SlideShare une entreprise Scribd logo
1  sur  87
RCREEE Energy Audit in Building 
RCREEE Energy Audit in Building
   Training Course Program 
        Tunis, 1st – 5th June 2010

 Energy audit of air‐conditioning and 
          cooling systems
                    by
              Adel Mourtada
Content

   - Refrigeration cycle
   - AC/Refrigeration Systems and
     Components
   -Type of refrigeration
   - Assessment of refrigeration and AC
   -Energy Efficiency Measures
    Energy
   -Energy Audit of HVAC System in
    Commercial Building Utilities

Adel Mourtada                             2
Typical
Refrigeration
    Cycle




Adel Mourtada   3
Thermodynamic Cycle
            Thermodynamic Cycle




Adel Mourtada                     4
- Refrigeration cycle
   - AC/Refrigeration Systems and
     Components
   -Type of refrigeration
   - Assessment of refrigeration and AC
  - Energy Efficiency Measures
  - Energy Audit of HVAC System in
    Commercial Building Utilities
Adel Mourtada                             5
Components

• R fi
  Refrigerant 
• Evaporator/C
  hiller 
  hill
• Compressor
• Condenser
• Receiver
• Thermostatic    
  expansion 
  valve (TXV)
 Adel Mourtada                6
Compressors
 There is a large variety of 
 compressors. Some of variations 
      p
 are:
 The compressor manufacturer
 Piston, vane, or scroll type
 The piston and cylinder 
 arrangement
 How the compressor is mounted
 Style and position of ports
 Type and number of drive belts
 Compressor displacement
 Fixed or variable displacement
Adel Mourtada                       7
Evaporator Types
                Evaporator Types

 Plate evaporators, top, are 
 a series of stamped 
 aluminum plates that are 
 aluminum plates that are
 joined together. Tube and 
 fin evaporators, bottom, 
 fin evaporators, bottom,
 have tubes for the 
 refrigerant that are joined 
 to the fins.



Adel Mourtada                      8
Refrigerant
• Desirable properties:
  Desirable properties:
  –   High latent heat of vaporization ‐ max cooling
  –   Non toxicity (no health hazard)
      Non‐toxicity (no health hazard)
  –   Desirable saturation temp (for operating pressure)
  –   Chemical stability (non flammable/non explosive)
      Chemical stability (non‐flammable/non‐explosive)
  –   Ease of leak detection
  –   Low cost
  –   Readily available
• Commonly named “FREON” (R 114, etc.)
  Commonly named  FREON (R‐114, etc.)

  Adel Mourtada                                       9
Condenser Types
                Condenser Types
                           Condensers A and C are 
                           round tube, serpentine 
                           condensers.
                           Condenser B is an 
                           C d         Bi
                           oval/flat tube, serpentine 
                           condenser.
                           Condenser D is an 
                           oval/flat tube, parallel 
                           flow  condenser.
                           Flat tube condensers are 
                           more efficient.
                                   ffi i t

Adel Mourtada                                          10
Expansion Devices
         Expansion Devices
•  The expansion device separates the high 
   side from the low side and provides a 
    id f        h l      id    d     id
   restriction for the compressor to pump 
   against.
• There are two styles of expansion 
                      y        p
   devices:
  ‐ The TXV can open or close to change 
   flow. It is controlled by the superheat 
   spring, thermal bulb that senses 
   spring, thermal bulb that senses
   evaporator outlet temperature, and 
   evaporator pressure
  ‐ The OT is a tubular, plastic device with a 
   small metal tube inside. The color of the 
   small metal tube inside The color of the
   OT is used to determine the diameter of 
   the tube. Most OT have a fixed diameter 
   orifice.



Adel Mourtada                                     11
AC Systems

      AC options / combinations:


     • Air Conditioning (for comfort / machine)
                      g(                      )
     • Split air conditioners
     • Fan coil units in a larger system
     • Air handling units in a larger system


Adel Mourtada                                     12
Refrigeration systems

        • Small capacity modular units of direct
          expansion type (50 Tons of Refrigeration)
        • Centralized chilled water plants with
          chilled water as a secondary coolant (>50
             TR)




13
     Adel Mourtada                                13
Refrigeration at large Commercial
      Buildings
      • Bank of units off-site with common
            • Chilled water pumps
                            p p
            • Condenser water pumps
            • Cooling towers

      • More levels of refrigeration/AC, e.g.
            • Comfort air conditioning (20-25 oC)
            • Chilled water system (5 – 10 oC)


Adel Mourtada                                       14
- Refrigeration cycle
   - AC/R f i
     AC/Refrigeration S t
                 ti Systems and
                              d
     Components
   -Type of refrigeration
   - Assessment of refrigeration and AC
                        g
   -Energy Efficiency Measures
   -Energy Audit of HVAC System in
   Commercial Building Utilities


Adel Mourtada                             15
Type of refrigeration


           Refrigeration systems
           R fi     ti      t

           • V
             Vapour CCompression
                              i
             Refrigeration (VCR): uses
             mechanical energy
           • Vapour Absorption Refrigeration
             (VAR):
             (VAR) uses thermal energy
                        th     l



16
     Adel Mourtada                             16
Type of refrigeration
           Vapour Compression Refrigeration
           Choice f
           Ch i of compressor, design of
                                d i      f
           condenser and evaporator determined
           by:
               • Refrigerant
               • Required cooling
               • Load
               • E
                 Ease of maintenance
                       f   i t
               • Physical space requirements
               • A il bilit of utilities (water, power)
                 Availability f tiliti ( t            )
17
     Adel Mourtada                                        17
What’s Solar Cooling?
                                   g

    • The core idea is to use the solar energy directly to 
                                             gy       y
      produce chilled water.
    • The high temperature required by absorption 
      chillers is provided by solar troughs.
                  p         y           g
    • The system doesn’t require “High Technology” 
      materials (like in PV systems) and has peak 
      p
      production in the moment of peak demand.
                                      p

       Chilled water                                Heat 
                                                    Transfer Fluid
                                                    Transfer Fluid


                Sustainable Architecture Applied to Replicable 
                           Public Access Buildings

                             www.sara‐project.net




Adel Mourtada                                                        18
System combined to sub floor exchanger
           System combined to sub‐floor exchanger




                 Sustainable Architecture Applied to Replicable 
                            Public Access Buildings

                              www.sara‐project.net




Adel Mourtada                                                      19
Type of refrigeration
            Evaporative Cooling
        •    Air in contact with water to cool it close to ‘wet
             bulb temperature’
        •    Advantage: efficient cooling at low cost
        •    Disadvantage: air is rich in moisture
                                      Sprinkling
                                      Water




