Teacher Lecture

Q
Quỳnh-Như CaoField Work à Rancho Alamitos High School
Exponents and Order of Operations

 Exponent (power) – a number that indicates how
many times its base is used as a factor. In bx, x is the
exponent (power).
 Consider the prime factored form of 81
81=3∙3∙3∙3 (The factor 3 appears four times)
In algebra, repeated factors are written with an exponent,
so the product 3∙3∙3∙3 is written as 34 and read as “3 to the
fourth power.”
The number 4 is the exponent, or power, and 3 is the
base in the exponent expression 34.
Exponents
Example 1: Evaluate Exponential Expressions
a) 52 = 5∙5 = 25 (5 is used as a factor 2 times)
b) 63 = 6∙6∙6 = 216 (6 is used as a factor 3 times)
c) (0.3)2=0.3(0.3)=0.09
Raising Products to a Power
(6 × 7)3
= 63
× 73
= 74,088
Raising Quotients to a Power
(
2
3
)3=
23
33
2
3
∙
2
3
∙
2
3
=
8
27
 Any number to the power of 0 equals to 1.
Ex: 10=1 or 100=1
 Any number to the power of 1 equals to the number.
Ex: 41=4 or 121=12

Exponents Rules
Law Example
x1 = x 61 = 6
x0 = 1 70 = 1
x-1 = 1/x 4-1 = 1/4
xmxn = xm+n x2x3 = x2+3 = x5
xm/xn = xm-n x6/x2 = x6-2 = x4
(xm)n = xmn (x2)3 = x2×3 = x6
(xy)n = xnyn (xy)3 = x3y3
(x/y)n = xn/yn (x/y)2 = x2 / y2
x-n = 1/xn x-3 = 1/x3
Exponential Form Standard Form
52 5∙5
(0.3)2 (0.3)(0.3)
https://www.youtube.com/watch?v=A1wKTiBTsfk

Exponential Graph
This link below helps you to practice exponential graph:
Exponential Graph

1) 53 2) (
2
3
)4
To answer number 1 and 2 by the following questions.
 What is the base number?
 What is the exponent number?
 Convert these numbers into standard form.
 Calculate their values and estimate to the nearest tenth.
Exponents Problems

Exponents
1) 53
 What is the base number? The base number is 5.
 What is the exponent number? The exponential number is
3.
 Convert those numbers into standard form?
 Calculate their values. 125
2) (
2
3
)4
 What is the base number? The base number is
2
3
.
 What is the exponent number? The exponential number is
4.
 Convert those numbers into standard form?
 Calculate their values.
16
81
or 0.20

Order of Operations
If grouping symbols are present, simplify within them, innermost first (and above
and below fraction bars separately), in the following order.
Step 1 Apply all exponents
Step 2 Do any multiplications or divisions in the order in which they
occur, working from left to right.
Step 3 Do any additions or subtractions in the order in which they occur,
working from left to right.
If no grouping symbols are present, start with step 1.
Order of Operation and
Grouping
"Operations" means things like add, subtract, multiply, divide, squaring, etc. If it
isn't a number it is probably an operation.
Example 2: Using the Rules for Order of Operations
Find the value of each expression
a) 4 + 5 ∙ 6
= 4 + 30 Multiply.
= 34 Add.
b) 9(6+11)
= 9(17) Work inside parentheses.
= 153 Multiply.
c) 6 ∙ 8 + 5 ∙ 2
= 48 + 10 Multiply, working from left to right.
= 58 Add
d) 9 − 23 + 5
= 9 – 2 ∙ 2 ∙ 2 + 5 Add the exponent.
= 9 – 8 + 5 Multiply.
= 1 + 5 Subtract.
= 6 Add.
Example 3: Using Brackets and Fraction Bars as Grouping
Symbols
Simplify each expression.
a) 2[8 + 3(6 + 5)]
= 2[8 + 3(11)] Add inside parentheses.
= 2[8 + 33] Multiply inside brackets
= 2[41] Add inside brackets.
= 82 Multiply.
b)
4 5+3 +3
2 3 −1
Simplify the numerator and denominator separately.
=
4 8 +3
2 3 −1
Work inside parentheses.
=
32+3
6−1
Multiply.
=
35
5
or 7 Add and Subtract. Then divide.
Note: "Please Excuse My Dear Aunt Sally".
“Pudgy Elves May Demand A Snack”.
“Popcorn Every Monday Donuts Always Sunday”.

