données & analyses
  • Soyez le premier à commenter

Data Governance

  1. 1. DATA GOVERNANCE : กฎ กติกา เพื่อการจัดการข้อมูลองค์กร องค์กรธุรกิจสร้างข้อมูลใหม่ๆ เพิ่มขึ้นในอัตราที่รวดเร็วขึ้น ยิ่งกระแส Big Data Analytics เป็นที่รับรู้กันโดยทั่วไปจากฝั่งธุรกิจ ยิ่งทําให้ผู้บริหารไอทีต้องปรับตัวให้รองรับกับความคาดหวังที่สูงขึ้นตามไปด้วย กระบวนการจัดการข้อมูล หรือ data management เป็นขั้นตอนสําคัญอย่างหนึ่ง ซึ่งทวีความสําคัญมากขึ้น ตามขนาดข้อมูล และ ความซับซ้อนของกระบวนการทํางานในองค์กร ยิ่งองค์กรขนาดใหญ่มากขึ้น งานด้านการจัดการข้อมูลระดับองค์กร หรือ Enterprise Data Management ก็ยิ่งยากและท้าทายมากขึ้นเป็นเงาตามตัว ฐานรากสําคัญของการจัดการข้อมูลระดับองค์กร คืองาน Data Governance หรืออาจจะเรียกเป็นภาษาไทยว่า “ธรรมภิบาลข้อมูล” ก็คงได้ Data Governance คืออะไร ? หากกล่าวกันเป็นภาษาง่ายๆ คงเรียกได้ว่าเป็น “การกําหนดและบังคับใช้ กฎ กติกา มารยาท เกี่ยวกับงานด้านข้อมูลในองค์กร” หรือคุยกันเล่นๆ คงต้องเรียกว่าเป็นขั้นตอนการร่างและบังคับใช้ “ธรรมนูญเกี่ยวกับข้อมูล” หากจะเอาความหมายแบบเป็นทางการ ก็อาจพิจารณาความหมายที่นิยามไว้โดย DAMA (The Data Management Association) ซึ่งเป็น องค์กรระหว่างประเทศที่ส่งเสริมงานวิชาชีพในด้านการจัดการข้อมูล ที่ได้ตีพิมพ์ องค์ความรู้เกี่ยวกับการ จัดการข้อมูลขึ้นมา เรียกว่า DMBOK (Data Management Body Of Knowledge) DMBOK ให้นิยามของ Data Governance ไว้ว่า “The exercise of authority, control and shared decision making (planning, monitoring and enforcement) over the management of data assets.” แนวคิดเริ่มต้น คือการมองว่าข้อมูลเป็นสินทรัพย์อย่างหนึ่ง ไม่ต่างจากอาคาร เครื่องมือเครื่องใช้ หรือแบรนด์สินค้า ซึ่งจําเป็นต้องมี การจัดการที่ถูกต้อง ไม่ต่างจากการจัดการสินทรัพย์ประเภทอื่นๆ ในบรรดากระบวนการงานจัดการข้อมูลทั้งหมดที่ DMBOK นิยามไว้ 10 ข้อ ดังแสดงในภาพ Data Governance ถูกจัดตําแหน่ง ให้อยู่กึ่งกลาง ถือได้ว่าเป็นฐานรากที่สําคัญของงานจัดการข้อมูลทั้งหมด