                       Hot Air       Cold
                                      Air




20
     Adel Mourtada                                                20
Type of refrigeration
      Main Features of Cooling Towers




Adel Mourtada                           21
Type of refrigeration

           Components of a cooling tower
           • Frame and casing: support exterior
             enclosures
           • Fill: facilitate heat transfer by
             maximizing water / air contact
                   i i i       t     i     t t
                 • Splash fill
                 • Film fill

           • Cold water basin: receives water at
             bottom of tower
22
     Adel Mourtada                                 22
Type of refrigeration
           Components of a cooling tower
           • Drift eliminators: capture droplets in
             air stream
           • Air inlet: entry point of air
           • Louvers: equalize air flow into the fill
             and retain water within tower
           • N
             Nozzles: spray water t wet th fill
                 l            t to    t the
           • Fans: deliver air flow in the tower

23
     Adel Mourtada                                  23
Type of refrigeration
           Mechanical Draft Cooling Towers
           • Large fans to force air through
             circulated water
           • Water falls over fill surfaces:
             maximum heat transfer
           • Cooling rates depend on many
             parameters
           • Large range of capacities
           • C b grouped, e.g. 8-cell tower
             Can be    d       8 ll t
24
     Adel Mourtada                             24
Type of refrigeration


           Forced Draft Cooling Towers
           F    d D ft C li T
                         •   Air blown through tower
                                             g
                             by centrifugal fan at air
                             inlet
                         •   Advantages: suited for
                             high air resistance & fans
                             are relatively quiet
                         •   Disadvantages:
                             recirculation due to high
                             air entry
                             air-entry and low air exit
                                               air-exit
                             velocities
25
     Adel Mourtada                                    25
- Refrigeration cycle
   - AC/R f i
     AC/Refrigeration S t
                 ti Systems and
                              d
     Components
   -Type of refrigeration
   - Assessment of refrigeration and AC
                        g
   -Energy Efficiency Measures
   - Energy Audit of HVAC System in
   Commercial Building Utilities


Adel Mourtada                             26
Assessment of Refrigeration
           • Cooling effect: Tons of Refrigeration
                     1 TR = 3024 kCal/hr heat rejected


           • TR is assessed as:
                     TR = Q x⋅Cp x⋅ (Ti – To) / 3024
                               p    (       )
                     Q=     mass flow rate of coolant in kg/hr
                     Cp =   is coolant specific heat in kCal /kg deg C
                     Ti =   inlet, temperature of coolant to evaporator (chiller) in 0C
                     To
                     T =    outlet t
                               tl t temperature of coolant from evaporator (chiller) i 0C
                                           t      f    l tf             t ( hill ) in

27
     Adel Mourtada                                                                          27
Assessment of Refrigeration
          Specific Power Consumption (kW/TR)
          • Indicator of refrigeration system s
                                       system’s
            performance
          • kW/TR of centralized chilled water
            system is sum of
                • Compressor kW/TR
                • Chilled water pump kW/TR
                • Condenser water pump kW/TR
                                  p p
                • Cooling tower fan kW/TR
28
     Adel Mourtada                                28
Assessment of Refrigeration
           Coefficient f Performance (COPCarnot)
           C ffi i t of P f
           •   Standard measure of refrigeration efficiency
           •   Depends on evaporator temperature Te and
               condensing temperature Tc:

                     COPCarnot     =   Te / (Tc - Te)


           •   COP calculated for type of compressor:

                                  Cooling effect (kW)
                     COP =
                             Power input to compressor (kW)
29
     Adel Mourtada                                            29
Assessment of Air Conditioning
                                         g
        Measure
        •    Airflow Q (m3/s) at Fan Coil Units (
                       (    )                   (FCU) or Air
                                                    )
             Handling Units (AHU): anemometer
        •    Air density ρ (kg/m3)
        •    Dry bulb and wet bulb temperature: psychrometer
        •    Enthalpy (kCal/kg) of inlet air (hin) and outlet air
             (Hout) psychrometric charts
                  ):    h     ti h t

        Calculate TR                      Q × ρ × (h in − h out )
                                   TR =
                                                 3024
30
     Adel Mourtada                                                  30
Assessment of Ai C diti i
           A        t f Air Conditioning
           Indicative TR load profile
           • Small office cabins: 0.1 TR/m2
           • Medium size office (10 – 30 people
             occupancy) with central A/C: 0.06
             TR/m2
           • Large multistoried office complexes
             with central A/C: 0 04 TR/m2
                               0.04
31
     Adel Mourtada                                 31
Considerations for Assessment
        • Accuracy of measurements
              • Inlet/outlet temp of chilled and condenser
                water
              • Flow of chilled and condenser water

        • Integrated Part Load Value (IPLV)
              • kW/TR for 100% load but most equipment
                operate between 50-75% of full load
              • IPLV calculates kW/TR with partial loads
              • Four points in cycle: 100%, 75%, 50%, 25%
32
     Adel Mourtada                                           32
Assessment of Cooling Towers
           Measured Parameters
           •    Wet b lb temperature of air
                    bulb temperat re
           •    Dry bulb temperature of air
           •    Cooling tower inlet water temperature
                C li    t     i l t   t t        t
           •    Cooling tower outlet water temperature
           •    Exhaust air temperature
                E h      i
           •    Electrical readings of pump and fan
                motors
           •    Water flow rate
           •    Air flow rate

33
     Adel Mourtada                                       33
Central Plant metrics

   • Chiller efficiency – kW/ton

   • Cooling tower efficiency – kW/ton

   • Condenser water pump efficiency – kW/ton

   • Chilled water pump efficiency – kW/ton




Adel Mourtada                                   34
- Refrigeration cycle
   - AC/Refrigeration Systems and
     Components
   -Type of refrigeration
   - Assessment of refrigeration and AC
   -Energy Efficiency Measures
   - Energy Audit of HVAC System in
   Commercial Building Utilities


Adel Mourtada                             35
Energy Efficiency Measures
              gy          y
        1. Optimize process heat exchange
        2.
        2 Maintain heat exchanger surfaces
        3. Multi-staging systems
        4. Matching capacity to system load
        5. Capacity control of compressors
        6. Multi-level refrigeration for plant needs
        7. Chilled
        7 Chill d water storage
                    t    t
        8. System design features
        9. Optimize cooling tower
36
     Adel Mourtada                                36
Energy Efficiency Measures

      1. Optimize Process Heat Exchange
          p                          g
          High compressor safety margins:
            energy loss
                 gy
          1. Proper sizing heat transfer areas of
               heat exchangers and evaporators
                          g           p
                • Heat transfer coefficient on refrigerant side:
                  1400 – 2800 Watt/m2K
                • Heat transfer area refrigerant side: >0.5 m2/TR