Order of Operation &
Grouping
 Evaluate each expressions and estimate the value to
the nearest tenth.
1) 13 + 5 ∙ 9 2)
1
4
∙
2
3
+
2
5
∙
11
3
3) 5 3 + 4 22
4)
4 6+2 +8(8−3)
6 4−2 −22 5) 2 + 3[5 + 4(2)]

Order of Operation &
Grouping
 Evaluate each expression and estimate the value to
the nearest tenth.
1) 13 + 5 ∙ 9 = 58 2)
1
4
∙
2
3
+
2
5
∙
11
3
=
16
81
or 0.20
3)5 3 + 4 22 =95 4)
4 6+2 +8(8−3)
6 4−2 −22 =9
5) 2 + 3[5 + 4(2)]=41
1 sur 12

Recommandé

Exponents and powers par
Exponents and powersExponents and powers
Exponents and powersmeo001
829 vues13 diapositives
Powers and Exponents par
Powers and ExponentsPowers and Exponents
Powers and ExponentsTaleese
84.7K vues23 diapositives
Exponents and powers nikita class 8 par
Exponents and powers nikita class 8Exponents and powers nikita class 8
Exponents and powers nikita class 8Nikita Sharma
7.3K vues9 diapositives
Square and square roots par
Square and square rootsSquare and square roots
Square and square rootsJessica Garcia
37K vues34 diapositives
squares and square roots par
squares and square rootssquares and square roots
squares and square rootsCharchit Art
8.4K vues16 diapositives

Contenu connexe

Tendances

Hcf+lcm par
Hcf+lcm Hcf+lcm
Hcf+lcm mayank jain
14.4K vues11 diapositives
Index Notation par
Index NotationIndex Notation
Index Notationalphamaths
20.7K vues9 diapositives
3. multiples, factors and primes par
3. multiples, factors and primes3. multiples, factors and primes
3. multiples, factors and primesDreams4school
5.9K vues44 diapositives
Square root par
Square rootSquare root
Square rootrryan80
16.7K vues27 diapositives
Factorising par
FactorisingFactorising
Factorisingmathsteacher101
1.3K vues18 diapositives
Algebra PPT par
Algebra PPTAlgebra PPT
Algebra PPTsri_3007
1.2K vues19 diapositives

Tendances(20)

Index Notation par alphamaths
Index NotationIndex Notation
Index Notation
alphamaths20.7K vues
3. multiples, factors and primes par Dreams4school
3. multiples, factors and primes3. multiples, factors and primes
3. multiples, factors and primes
Dreams4school5.9K vues
Square root par rryan80
Square rootSquare root
Square root
rryan8016.7K vues
Algebra PPT par sri_3007
Algebra PPTAlgebra PPT
Algebra PPT
sri_30071.2K vues
Fractions And Decimals par riggs4
Fractions And DecimalsFractions And Decimals
Fractions And Decimals
riggs464.8K vues
Multiplying and dividing fractions par jocrumb
Multiplying and dividing fractionsMultiplying and dividing fractions
Multiplying and dividing fractions
jocrumb7.2K vues
Factors & multiples par Enoch Ng
Factors & multiplesFactors & multiples
Factors & multiples
Enoch Ng5.5K vues
Expand brackets and_factorise par harlie90
Expand brackets and_factoriseExpand brackets and_factorise
Expand brackets and_factorise
harlie902.5K vues
algebraic expression par san783
algebraic expressionalgebraic expression
algebraic expression
san7836.3K vues

En vedette

direct and inverse proportion par
direct and inverse proportiondirect and inverse proportion
direct and inverse proportionSantosh Kumar
9.3K vues13 diapositives
Why Exponent Powers are Important par
Why Exponent Powers are ImportantWhy Exponent Powers are Important
Why Exponent Powers are ImportantPassy World
25.3K vues25 diapositives
Exponents and power par
Exponents and powerExponents and power
Exponents and powerNidhi Singh
33.3K vues17 diapositives
Presentation on inverse proportion par
Presentation on inverse proportionPresentation on inverse proportion
Presentation on inverse proportionwajihatrq
28.6K vues22 diapositives
Direct and inverse proportion par
Direct and inverse proportionDirect and inverse proportion
Direct and inverse proportionAnkit Goel
17.3K vues13 diapositives
direct and inverse variations par
direct and inverse variationsdirect and inverse variations
direct and inverse variationsManpreet Singh
33.7K vues16 diapositives

En vedette(6)

direct and inverse proportion par Santosh Kumar
direct and inverse proportiondirect and inverse proportion
direct and inverse proportion
Santosh Kumar9.3K vues
Why Exponent Powers are Important par Passy World
Why Exponent Powers are ImportantWhy Exponent Powers are Important
Why Exponent Powers are Important
Passy World25.3K vues
Exponents and power par Nidhi Singh
Exponents and powerExponents and power
Exponents and power
Nidhi Singh33.3K vues
Presentation on inverse proportion par wajihatrq
Presentation on inverse proportionPresentation on inverse proportion
Presentation on inverse proportion
wajihatrq28.6K vues
Direct and inverse proportion par Ankit Goel
Direct and inverse proportionDirect and inverse proportion
Direct and inverse proportion
Ankit Goel17.3K vues
direct and inverse variations par Manpreet Singh
direct and inverse variationsdirect and inverse variations
direct and inverse variations
Manpreet Singh33.7K vues