  2. 2. ที่มาของภาพ: http://www.dama.org/content/body-knowledge ทําไมต้องทํา Data Governance? งาน Data Governance มีลักษณะที่เป็นนามธรรมสูง และอาจจะค่อนข้างยากที่จะอธิบายให้ผู้บริหารมองเห็นความจําเป็น “อาการ” เหล่านี้ เป็นข้อบ่งชี้ว่า องค์กรของคุณอาจจําเป็นต้องพิจารณาเรื่อง Data governance o ข้อมูลมีคุณภาพตํ่า o ขาดข้อมูลที่สําคัญ และจําเป็นต่อการดําเนินธุรกิจ หรือมีแต่ล้าสมัย ไม่สามารถใช้งานจริงได้ o ข้อมูลมีมากกว่าหนึ่งแหล่ง และขัดแย้งกันเอง ทําให้ผู้ใช้ไม่สามารถไว้วางใจนําข้อมูลไปตัดสินใจได้ o การเข้าถึง เรียกใช้และค้นหาข้อมูล ช้าและขาดผู้ดูแล ทําได้ไม่สะดวก o หากมีข้อมูลผิดพลาด หรือมีการรั่วไหล ไม่ทราบว่าใครเป็นผู้รับผิดชอบ o เคยมีโครงการ “ปรับปรุงคุณภาพข้อมูล” หรือยกเครื่องระบบรายงานมาหลายครั้ง ซึ่งอาจได้ผลในช่วงสั้นๆ แต่หลัง โครงการไม่นาน ก็กลับมามีสภาพไม่ต่างจากเดิม จะเห็นได้ว่า ปัญหาข้อมูลคุณภาพตํ่า เป็นข้อบ่งชี้สําคัญถึงความจําเป็นของ data governance แต่ก็ไม่ใช่สาเหตุเดียว แรงผลักดันอย่างอื่นก็สามารถส่งผลให้เกิดความจําเป็นที่จะต้องทํา data governance ได้ด้วยเช่นกัน อาทิ o Privacy / Compliance / Security ในธุรกิจบางประเภท หรือข้อมูลบางอย่าง จําเป็นต้องปฎิบัติตามกฎข้อบังคับใน ลักษณะใดลักษณะหนึ่ง เช่น เว็บไซต์ต้องเก็บข้อมูลผู้เข้าชมตาม พรบ. บริษัทจํากัด จําเป็นต้องทําบัญชีตามแนวทางของ กรมสรรพากร บริษัทมหาชน จําเป็นต้องเปิดเผยข้อมูลบางส่วนต่อ กลต. หรือสายการบิน จําเป็นต้องปฎิบัติตามหน่วยงาน
  3. 3. ที่ควบคุมดูแลด้านความปลอดภัยทางการบิน เป็นต้น ในองค์กรที่มีการเก็บข้อมูลผู้บริโภค ก็จําเป็นต้องมีมาตรการในการ รักษาความปลอดภัยข้อมูลเหล่านั้น ทั้งที่เป็นความจําเป็นทางกฎหมาย และที่เป็นความคาดหวังจากผู้ใช้บริการ o Architecture / Integration / Restructuring ปัจจัยหนึ่งที่ผลักดันให้มีการทํา data governance ในองค์กร คือเมื่อ มีการปรับเปลี่ยนองค์กรอย่างขนานใหญ่ อาจจะเป็นการแยกรวม หรือซื้อขายกิจการ หรือปรับเปลี่ยนกระบวนการทํางาน อย่างขนานใหญ่ ซึ่งส่งผลให้มีการวางสถาปัตยกรรมทางด้านระบบข้อมูลใหม่ หรือจําเป็นต้องเชื่อมโยงและหรือบูรณาการ กับหน่วยงานอื่น ทั้งภายในและภายนอกองค์กร o Data Warehouse & Business Intelligence หลายองค์กร ก็อาศัยจังหวะที่จะมีการพัฒนาคลังข้อมูลใหม่ หรือมีการ นําเครื่องมือ BI ใหม่ๆ เข้ามาใช้ในองค์กร เป็นโอกาสที่จะผลักดันให้มีการทํา data governance ไปด้วยเลย เพราะหาก นําเครื่องมือใหม่ หรือระบบคลังข้อมูลใหม่เข้ามา