          2. Optimum driving force (difference Te and
              p            g       (
               Tc): 1oC raise in Te = 3% power savings
37
     Adel Mourtada                                                 37
Energy Efficiency Measures
      1. Optimize Process Heat Exchange
            Evaporator              Refrigeration           Specific Power                  Increase
          Temperature (0C)         Capacity*(tons)       Consumption (kW/TR)               kW/TR (%)
                  5.0                    67.58                       0.81                      -
                  0.0                    56.07                       0.94                    16.0
                  -5.0                   45.98                       1.08                    33.0
                 -10.0                   37.20                       1.25                    54.0
                 -20.0                   23.12                       1.67                    106.0

         Condenser temperature 40◦C

            Condensing               Refrigeration            Specific Power                 Increase
          Temperature (0C)
             p           )          Capacity (tons)
                                      p    y(      )       Consumption (kW /TR)
                                                                  p     (     )             kW/TR (%)
                                                                                                   ( )
                 26.7                     31.5                        1.17                         -
                 35.0                     21.4                        1.27                     8.5
                 40.0                     20.0                        1.41                     20.5
         *Reciprocating compressor using R-22 refrigerant. Evaporator temperature.-10◦ C

38
     Adel Mourtada                                                                                     38
Energy Efficiency Measures

      1. Optimize Process Heat Exchange
          p                          g
           Selection of condensers
           • O ti
             Options:
                 •   Air cooled condensers
                 •   Air-cooled with water spray condensers
                 •   Shell & tube condensers with water-cooling

           • Water-cooled shell & tube condenser
                 •   Lower discharge pressure
                 •   Higher TR
                       g
                 •   Lower power consumption
39
     Adel Mourtada                                           39
Energy Efficiency Measures

       2. Maintain Heat Exchanger Surfaces
                              g
      • Poor maintenance = increased power
        consumption
      • Maintain condensers and evaporators
            • S
              Separation of lubricating oil and refrigerant
                    ti    f l b i ti     il d f i         t
            • Timely defrosting of coils
            • Increased velocity of secondary coolant

      • Maintain cooling towers
            • 0 55◦C reduction in returning water from cooling
              0.55
              tower = 3.0 % reduced power
40
     Adel Mourtada                                               40
Energy Efficiency Measures

        2. Maintain Heat Exchanger Surfaces
           Effect of poor maintenance on
           compressor power consumption
                                                           Specific    Increase
                           Te     Tc    Refrigeration       Power       kW/TR
            Condition
                          (0C)   (0C)   Capacity* (TR)   Consumption      (%)
                                                           (kW/TR)
       Normal             7.2    40.5       17.0            0.69          -
       Dirty condenser
           y              7.2    46.1       15.6            0.84         20.4
       Dirty evaporator   1.7    40.5       13.8            0.82         18.3
       Dirty condenser    1.7    46.1       12.7            0.96         38.7
       and evaporator



41
     Adel Mourtada                                                        41
Energy Efficiency Measures

           3. Multi-Staging Systems
                       g g y
          •    Suited for
                • Low temp applications with high compression
                • Wide temperature range
          •    Two types for all compressor types
                • Compound
                • Cascade




42
     Adel Mourtada                                              42
Energy Efficiency Measures
           3. Multi-Stage Systems
          a. Compound
          •    Two low compression ratios = 1 high
          •    First stage compressor meets cooling load
          •    Second stage compressor meets load
               evaporator and flash gas
          •    Single refrigerant

          b.
          b Cascade
          •    Preferred for -46 oC to -101oC
          •    Two systems with different refrigerants

43
     Adel Mourtada                                         43
Energy Efficiency Measures
      4. Matching Capacity to Load System
          • Most applications have varying loads
          • Consequence of part-load operation
                 q         p          p
                • COP increases
                • but lower efficiency

          • Match refrigeration capacity to load
            requires knowledge of
                • Compressor performance
                • Variations in ambient conditions
                • Cooling load

44
     Adel Mourtada                                   44
Energy Efficiency Measures
        5. Capacity Control of Compressors
       • Cylinder unloading, vanes, valves
             • Reciprocating compressors: step-by-step   through
                cylinder unloading:
             • Centrifugal compressors: continuous   modulation
                through vane control
             • Screw compressors: sliding valves

       • Speed control
          p
             • Reciprocating compressors: ensure
               lubrication system is not affected
             • Centrifugal compressors: >50% of capacity
45
     Adel Mourtada                                                 45
Energy Efficiency Measures
        5. Capacity Control of Compressors
         • Temperature monitoring
               • Reciprocating compressors: return water (if
                 varying loads) water leaving chiller
                         loads),
                 (constant loads)
               • Centrifugal compressors: outgoing water
                 temperature
               • Screw compressors: outgoing water
                 temperature

         • Part load applications: screw
           compressors more efficient
46
     Adel Mourtada                                             46
Energy Efficiency Measures
           6. Multi-Level Refrigeration
           Bank of compressors at central plant
           •   Monitor cooling and chiller load: 1 chiller full
               load
               l d more efficient than 2 chillers at part-load
                          ffi i t th       hill    t     tl d
           •   Distribution system: individual chillers feed all
               branch lines; Isolation valves; Valves to isolate
               sections
           •   Load individual compressors to full capacity
               before operating second compressor
           •   Provide smaller capacity chiller to meet peak
               demands

47
     Adel Mourtada                                                47
Energy Efficiency Measures

           6. Multi Level Refrigeration
              Multi-Level
           Packaged units (instead of central plant)
                 • Diverse applications with wide temp range
                   and long distance
                 • Benefits: economical flexible and reliable
                             economical,
                 • Disadvantage: central plants use less power

           Flow control
                 • Reduced flow
                 • Operation at normal flow with shut-off periods
48
     Adel Mourtada                                              48
Energy Efficiency Measures
           7. Chilled Water Storage
           • Chilled water storage facility with
             insulation
           • Suited only if temp variations are
             acceptable
           • Economical because
                 • Chillers operate during low peak demand
                   hours: reduced peak demand charges
                 • Chillers operate at nighttime: reduced tariffs
                   and improved COP

49
     Adel Mourtada                                             49
Energy Efficiency Measures
           8. System Design Features
           •   FRP impellers film fills PVC drift eliminators
                   impellers,     fills,
           •   Softened water for condensers
           •   Economic insulation thickness
           •   Roof coatings and false ceilings
           •   Energy efficient heat recovery devices
           •   Variable air volume systems
           •   Sun film application for heat reflection
           •   Optimizing lighting loads