Similaire à Teacher Lecture

Powers, Pemdas, Properties par
Powers, Pemdas, PropertiesPowers, Pemdas, Properties
Powers, Pemdas, Propertieskliegey524
1.6K vues20 diapositives
Surds.ppt par
Surds.pptSurds.ppt
Surds.pptTingBie1
2 vues12 diapositives
Math 116 pres. 1 par
Math 116 pres. 1Math 116 pres. 1
Math 116 pres. 1United Scholars Organization (LDCU)
482 vues5 diapositives
Real-Number-System.pptx par
Real-Number-System.pptxReal-Number-System.pptx
Real-Number-System.pptxKristleJoyDimayuga
4 vues32 diapositives
just reference par
just referencejust reference
just referenceSumin Kim
633 vues87 diapositives
basics par
basicsbasics
basicsSumin Kim
846 vues87 diapositives

Similaire à Teacher Lecture(20)

Powers, Pemdas, Properties par kliegey524
Powers, Pemdas, PropertiesPowers, Pemdas, Properties
Powers, Pemdas, Properties
kliegey5241.6K vues
just reference par Sumin Kim
just referencejust reference
just reference
Sumin Kim633 vues
Lii06 ppts 0106 par mrbagzis
Lii06 ppts 0106Lii06 ppts 0106
Lii06 ppts 0106
mrbagzis107 vues
Computational skills par leoscotch
Computational skillsComputational skills
Computational skills
leoscotch3.8K vues
2.1 order of operations w par Tzenma
2.1 order of operations w2.1 order of operations w
2.1 order of operations w
Tzenma824 vues
Lesson 1 1 properties of real numbers par Terry Gastauer
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbers
Terry Gastauer2.8K vues
Alegebra Powers Substitution par Passy World
Alegebra Powers SubstitutionAlegebra Powers Substitution
Alegebra Powers Substitution
Passy World1.3K vues
Unit-1 Basic Concept of Algorithm.pptx par ssuser01e301
Unit-1 Basic Concept of Algorithm.pptxUnit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptx
ssuser01e3018 vues

Dernier

Psychology KS4 par
Psychology KS4Psychology KS4
Psychology KS4WestHatch
68 vues4 diapositives
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptx par
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptxGopal Chakraborty Memorial Quiz 2.0 Prelims.pptx
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptxDebapriya Chakraborty
598 vues81 diapositives
GSoC 2024 par
GSoC 2024GSoC 2024
GSoC 2024DeveloperStudentClub10
68 vues15 diapositives
Solar System and Galaxies.pptx par
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptxDrHafizKosar
85 vues26 diapositives
ACTIVITY BOOK key water sports.pptx par
ACTIVITY BOOK key water sports.pptxACTIVITY BOOK key water sports.pptx
ACTIVITY BOOK key water sports.pptxMar Caston Palacio
430 vues4 diapositives
Student Voice par
Student Voice Student Voice
Student Voice Pooky Knightsmith
164 vues33 diapositives

Dernier(20)

Solar System and Galaxies.pptx par DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar85 vues
11.28.23 Social Capital and Social Exclusion.pptx par mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239281 vues
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively par PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 545 vues
Compare the flora and fauna of Kerala and Chhattisgarh ( Charttabulation) par AnshulDewangan3
 Compare the flora and fauna of Kerala and Chhattisgarh ( Charttabulation) Compare the flora and fauna of Kerala and Chhattisgarh ( Charttabulation)
Compare the flora and fauna of Kerala and Chhattisgarh ( Charttabulation)
AnshulDewangan3316 vues
JiscOAWeek_LAIR_slides_October2023.pptx par Jisc
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptx
Jisc79 vues
UWP OA Week Presentation (1).pptx par Jisc
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptx
Jisc74 vues
Narration ppt.pptx par TARIQ KHAN
Narration  ppt.pptxNarration  ppt.pptx
Narration ppt.pptx
TARIQ KHAN119 vues
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx par ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP317 vues