โดยไม่มีการปรับปรุงกระบวนการจัดการข้อมูลก่อนเลย ก็เป็นเรื่องยากที่ จะประสบความสําเร็จได้ องค์ประกอบของ Data Governance กรอบการทํางานของ Data Governance ประกอบด้วยองค์ประกอบหลายส่วน แต่ละส่วนมีความสําคัญและความจําเป็นไม่เท่ากัน ขึ้นอยู่กับความต้องการขององค์กรเป็นหลัก โดยแบ่งเป็นกลุ่มๆ ได้คือ กลุ่มบุคลากรและหน่วยงานภายในองค์กร กลุ่มกฎเกณฑ์ และข้อบังคับ และกลุ่มสุดท้ายคือกระบวนการทํางาน  กลุ่มบุคลากรและคณะทํางานเกี่ยวกับข้อมูล (People & Organization Bodies) ซึ่งมักประกอบด้วยหลายบทบาทหน้าที่ อาทิ o Data Stakeholders หรือผู้มีส่วนได้ส่วนเสียกับข้อมูล อาจจะเป็นหน่วยงานหรือกลุ่มคนที่สร้างข้อมูล หรือใช้ข้อมูล กลุ่มคนเหล่านี้จําเป็นต้องสื่อสารความต้องการเกี่ยวกับข้อมูลในลักษณะต่างๆ ให้กับคณะทํางานเกี่ยวกับ data governance ทราบ o Data Governance Office หรือสํานักงานธรรมาภิบาลข้อมูล กลุ่มคนกลุ่มนี้จะทํากิจกรรมต่างๆ เพื่อสนับสนุนงาน ทั่วไปเกี่ยวกับ data governance เช่น การเก็บรวบรวมผลลัพธ์คุณภาพข้อมูล การสื่อสารกับหน่วยงานอื่นๆ ใน องค์กร การจัดอบรมสัมนา หรือให้ความช่วยเหลือโดยทั่วไปเกี่ยวกับงานข้อมูล o Data Stewards หรือผู้เชี่ยวชาญข้อมูล อาจมีได้หลายคน และอาจแบ่งได้เป็นหลายระดับขึ้นอยู่กับความซับซ้อนของ ข้อมูลในองค์กร ผู้เชี่ยวชาญกลุ่มนี้มักทํางานและให้คําปรึกษาเกี่ยวกับนิยามหรือมาตรฐานข้อมูล หรือกําหนดนโยบาย เกี่ยวกับข้อมูล และอาจรวมไปถึงกําหนดเกณฑ์คุณภาพข้อมูลด้วย
  4. 4. ที่มาของภาพ: www.datagovernance.com  กลุ่มกฎเกณฑ์และข้อบังคับ (Rules and Rules of Engagement) องค์ประกอบในกลุ่มนี้ มีตั้งแต่การกําหนดพันธกิจที่ ต้องการบรรลุในการ data governance รวมไปถึงการตั้งเป้าหมาย กําหนดปัจจัยแห่งความสําเร็จ และวิธีวัดผล ซึ่งไม่ แตกต่างจากกระบวนการจัดการโครงการโดยทั่วไปมากนัก ส่วนที่เป็นเรื่องเฉพาะงานข้อมูลจริงๆ จะประกอบด้วยนิยามและ กฎข้อบังคับเกี่ยวกับข้อมูล (Data Rules and Definitions) องค์ประกอบเหล่านี้ ถูกพิจารณาสําหรับข้อมูลแต่ละชนิดหรือ แต่ละกลุ่มข้อมูล (domain หรือ subject area) โดยในแต่ละกลุ่มต้องมีการกําหนดองค์ประกอบย่อยดังนี้ o Data Policy นโยบายข้อมูล หมายถึงนโยบายโดยรวมเกี่ยวกับข้อมูลชนิดนั้นๆ ซึ่งจะเป็นตัวกําหนดแนวปฎิบัติต่อไป เช่น แนวทางการลําดับชั้นความลับข้อมูล การควบคุมการเข้าถึง การเปิดเผยข้อมูลต่อหน่วยงานภายนอก และการ ปกป้องความเป็นส่วนตัว เป็นต้น