50
     Adel Mourtada                                              50
Energy Efficiency Measures

          9. System Design Features
              y         g
           - Selecting a cooling tower
           - Fills
           - Pumps and water distribution
           - Fans and motors




51
     Adel Mourtada                          51
Energy Efficiency Measures


           Selecting
           S l ti a cooling tower
                       li t
           Capacity
           • Heat dissipation (kCal/hour)
           • Circulated flow rate (m3/hr)
           • Other factors



52
     Adel Mourtada                          52
Energy Efficiency Measures

           Selecting a cooling tower
         Range
               •     Range determined by process, not by system



         Approach
               • Closer to the wet bulb temperature
               • Bigger size cooling tower
               • More expensive

53
     Adel Mourtada                                          53
Energy Efficiency Measures

           Selecting a cooling tower
           Heat Load
           • Determined by process
           • Required cooling is controlled by the
             desired operating temperature
           • High heat load = large size and cost
             of cooling tower

54
     Adel Mourtada                                  54
Energy Efficiency Measures

           Selecting a cooling tower
          Wet bulb temperature – considerations:
          •    Water i
               W t is cooled to temp hi h th wet bulb
                         l dt t      higher than t b lb
               temp
          •    Conditions at tower site
          •    Not to exceed 5% of design wet bulb temp
          •    Is wet bulb temp specified as ambient (preferred)
               or inlet
          •    Can tower deal with increased wet bulb temp
          •    Cold water to exchange heat
55
     Adel Mourtada                                           55
Energy Efficiency Measures

           Selecting a cooling tower
           Relationship range, flow and heat load
           • Range increases with increased
                 • Amount circulated water (flow)
                 • Heat load
           • Causes of range increase
                 • Inlet water temperature increases
                                  p
                 • Exit water temperature decreases
           • Consequence = larger tower
                  q           g

56
     Adel Mourtada                                     56
Energy Efficiency Measures
          Selecting a cooling tower

          Relationship Approach and Wet bulb
           temperature
          • If approach stays the same (e.g. 4.45 oC)
          • Higher wet bulb temperature (26.67 oC)
                = more heat picked up (15.5 kCal/kg air)
                = smaller tower needed
          • Lower wet bulb temperature (21.11 oC)
                = less heat picked up (12.1 kCal/kg air)
                = larger tower needed
57
     Adel Mourtada                                         57
Energy Efficiency Measures


           Fill media
                  di

           • Hot water distributed over fill media
             and cools down through evaporation
           • Fill media impacts electricity use
                 • Efficiently designed fill media reduces pumping
                   costs
                 • Fill media influences heat exchange: surface
                   area, duration of contact, turbulence


58
     Adel Mourtada                                                58
Energy Efficiency Measures

           Pumps and water distribution
              p
           • Pumps: see pumps session
           • O ti i cooling water treatment
             Optimize  li     t t     t   t
                 • Increase cycles of concentration (COC) by
                   cooling water treatment helps reduce make
                   up water
                 • Indirect electricity savings
                                      y      g

           • Install drift eliminators
                 • Reduce drift loss from 0 02% to only 0 003 –
                                          0.02%         0.003
                   0.001%
59
     Adel Mourtada                                                59
Energy Efficiency Measures
           Cooling Tower Fans
           • Fans must overcome system
             resistance, pressure loss: impacts
             electricity use
           • Fan efficiency depends on blade
             profile
                fil
                 • Replace metallic fans with FBR blades (20-
                   30% savings)
                 • Use blades with aerodynamic profile (85-92%
                   fan efficiency)
                                y)

60
     Adel Mourtada                                              60
Benefits of Variable Flow


 •   Lowest Energy consumption
 •   Low Differential Pressure
 •   Easier Operation
 •   Reduced & Timely Maintenance
 •   Greatest Diversity
 •   Fewer or smaller chillers possible



Adel Mourtada                             61
Why Variable Flow?
            Why Variable Flow?

• Power varies with Cube of New Flow
  Ratio.
  - New Energy = New Flow / Old Flow (½), Cubed
                                     (½)
    = 1/8
  - Most reliable operation.


  Therefore, Energy Savings = 7/8 of the
   original energy (less any losses from
   new equipment)!


 Adel Mourtada                                    62
Energy Efficiency Measures

           Fill media
           Comparing 3 fill media: film fill more
           efficient
                                     Splash Fill     Film Fill     Low Clog
                                                                    Film Fill
          Possible L/G Ratio         1.1 – 1.5     1.5 – 2.0     1.4 – 1.8
          Effective Heat Exchange 30 – 45          150 m2/m3     85 - 100 m2/m3
          Area                    m2/m3
          Fill Height Required       5 – 10 m      1.2 – 1.5 m   1.5 – 1.8 m
          Pumping Head               9 – 12 m      5–8m          6–9m
          Requirement
          Quantity of Air Required
          Q   tit f Ai R      i d    High
                                     Hi h          Much L
                                                   M h Low       Low
                                                                 L

63
     Adel Mourtada                                                             63
VPF system configurations
            Manifolded
            M if ld d pumps

                          –   Redundancy
                          –   Reduced energy
                          –   VFD on all pumps
                              VFD      ll
                          –   Allows “overpumping” 
                               for “Low ΔT
                               for  Low ΔT 
                              Syndrome”




Adel Mourtada                                  64
Keep it Simple

    • Well designed control system is
      Well designed control system is 
         mandatory.
    • Mi i i
      Minimize manual operation.
                       l          i
    • Develop clearly written operating 
         procedure and  backup                  
         failure mode.
    • Continual training of                               
         the operators.

Adel Mourtada                                           65
- Refrigeration cycle
   - AC/R f i
     AC/Refrigeration S t
                 ti Systems and
                              d
     Components
   -Type of refrigeration
   - Assessment of refrigeration and AC
                        g
   -Energy Efficiency Measures
   -Energy Audit of HVAC System in
    Commercial Building Utilities


Adel Mourtada                             66
Typical Cooling Load Profile
    yp           g
                                                   Load in TR
                                                   Load in TR
   300



   250



   200



   150
                                                                                          Load in TR
                                                                                          Load in TR

   100



    50



    0
         1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24




                                              67
Adel Mourtada                                                                                          67
Energy Saving Possibilities
       Energy Saving Possibilities
                                Reduce cooling Load
                               Adequate Regulation
                                  Use VAV fans
                                  Use VAV fans
Shift Cooling Demand To                                  Reduce Required chiller 
    Off Peak Hours                                        Capacity  for meeting 
                                                            the peak load



            Reduce Maximum 
           Electrical Demand and                  Switch off Chillers during 
                                                  Switch off Chillers during
           hence corresponding 
           h                  d                     peak tariff period 
           Electrical Installation




      Generate Hot Water up to                        Generate Pure water 
          60 ºC through                                through waste heat 
       waste heat recovery                            recovery from Chiller
           from Chiller
           from Chiller


                                  68
Adel Mourtada                                                                       68
Interior Window Films 
         Interior Window Films

                       • If acceptable by 
                         building 
                                 g
                         management, 
                                            y
                         window films may be 
                         a useful option.  
                         Choose film tailored 
                         for climate.
                Pay Back Period 2 years
                  69
Adel Mourtada                                69
Programmable Thermostats or BMS
    Programmable Thermostats or BMS



                    • They work when
                      They work when 
                      you use them.