Teacher Lecture

  • 1. Exponents and Order of Operations
  • 2.   Exponent (power) – a number that indicates how many times its base is used as a factor. In bx, x is the exponent (power).  Consider the prime factored form of 81 81=3∙3∙3∙3 (The factor 3 appears four times) In algebra, repeated factors are written with an exponent, so the product 3∙3∙3∙3 is written as 34 and read as “3 to the fourth power.” The number 4 is the exponent, or power, and 3 is the base in the exponent expression 34. Exponents
  • 3. Example 1: Evaluate Exponential Expressions a) 52 = 5∙5 = 25 (5 is used as a factor 2 times) b) 63 = 6∙6∙6 = 216 (6 is used as a factor 3 times) c) (0.3)2=0.3(0.3)=0.09 Raising Products to a Power (6 × 7)3 = 63 × 73 = 74,088 Raising Quotients to a Power ( 2 3 )3= 23 33 2 3 ∙ 2 3 ∙ 2 3 = 8 27  Any number to the power of 0 equals to 1. Ex: 10=1 or 100=1  Any number to the power of 1 equals to the number. Ex: 41=4 or 121=12
  • 4.  Exponents Rules Law Example x1 = x 61 = 6 x0 = 1 70 = 1 x-1 = 1/x 4-1 = 1/4 xmxn = xm+n x2x3 = x2+3 = x5 xm/xn = xm-n x6/x2 = x6-2 = x4 (xm)n = xmn (x2)3 = x2×3 = x6 (xy)n = xnyn (xy)3 = x3y3 (x/y)n = xn/yn (x/y)2 = x2 / y2 x-n = 1/xn x-3 = 1/x3 Exponential Form Standard Form 52 5∙5 (0.3)2 (0.3)(0.3) https://www.youtube.com/watch?v=A1wKTiBTsfk
  • 5.  Exponential Graph This link below helps you to practice exponential graph: Exponential Graph
  • 6.  1) 53 2) ( 2 3 )4 To answer number 1 and 2 by the following questions.  What is the base number?  What is the exponent number?  Convert these numbers into standard form.  Calculate their values and estimate to the nearest tenth. Exponents Problems
  • 7.  Exponents 1) 53  What is the base number? The base number is 5.  What is the exponent number? The exponential number is 3.  Convert those numbers into standard form?  Calculate their values. 125 2) ( 2 3 )4  What is the base number? The base number is 2 3 .  What is the exponent number? The exponential number is 4.  Convert those numbers into standard form?  Calculate their values. 16 81 or 0.20
  • 8.  Order of Operations If grouping symbols are present, simplify within them, innermost first (and above and below fraction bars separately), in the following order. Step 1 Apply all exponents Step 2 Do any multiplications or divisions in the order in which they occur, working from left to right. Step 3 Do any additions or subtractions in the order in which they occur, working from left to right. If no grouping symbols are present, start with step 1. Order of Operation and Grouping "Operations" means things like add, subtract, multiply, divide, squaring, etc. If it isn't a number it is probably an operation.
  • 9. Example 2: Using the Rules for Order of Operations Find the value of each expression a) 4 + 5 ∙ 6 = 4 + 30 Multiply. = 34 Add. b) 9(6+11) = 9(17) Work inside parentheses. = 153 Multiply. c) 6 ∙ 8 + 5 ∙ 2 = 48 + 10 Multiply, working from left to right. = 58 Add d) 9 − 23 + 5 = 9 – 2 ∙ 2 ∙ 2 + 5 Add the exponent. = 9 – 8 + 5 Multiply. = 1 + 5 Subtract. = 6 Add.
  • 10. Example 3: Using Brackets and Fraction Bars as Grouping Symbols Simplify each expression. a) 2[8 + 3(6 + 5)] = 2[8 + 3(11)] Add inside parentheses. = 2[8 + 33] Multiply inside brackets = 2[41] Add inside brackets. = 82 Multiply. b) 4 5+3 +3 2 3 −1 Simplify the numerator and denominator separately. = 4 8 +3 2 3 −1 Work inside parentheses. = 32+3 6−1 Multiply. = 35 5 or 7 Add and Subtract. Then divide. Note: "Please Excuse My Dear Aunt Sally". “Pudgy Elves May Demand A Snack”. “Popcorn Every Monday Donuts Always Sunday”.
  • 11.  Order of Operation & Grouping  Evaluate each expressions and estimate the value to the nearest tenth. 1) 13 + 5 ∙ 9 2) 1 4 ∙ 2 3 + 2 5 ∙ 11 3 3) 5 3 + 4 22 4) 4 6+2 +8(8−3) 6 4−2 −22 5) 2 + 3[5 + 4(2)]
  • 12.  Order of Operation & Grouping  Evaluate each expression and estimate the value to the nearest tenth. 1) 13 + 5 ∙ 9 = 58 2) 1 4 ∙ 2 3 + 2 5 ∙ 11 3 = 16 81 or 0.20 3)5 3 + 4 22 =95 4) 4 6+2 +8(8−3) 6 4−2 −22 =9 5) 2 + 3[5 + 4(2)]=41