  5. 5. o Data Definition นิยามข้อมูล ข้อมูลบางประเภท มีความจําเป็นต้องระบุนิยามที่ชัดเจน เพื่อให้ทุกฝ่ายที่เกี่ยวข้องมี ความเข้าใจตรงกัน โดยเฉพาะอย่างยิ่งข้อมูลที่มีผลกระทบทางบัญชี หรือการเงิน ตัวอย่างเช่น “รายได้” หมายถึงอะไร มีอะไรบ้างที่นับรวม หรือนับแยกในรายได้การไม่กําหนดนิยามข้อมูล หรือกําหนดไว้ไม่รัดกุมเพียงพอ อาจส่งผล เสียหาย อย่างเช่นกรณีที่ Tesco ประเมินผลกําไรพลาด เพราะบันทึกการรับรู้รายได้ล่วงหน้า o Data Standard มาตรฐานข้อมูล เป็นการกําหนดแนวทางในการบันทึกหรือเข้ารหัสข้อมูลให้สอดคล้องกัน เช่น แนวทางการตั้งชื่อต่างๆ แนวทางการเข้ารหัสกลุ่มลูกค้า ความยาว ชนิด รูปแบบ และช่วงค่าที่เป็นไปได้ข้อมูลที่ สอดคล้องและเป็นไปตามมาตรฐานข้อมูลที่กําหนดไว้จะทําให้สามารถถูกนําไปใช้ได้อย่างเต็มที่ ไม่ว่าจะเป็นการ เชื่อมโยงกับข้อมูลชนิดอื่น และนําไปใช้ใน data warehouse เป็นต้น o Business Rules กฎเกณฑ์ทางธุรกิจที่ควบคุมกิจกรรมเกี่ยวกับข้อมูล เช่น ขั้นตอนในการสร้างรหัสหรือลงทะเบียน ลูกค้ารายใหม่ เกณฑ์และขั้นตอนการอนุมัติการเปลี่ยนสถานะบัญชีลูกหนี้ให้กลายเป็นบัญชีหนี้สูญ เป็นต้น ข้อมูล สําคัญที่มีส่วนเกี่ยวข้องกับฐานะการเงิน ความปลอดภัย หรือจําเป็นต้องปฎิบัติตามกฎหมาย จึงควรระบุกฎเกณฑ์ทาง ธุรกิจในการสร้าง แก้ไข และลบข้อมูลเหล่านี้อย่างชัดเจน o Data Quality Measure เกณฑ์การวัดคุณภาพข้อมูลเป็นอีกหนึ่งองค์ประกอบที่สําคัญ เนื่องจากคุณภาพข้อมูล อาจ ถูกสามารถกําหนดได้ในหลายมิติ ไม่ว่าจะเป็นความแม่นยํา (accuracy) ความครบถ้วนสมบูรณ์ (completeness) ความรวดเร็วทันกาล (timeliness) ข้อมูลชนิดเดียวกัน แต่ต้องการนําไปใช้ในต่างสถานการณ์กัน อาจต้องการใช้ คุณภาพข้อมูลที่แตกต่างกันด้วย การกําหนดเกณฑ์คุณภาพข้อมูลที่ชัดเจน และสามารถวัดผลและคํานวณได้ล่วงหน้า จะช่วยให้ขั้นตอนการเตรียมข้อมูล และการนําข้อมูลไปใช้งาน เกิดประสิทธิภาพสูงขึ้น  นอกเหนือจากกฎข้อบังคับเกี่ยวกับตัวข้อมูลโดยตรงแล้ว ยังมีองค์ประกอบอื่นในกลุ่มนี้ ที่มีความเกี่ยวข้องกับคณะทํางาน และขั้นตอนการทํางานมากกว่าตัวข้อมูลโดยตรงอีก เช่น o Decision Rights หรือสิทธิ์ในการตัดสินใจเกี่ยวกับข้อมูล เช่น หากจําเป็นต้องมีการเปลี่ยนแปลงนิยาม หรือมาตรฐาน ข้อมูล