Adel Mourtada                       70
VAV Fans Control
• Static Pressure Reset on VAV Systems.
   – P id
     Provides significant fan energy savings 
                i ifi t f               i
     since system is often at part load
   – Reduces fan noise
   “Variable air volume (VAV ) terminal units 
     shall be programmed to operate at the 
     minimum airflow when the zone 
     temperature is within the set 
     deadband.”

  Adel Mourtada                             71
Heat recovery from Chiller
                               y

                                                                      Air‐
                                                                      Air
              Chiller  Mode                                        conditione
                                                                    d Space

                                                                        700 kW (200 
                                                                        TR) cooling 
                                                                        load
                 140 kW 
                 140 kW
                 Electrical 
                 Input
                                                                         840 kW heat 
                                                                         840 kW heat
About 8‐12% of heat can be recovered in Chiller mode (i.e. 65‐100 kW 
                                                                         Rejected  
heat) through desuperheater (Free of Cost )                              through 
~0.1 Carbon credit per hour                                              CT/aircooled
~ 720 Carbon Credits/ Year (24hrs x 300 Days)
  720 Carbon Credits/ Year (24hrs x 300 Days)                            condenser
                                                                             d

                                        72
   Adel Mourtada                                                                        72
Partial Heat
               Partial Heat Recovery
                                                                         Recovery
                         Air cooled or 
                         water cooled                 50°C            55°C
Additional                condenser
                                                                                    Desuperheater
                                                                                        p
refrigerant
   fi      t
 fluid tank
               Liquid                     Desuperheated                      Gas 
                                               Gas


                Expansion 
                  valve                                        Compressors




                                                  Evaporator
                                                                   Partial heat recovery 
                                                                   (Desuperheater) does not require 
                                                                   (Desuperheater) does not require
                            12°C
                                                                   any additional electrical input. It 
       Chilled water                        7°C                    recovers (8‐12%) of waste heat 
                                                                                          73
   Adel Mourtada                                                   free of cost.                 73
Hot Water Economics
ESTIMATES OF ANNUAL SAVINGS:

        Hot water capacity : 10000 Lts/day
        Diesel cost :  0.70$ per liter ; Diesel NCV :10100 Kcal/Liter ; 
        Boiler efficiency : 85%
        Saving by Heat Recovery system over diesel fired boiler  
        S i b                                    di l fi d b il
        7000 US$/year 




                                74
 Adel Mourtada                                                             74
Thermal Energy Storage System
 Thermal Energy Storage System

                     CRISTOPIA STL phase change thermal energy storage 
                      offers a unique solution to any of the following 
                      energy management problems:
                •     Reduction of installed power
                •     Peak ‘shaving’ or ‘lopping’ of cyclic loads
                •     Optimization of electrical resources. 
                •     Increase cooling output to meet higher demand 
                      Increase cooling output to meet higher demand
                      without increasing existing plant capacity.
                •     Energy management (off‐peak electricity)
                •     Increase system reliability
                •     Back‐up function
                •     Protect ozone area by a limitation of CFC and HCFC




                    75
Adel Mourtada                                                      75
Some Possibilities with STL
                                                                                                                                                                                                                                                                   Discharge




                                                                                                                                                                                                        kW of refrigeration
                                                                                                                                                                                                                              1000,0                               Direct Production

                                                                              Discharge                                                                                                                                          800,0                             Charge
                                                                   1200




                                      k W o f re frig e ra tio n
                                                                              Direct Production                                                                                                                                  600,0
                                                                   1000
                                                                              Charge                                                                                                                                             400,0
                                                                   800




                                                                                                                                                                                                            f
                                                    g
                                                                   600                                                                                                                                                           200,0
                                                                   400                                                                                                                                                                              ,0
                                                                   200                                                                                                                                                                                       1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
                                                                      0                                                                                                                                                                                                                 Hours
                                                                          1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

                                                                                                     Hours




                                                                                           Traditional                                                                                                                                                               Peak shaving with 
                                                                                           Solution                                                                                                                                                                  chiller switched 
                                                                                                                     kW of re frigeration
                                                                                                                                            1,200
                                                                                                                                                        Daily Consumption
                                                                                                                                            1,000

Peak shaving
           g                                                                                                                                 800
                                                                                                                                             600                                                                                                                     off during high 
                                                                                                                                                                                                                                                                     off during high
                                                                                                                                             400
                                                                                                                                             200
                                                                                                                                               0
                                                                                                                                                                                                                                                                     tariff period
                                                                                                                                                    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
                                     Discharge
                         1 000
k W o f refr era tio n




                                                                                                                                                                               Hours
                                     Direct Production                                                                                                                                                                                                                  Discharge
                          800
                                     Charge                                                                                                                                                                                                         1000                Charge




                                                                                                                                                                                                                                            ation
           rig




                          600




                                                                                                                                                                                                                              kW of refrigera
                                                                                                                                                                                                                                                     800
                          400
                                                                                                                                                                                                                                                     600
                          200                                                                                                                                                                                                                        400
                            0                                                                                                                                                                                                                        200
                                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                          0
                                                                                      Hours                                                                                                                                                                   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

                                                                                                                                                                                                                                                                                         Hours




             Chiller switched off during high  Pay Back                                                                                                                                                                                                         Total storage during off 
             tariff period                                                                                                                                                                                                                                      peak hours
                                               period 4 years
ALMEE




                        77
        Adel Mourtada    77
ALMEE




        Adel Mourtada   78
Thank you for your attention




Adel Mourtada                           79
Annex


   - Instruments Required
   - Cost Effectives Measures




Adel Mourtada                   80
Instruments Required
    Instruments Required
• Power Analyzer: Used for measuring electrical
  parameters of motors such as kW, kVA, pf, V, A
  and Hz
• Temperature Indicator & Probe
• Pressure Gauge: To measure operating
  pressure and pressure drop in the system
• Stroboscope: To measure the speed of the
  driven equipment and motor
• Ultra sonic flow meter or online flow meter
• Sling hygrometer or digital hygrometer
• A
  Anemometer t
• In addition to the above calibrated online
  instruments can be used
• PH meter
Adel Mourtada                                  81
Measurements & Observation
 Energy consumption pattern of pumps and cooling
 tower fans
 Motor electrical parameters (kW, kVA, Pf, A, V, Hz,
 THD) for pumps and cooling tower fans
 Pump operating parameters to be
 measured/monitored for each pump are: -
 Discharge, - Head (suction & discharge) - Valve
 position – Temperature - Load variation, Power
                                variation
 parameters of pumps - Pumps operating hours and
 operating schedule
 Pressure drop in the system (between discharge
 and user point)
 Pressure drop and temperatures across the users
 (heat exchangers, condensers, etc)
 Cooling water flow rate to users - Pump /Motor
        g                               p
 speedd
 Actual pressure at the user end
 User area pressure of operation and requirement


Adel Mourtada                                          82
Exploration of Energy Conservation Possibilities
    Water pumping and cooling tower
•   Improvement of systems and drives
•   Use of energy efficient pumps
•   Correcting inaccuracies of the Pump sizing / Trimming of
    impellers
•   Use of high efficiency motors
•   Integration of variable speed drives into pumps: The
    integration of adjustable speed drives (VFD) into compressors
    could lead to energy efficiency improvements, depending on
    load characteristics
•   High Performance Lubricants: The low temperature fluidity
    and high temperature stability of high performance lubricants
    can increase energy efficiency by reducing frictional losses
•   Improvements in condenser performance
    I            t i      d          f
•   Improvement in cooling tower performance
•   Application potential for energy efficient fans for cooling tower
    fans
•   Measuring and tracking system performance
    Adel Mourtada                                                  83
Exploration of Energy Conservation Possibilities
  p                gy

•   Measuring water use and energy consumption is
    essential in determining whether changes i
          i li d       i i    h h     h      in
    maintenance practices or investment in
    equipment could be cost effective
•   In this case it is advised to monitor the water
    flow rate and condenser parameters, cooling
    tower parameters p
           p             periodically i.e. at least once
                                    y
    in a three months and energy consumption on
    daily basis. This will help in identifying the -
    - Deviations in water flow rates
    - Heat duty of condenser and cooling towers
    - Measures to up keep the performance


    Adel Mourtada                                          84
Exploration of Energy Conservation Possibilities
  p                gy

     System Effect Factors
 •   Equipment cannot perform at its optimum capacity if
     fans, pumps, and blowers have poor inlet and outlet
     conditions
 •   Correction of system effect factors (SEFs) can have
     a significant effect on performance and energy
     savings
 •   Elimination f
     Eli i i of cavitation: Fl
                       i i     Flow, pressure, andd
     efficiency are reduced in pumps operating under
     cavitation. Performance can be restored to
     manufacturer s
     manufacturer’s specifications through modifications.
     This usually involves inlet alterations and may
     involve elevation of a supply tank



  Adel Mourtada                                             85
Exploration of Energy Conservation Possibilities
  p                gy

•   Internal Running Clearances: The internal running
    clearances b t
     l           between rotating and non-rotating
                            t ti    d         t ti
    elements strongly influence the turbo machine's
    ability to meet rated performance. Proper set-up
    reduces the amount of leakage (
                                 g (re-circulation) from
                                                   )
    the discharge to the suction side of the impeller
•   Reducing work load of pumping: Reducing of
    obstructions in the suction / delivery pipes thereby
                                          ypp          y
    reduction in frictional losses. This includes removal of
    unnecessary valves of the system due to changes.
    Even system and layout changes may help in this
    including increased pipe diameter Replacement of
                                diameter.
    components deteriorated due to wear and tear during
    operation, modifications in piping system



 Adel Mourtada                                             86
Sources:

 - “Energy Equipments” UNEP/SIDA/Gerlap,
 - “HVAC System Design”, Mark Hydeman, P.E., FASHRAE
 Taylor Engineering, LLC.
 - “Building Automatic System Bradley Chapman, DWEYER
    Building           System”
 - “Solar Cooling”, Eco buildings, SARA.
 - “Ventilation for buildings Energy performance of buildings Guidelines for
 inspection of air-conditioning systems- EN 15240”, Intelligence Energy.
 - “Energy Efficiency Guidelines”, Brahm Segal, Power Correction System.
 - “Results of HVAC system monitoring of tertiary buildings in Italy”, M. Masoero,
 C. Silvi, J. Toniolo , Politecnico di Torino, HarmonAC
 - “Saving Energy Municipal Buildings and More”, Ben J Sliwinski Building
                                          More”       J.
 Research Council School of Architecture, University of Illinois at Urbana-
 Champaign. Kreider Curtis Rabl, Mac gGaw Hill.
 - “Cleanrooms Energy Benchmarking”, Lawrence Berkley laboratory.




Adel Mourtada                                                                    87

Contenu connexe

Tendances

Presentation cooling tower
Presentation cooling towerPresentation cooling tower
Presentation cooling towerALOK KUMAR SWAIN
 
2: Introduction to Energy Audit Methods in Water Supply
2: Introduction to Energy Audit Methods in Water Supply2: Introduction to Energy Audit Methods in Water Supply
2: Introduction to Energy Audit Methods in Water SupplyAlliance To Save Energy
 
12 Cooling Load Calculations
12 Cooling Load Calculations12 Cooling Load Calculations
12 Cooling Load Calculationsspsu
 
HVAC Presentation.pptx
HVAC Presentation.pptxHVAC Presentation.pptx
HVAC Presentation.pptxYoussefEssam27
 
Combined operation of power plants
Combined operation of power plantsCombined operation of power plants
Combined operation of power plantsNishkam Dhiman
 
Seminar Report on Automobile Air-Conditioning based on VAC using Exhaust Heat
Seminar Report on Automobile Air-Conditioning based on VAC using Exhaust HeatSeminar Report on Automobile Air-Conditioning based on VAC using Exhaust Heat
Seminar Report on Automobile Air-Conditioning based on VAC using Exhaust HeatBhagvat Wadekar
 
Cooling load calculations
Cooling load calculationsCooling load calculations
Cooling load calculationsWaleed Alyafie
 
Waste Heat Recovery Vinay Shukla
Waste Heat Recovery  Vinay ShuklaWaste Heat Recovery  Vinay Shukla
Waste Heat Recovery Vinay ShuklaVinay Shukla
 