ใครเป็นผู้ตัดสินใจอนุมัติ มีขั้นตอนอย่างไร หรือหากจําเป็นต้องคํานวณรายงานผลประกอบการใหม่ จากสาเหตุ เช่น บันทึกข้อมูลผิดพลาด ใครเป็นผู้อนุมัติ จําเป็นต้องมีการโหวตหรือไม่หากมีความเห็นที่ขัดแย้งกัน เป็นต้น o Accountabilities หรือความรับผิดชอบในด้านที่เกี่ยวข้องกับข้อมูล ก่อนหน้านี้หลายองค์กรเคยเชื่อว่าไอทีเป็น หน่วยงานที่มีหน้าที่รับผิดชอบเรื่องทุกอย่างเกี่ยวกับข้อมูล แต่ความเชื่อเหล่านั้นค่อยๆ เป็นที่รับรู้มากขึ้นว่าไม่ถูกต้อง องค์ประกอบส่วนนี้จะนิยามหน้าที่และความรับผิดชอบเกี่ยวกับข้อมูลชนิดต่างๆ หน่วยงานไหนมีหน้าที่สร้าง หน่วยงาน ไหนตรวจสอบ ตรวจสอบบ่อยแค่ไหน o Control Mechanisms กระบวนการควบคุม เพื่อให้คุณภาพและการกํากับดูแลข้อมูลเป็นไปอย่างราบรื่นต่อเนื่อง จําเป็นต้องมีการกําหนดกระบวนการควบคุมและตรวจสอบขึ้น เพราะเป็นเรื่องปกติที่กระบวนการที่วางไว้อาจไม่ได้รับ การปฎิบัติตามเมื่อเวลาผ่านไป ส่งผลให้ขีดความสามารถในการจัดการข้อมูลขององค์กรถดถอย ความเสี่ยงก็เพิ่มมาก ขึ้น กระบวนการควบคุมมีตั้งแต่การรายงานผลเป็นประจํา การตรวจสอบคุณภาพข้อมูลอย่างสมํ่าเสมอ การทบทวน นโยบายและหลักปฎิบัติที่เกี่ยวข้องตามระยะเวลา รวมไปถึงการฝึกอบรมให้ความรู้แก่บุคลากรในองค์กรด้วย
  6. 6. o กลุ่มกระบวนการทํางาน (Processes) กลุ่มองค์ประกอบที่กล่าวมาทั้งสองกลุ่ม เน้นไปที่การวางโครงสร้าง ทั้งทางด้าน บุคลากรและระเบียบกฎเกณฑ์มาตรฐานต่างๆ ด้านการจัดการข้อมูล แต่กลุ่มองค์ประกอบสุดท้ายนี่จะเน้นไปเรื่องการ นําไปใช้งาน กระบวนการทํางานที่เกี่ยวข้องกับข้อมูล จําเป็นต้องมีความเชื่อมโยงและสอดคล้องกับขั้นตอนการทํางาน ประจําวันภายในองค์กร โดยไม่เข้าไปขัดขวาง หรือทําให้ช้าลง แต่ในขณะเดียวกันก็จําเป็นต้องรักษามาตรฐานไว้ตาม เกณฑ์ที่กําหนด เพื่อให้ข้อมูลที่ได้จากการทํางานนั้นๆ มีคุณภาพดี เหมาะแก่การนําไปใช้งานภายหลัง  นอกเหนือจากกระบวนการในการสร้าง แก้ไขเปลี่ยนแปลง ทําสําเนา หรือลบข้อมูลตามปกติแล้ว กระบวนการที่จําเป็นต้อง พิจารณาเพิ่มเติม ประกอบด้วย o Change Management หรือการจัดการการเปลี่ยนแปลง เช่น เมื่อมีความจําเป็นต้องสร้างข้อมูลใหม่ หรือเกิด สถานการณ์ใหม่ที่ไม่ได้มีการระบุเอาไว้อาจจําเป็นต้องเปลี่ยนแปลงแก้ไขกฎระเบียบ หรือปรับเปลี่ยนนิยามข้อมูล ขั้นตอนในการขอเปลี่ยนแปลงจะเป็นอย่างไร o Issue