Energy Conservation in Compressed Air System.
Energy Conservation in Compressed Air System.Energy Conservation in Compressed Air System.
Energy Conservation in Compressed Air System.AffanDabir
 
Inverter Technology in Air Conditioners
Inverter Technology in Air ConditionersInverter Technology in Air Conditioners
Inverter Technology in Air ConditionersAdil Siddiqui
 
Design of Stand-Alone Solar PV System
Design of Stand-Alone Solar PV SystemDesign of Stand-Alone Solar PV System
Design of Stand-Alone Solar PV Systemsangeetkhule
 
energy Audit and types of audit
energy Audit and types of auditenergy Audit and types of audit
energy Audit and types of auditAbhishekLalkiya
 
Basics of HVAC - Part 1 (Heating Ventilation Air Conditioning)
Basics of HVAC - Part 1 (Heating Ventilation Air Conditioning)Basics of HVAC - Part 1 (Heating Ventilation Air Conditioning)
Basics of HVAC - Part 1 (Heating Ventilation Air Conditioning)MOHAMMED KHAN
 
Hvac Equipment and Maintenance
Hvac Equipment and MaintenanceHvac Equipment and Maintenance
Hvac Equipment and MaintenanceVaisakh Subash
 

Tendances (20)

Chiller-vs-vrf.ppt
Chiller-vs-vrf.pptChiller-vs-vrf.ppt
Chiller-vs-vrf.ppt
 
Presentation cooling tower
Presentation cooling towerPresentation cooling tower
Presentation cooling tower
 
2: Introduction to Energy Audit Methods in Water Supply
2: Introduction to Energy Audit Methods in Water Supply2: Introduction to Energy Audit Methods in Water Supply
2: Introduction to Energy Audit Methods in Water Supply
 
12 Cooling Load Calculations
12 Cooling Load Calculations12 Cooling Load Calculations
12 Cooling Load Calculations
 
Energy audit
Energy auditEnergy audit
Energy audit
 
HVAC Presentation.pptx
HVAC Presentation.pptxHVAC Presentation.pptx
HVAC Presentation.pptx
 
Hrsg book
Hrsg bookHrsg book
Hrsg book
 
Combined operation of power plants
Combined operation of power plantsCombined operation of power plants
Combined operation of power plants
 
Chiller water systems
Chiller water systemsChiller water systems
Chiller water systems
 
energy audit
energy auditenergy audit
energy audit
 
Seminar Report on Automobile Air-Conditioning based on VAC using Exhaust Heat
Seminar Report on Automobile Air-Conditioning based on VAC using Exhaust HeatSeminar Report on Automobile Air-Conditioning based on VAC using Exhaust Heat
Seminar Report on Automobile Air-Conditioning based on VAC using Exhaust Heat
 
Cooling load calculations
Cooling load calculationsCooling load calculations
Cooling load calculations
 
Waste Heat Recovery Vinay Shukla
Waste Heat Recovery  Vinay ShuklaWaste Heat Recovery  Vinay Shukla
Waste Heat Recovery Vinay Shukla
 
Cogeneration
CogenerationCogeneration
Cogeneration
 
Energy Conservation in Compressed Air System.
Energy Conservation in Compressed Air System.Energy Conservation in Compressed Air System.
Energy Conservation in Compressed Air System.
 
Inverter Technology in Air Conditioners
Inverter Technology in Air ConditionersInverter Technology in Air Conditioners
Inverter Technology in Air Conditioners
 
Design of Stand-Alone Solar PV System
Design of Stand-Alone Solar PV SystemDesign of Stand-Alone Solar PV System
Design of Stand-Alone Solar PV System
 
energy Audit and types of audit
energy Audit and types of auditenergy Audit and types of audit
energy Audit and types of audit
 
Basics of HVAC - Part 1 (Heating Ventilation Air Conditioning)
Basics of HVAC - Part 1 (Heating Ventilation Air Conditioning)Basics of HVAC - Part 1 (Heating Ventilation Air Conditioning)
Basics of HVAC - Part 1 (Heating Ventilation Air Conditioning)
 
Hvac Equipment and Maintenance
Hvac Equipment and MaintenanceHvac Equipment and Maintenance
Hvac Equipment and Maintenance
 

En vedette

Wave Energy in Black Sea of Turkey
Wave Energy in Black Sea of TurkeyWave Energy in Black Sea of Turkey
Wave Energy in Black Sea of TurkeyKHALID ALABID
 
Interior Lighting for Local Governments - LED vs. Incumbents
Interior Lighting for Local Governments - LED vs. IncumbentsInterior Lighting for Local Governments - LED vs. Incumbents
Interior Lighting for Local Governments - LED vs. IncumbentsCenter for Sustainable Energy
 
Lighting systems 2014
Lighting systems 2014Lighting systems 2014
Lighting systems 2014ahmed salman
 
Advances in Molten Salt Thermal Storage [CSTP 2010]
Advances in Molten Salt Thermal Storage [CSTP 2010]Advances in Molten Salt Thermal Storage [CSTP 2010]
Advances in Molten Salt Thermal Storage [CSTP 2010]Smithers Apex
 
Artificial photosynthesis
Artificial photosynthesisArtificial photosynthesis
Artificial photosynthesisRohit Choudhury
 
Energy Audit Basics and Principles
Energy Audit Basics and Principles Energy Audit Basics and Principles
Energy Audit Basics and Principles RCREEE
 
Lighting Efficiency Measures
Lighting Efficiency Measures Lighting Efficiency Measures
Lighting Efficiency Measures haroldtaylor1113
 
Distribution of electricity in a large or medium
Distribution of electricity in a large or mediumDistribution of electricity in a large or medium
Distribution of electricity in a large or mediumIqbal Nurfariq
 
The GIS for the Solar Projects Development
The GIS for the Solar Projects DevelopmentThe GIS for the Solar Projects Development
The GIS for the Solar Projects DevelopmentEsri
 
Solar PV project development
Solar PV project developmentSolar PV project development
Solar PV project developmentGreenQ Partners
 
ELECTRICAL DISTRIBUTION TECHNOLOGY
ELECTRICAL DISTRIBUTION TECHNOLOGYELECTRICAL DISTRIBUTION TECHNOLOGY
ELECTRICAL DISTRIBUTION TECHNOLOGYAmeen San
 
solar power by molten salt technology
solar power by molten salt technologysolar power by molten salt technology
solar power by molten salt technologymadhu124521
 
Gould - Thermal Energy Storage
Gould - Thermal Energy StorageGould - Thermal Energy Storage
Gould - Thermal Energy StorageGW Solar Institute
 
pelamis wave energy convertor ppt
pelamis wave energy convertor pptpelamis wave energy convertor ppt
pelamis wave energy convertor pptchakri218
 