Resolution กระบวนการแก้ไขปัญหาเกี่ยวกับข้อมูล เนื่องจากข้อมูลชนิดหนึ่งๆ มักจะเกี่ยวข้องกับหน่วยงาน หลายหน่วยงาน กระบวนการแก้ไขปัญหาบ่อยครั้งจึงจําเป็นต้องประสานงานข้ามหน่วยงานที่อาจมีความต้องการ แตกต่างกัน o Measure and Reporting Values การวัดและรายงานผลการดําเนินงานเกี่ยวกับธรรมาภิบาลข้อมูล เป็นอีกหนึ่ง กระบวนการที่จะทําให้งานการจัดการข้อมูลกลายเป็นองค์ประกอบหนึ่งขององค์กรได้ในลักษณะเดียวกับการจัดการ เรื่องความปลอดภัยหรือการจัดการคุณภาพ หน่วยงานด้าน data governance จะต้องวางแผนเพื่อการวัดและรายงาน ผลงาน ไม่ว่าจะเป็น เปอร์เซ็นต์ข้อมูลคุณภาพดี หรือจํานวนปัญหาหรือข้อร้องเรียนที่เกี่ยวข้องกับข้อมูล o Communication การสื่อสารกับหน่วยงานต่างๆ ในองค์กร ถึงกิจกรรมที่ทํา ผลลัพธ์ที่ได้รวมไปถึงเผยแพร่ความรู้ ความเข้าใจเกี่ยวกับการจัดการข้อมูลในองค์กร เป็นองค์ประกอบหนึ่งที่จะสร้างความมีส่วนร่วมให้กับบุคลากรใน องค์กร ว่าการจัดการข้อมูลมีความสําคัญต่อความเติบโตขององค์กร และเป็นหน้าที่ของทุกคนในองค์กร
  7. 7. ลําดับขั้นพัฒนาการของ Data Governance งาน Data Governance โดยรวมแล้วเป็นการเพิ่มศักยภาพให้กับองค์กร ในการที่จะบริหารจัดการข้อมูลให้เกิดประโยชน์สูงสุด แต่ ละองค์กรต่างก็มีระดับความพร้อมในการจัดการข้อมูลแตกต่างกัน ลําดับขั้นพัฒนาการ data governance หรือ Maturity Model เป็นโครงคร่าวๆ ที่อาจช่วยให้ผู้บริหารสามารถมองเห็นภาพได้ว่า องค์กรของเราในปัจจุบัน อยู่ในลําดับขั้นไหน และหากได้มีการ พัฒนาจัดทําองค์ประกอบด้านต่างๆ ของ data governance ตามหัวข้อข้างต้นแล้ว ความสามารถในการจัดการข้อมูลจะมีลักษณะ อย่างไร ที่มาของภาพ: http://reess.ch/data-governance-transformation/ INITIAL ในขั้นนี้แทบไม่ได้มีการตระหนักถึงกระบวนการจัดการข้อมูลเลย บุคคลากรมองเห็นข้อมูลเป็นแค่ส่วนหนึ่ง หรือผล พลอยได้จากธุรกรรมที่ทํา ไม่มีกระบวนการจัดการข้อมูล ไม่มีผู้รับผิดชอบในข้อมูล หรืออาจมีแต่ไม่เป็นทางการ o ขั้นพื้นฐาน (MANAGED) ในขั้นนี้ กระบวนการจัดการข้อมูล มักจะมาในรูปแบบงานส่วนหนึ่งในโครงการเกี่ยวกับไอที ต่างๆ เช่น เมื่อจะมีการทํา ERP หรือ Data Warehouse/Business Intelligence ก็มานั่งทํา data standard หรือทํา data cleaning กันสักที อาจมีการกําหนดบทบาทหน้าที่ในการจัดการข้อมูลอยู่บ้าง แต่ก็ไม่พ้นบริบทของโครงการไอที ซึ่ง เมื่อเวลาผ่านไป หรือมีโครงการใหม่เข้ามา ก็ต้องมานั่งทบทวน หรือไม่ก็ทําซํ้าขั้นตอนเดิมกันอีก ผลลัพธ์ที่ได้ก็อาจแตกต่าง
  8. 8. กันไปตามโครงการ ตัวอย่างที่เห็นได้ชัดมากก็คือ เมื่อผู้ใช้อ่านรายงานหรือข้อมูลจากสองระบบ แล้วพบว่าขัดแย้งกัน อัน เนื่องมาจากนิยามและมาตรฐานข้อมูลของสองระบบแตกต่างกัน o ขั้น DEFINED ขั้นนี้จะเริ่มมีการพิจารณากระบวนการจัดการข้อมูลที่เป็นเชิงรุกมากขึ้น โดยไม่ต้องรอโครงการไอทีเป็นตัว ขับเคลื่อน เริ่มมีความพยายามในการปรับกระบวนการทํางานเกี่ยวกับข้อมูลให้สอดคล้องเป็นมาตรฐานเดียวกันภายใน องค์กร และมีการกําหนดมาตรฐานและนิยามข้อมูลที่ในระดับทั่วทั้งองค์กร o ขั้น QUANTITATIVELY MANAGED ขั้นนี้เริ่มนํากระบวนการวัดผลแบบเชิงปริมาณเข้ามาใช้ มีการกําหนด ผู้รับผิดชอบที่ชัดเจนในเกณฑ์วัดคุณภาพการจัดการข้อมูล ขั้นตอนในการจัดการข้อมูลมักเป็นเแบบรวมศูนย์และมีการ ควบคุมอย่างเคร่งครัด เช่น มีหน่วยงานกลางในการกําหนดรหัสสินค้า และสร้างข้อมูลสินค้าใหม่เข้าในระบบ หน่วยงาน กลางดังกล่าว สามารถวัดผลงานได้เช่น จํานวนรหัสสินค้าที่สร้างได้ความรวดเร็วในการสร้างข้อมูลสินค้าให้ครบถ้วน ถูกต้อง เป็นต้น o ขั้น OPTIMIZED ซึ่งเป็นขั้นที่ระบบการบริหารจัดการข้อมูลได้รับการพัฒนาปรับปรุงให้มีประสิทธิภาพสูงเพิ่มขึ้นอย่าง ต่อเนื่อง สามารถใช้ข้อมูลเป็นเครื่องมือในการวิเคราะห์ ข้อผิดพลาด จุดอ่อน หรือเสนอแนะการปรับปรุงกระบวนการ ทํางานในองค์กรได้ ข้อมูลเป็นทรัพยากรยุคใหม่ที่หลายหน่วยงานเริ่มตระหนักถึงความสําคัญ และเริ่มบริหารจัดการข้อมูลในลักษณะเดียวกับที่บริหาร จัดการสินทรัพย์อื่นๆ งานธรรมาภิบาลข้อมูล อาจจะเริ่มต้นจุดประกายจากหน่วยงานทางด้านไอทีก่อน แต่ในท้ายที่สุดแล้ว บุคลากร ทุกคนในทุกองค์กร ต่างก็มีบทบาทของตัวเองในการจัดการข้อมูล มากบ้างน้อยบ้าง ตามงานที่ทํา สิ่งที่ผู้บริหารควรตระหนักก็คือ ผลกระทบต่อความสามารถในการจัดการข้อมูลขององค์กร จะกลายเป็นส่วนประกอบสําคัญที่ชี้วัด ประสิทธิภาพโดยรวมขององค์กรนั้นๆ ในลักษณะเดียวกับมาตรการด้านความปลอดภัย หรือมาตรการด้านการควบคุมคุณภาพ หากองค์กรมีความสามารถในการจัดการข้อมูลที่ดี ก็ย่อมสามารถใช้ประโยชน์จากข้อมูลได้อย่างเต็มที่ และกลายเป็นความ ได้เปรียบในการแข่งขันต่อไปได้ ขอขอบคุณข้อมูลดีๆ จาก : www.theeleader.com Prawut K.

×