Wave Power Conversion Systems for Electrical Energy Production
Wave Power Conversion Systems for Electrical Energy ProductionWave Power Conversion Systems for Electrical Energy Production
Wave Power Conversion Systems for Electrical Energy ProductionLeonardo ENERGY
 
Developing Solar Projects
Developing Solar ProjectsDeveloping Solar Projects
Developing Solar Projectsalejolop
 

En vedette (20)

Wave Energy in Black Sea of Turkey
Wave Energy in Black Sea of TurkeyWave Energy in Black Sea of Turkey
Wave Energy in Black Sea of Turkey
 
Interior Lighting for Local Governments - LED vs. Incumbents
Interior Lighting for Local Governments - LED vs. IncumbentsInterior Lighting for Local Governments - LED vs. Incumbents
Interior Lighting for Local Governments - LED vs. Incumbents
 
Lighting systems 2014
Lighting systems 2014Lighting systems 2014
Lighting systems 2014
 
Advances in Molten Salt Thermal Storage [CSTP 2010]
Advances in Molten Salt Thermal Storage [CSTP 2010]Advances in Molten Salt Thermal Storage [CSTP 2010]
Advances in Molten Salt Thermal Storage [CSTP 2010]
 
Artificial photosynthesis
Artificial photosynthesisArtificial photosynthesis
Artificial photosynthesis
 
Energy Audit Basics and Principles
Energy Audit Basics and Principles Energy Audit Basics and Principles
Energy Audit Basics and Principles
 
Energy Audit / Energy Conservation PPT and PDF
Energy Audit / Energy Conservation PPT and PDFEnergy Audit / Energy Conservation PPT and PDF
Energy Audit / Energy Conservation PPT and PDF
 
Lighting Efficiency Measures
Lighting Efficiency Measures Lighting Efficiency Measures
Lighting Efficiency Measures
 
Distribution of electricity in a large or medium
Distribution of electricity in a large or mediumDistribution of electricity in a large or medium
Distribution of electricity in a large or medium
 
The GIS for the Solar Projects Development
The GIS for the Solar Projects DevelopmentThe GIS for the Solar Projects Development
The GIS for the Solar Projects Development
 
Solar PV project development
Solar PV project developmentSolar PV project development
Solar PV project development
 
ELECTRICAL DISTRIBUTION TECHNOLOGY
ELECTRICAL DISTRIBUTION TECHNOLOGYELECTRICAL DISTRIBUTION TECHNOLOGY
ELECTRICAL DISTRIBUTION TECHNOLOGY
 
solar power by molten salt technology
solar power by molten salt technologysolar power by molten salt technology
solar power by molten salt technology
 
Light
LightLight
Light
 
Gould - Thermal Energy Storage
Gould - Thermal Energy StorageGould - Thermal Energy Storage
Gould - Thermal Energy Storage
 
pelamis wave energy convertor ppt
pelamis wave energy convertor pptpelamis wave energy convertor ppt
pelamis wave energy convertor ppt
 
Wave Power Conversion Systems for Electrical Energy Production
Wave Power Conversion Systems for Electrical Energy ProductionWave Power Conversion Systems for Electrical Energy Production
Wave Power Conversion Systems for Electrical Energy Production
 
Energy Audit Report
Energy Audit ReportEnergy Audit Report
Energy Audit Report
 
Artificial lighting
Artificial lightingArtificial lighting
Artificial lighting
 
Developing Solar Projects
Developing Solar ProjectsDeveloping Solar Projects
Developing Solar Projects
 

Similaire à Day 2: Energy Audit of Air Conditioning And Cooling Systems

Refrigeration and air conditioning in ship
Refrigeration and air conditioning in shipRefrigeration and air conditioning in ship
Refrigeration and air conditioning in shipDhiravidaSelvan1
 
Effects of Changing Different Components in a Compression Refrigeration System
Effects of Changing Different Components in a Compression Refrigeration SystemEffects of Changing Different Components in a Compression Refrigeration System
Effects of Changing Different Components in a Compression Refrigeration SystemHashim Hasnain Hadi
 
Chiller Plant-EN - Catalogue
Chiller Plant-EN - CatalogueChiller Plant-EN - Catalogue
Chiller Plant-EN - CatalogueTomas Eriksson
 
cooling system in computer -air / water cooling
cooling system in computer -air / water coolingcooling system in computer -air / water cooling
cooling system in computer -air / water coolingIbrahem Batta
 
Hydracarbons in Commercial Refrigeration
Hydracarbons in Commercial RefrigerationHydracarbons in Commercial Refrigeration
Hydracarbons in Commercial RefrigerationUNEP OzonAction
 
Refrigeration and air conditioning ppt
Refrigeration and air conditioning pptRefrigeration and air conditioning ppt
Refrigeration and air conditioning pptShubham Hadadare
 
Refrigeration and air conditioning ppt
Refrigeration and air conditioning pptRefrigeration and air conditioning ppt
Refrigeration and air conditioning pptShubham Hadadare
 
ME8595 – THERMAL ENGINEERING - II
ME8595 – THERMAL ENGINEERING - IIME8595 – THERMAL ENGINEERING - II
ME8595 – THERMAL ENGINEERING - IIprakash0712
 
Determining the Best Heat Recovery System to Maximize Boiler Efficiency
Determining the Best Heat Recovery System to Maximize Boiler EfficiencyDetermining the Best Heat Recovery System to Maximize Boiler Efficiency
Determining the Best Heat Recovery System to Maximize Boiler EfficiencyCleaver-Brooks
 
Rooftop & Odyssey.ppt
Rooftop & Odyssey.pptRooftop & Odyssey.ppt
Rooftop & Odyssey.pptbudisaptyoso1
 
Condensers,expansiondevices,evaporators types
Condensers,expansiondevices,evaporators typesCondensers,expansiondevices,evaporators types
Condensers,expansiondevices,evaporators typesBhaskarDutt4
 
HTS Engineering Company Presentation by Evan Miller
HTS Engineering Company Presentation by Evan MillerHTS Engineering Company Presentation by Evan Miller
HTS Engineering Company Presentation by Evan Millerevmiller5
 
Thermal Engineering - II
Thermal Engineering - IIThermal Engineering - II
Thermal Engineering - IIGOBINATHS18
 
Module (s 203) fundamentals of cooling tower أساسيات ومبدأ عمل أبراج التبريد-...
Module (s 203) fundamentals of cooling tower أساسيات ومبدأ عمل أبراج التبريد-...Module (s 203) fundamentals of cooling tower أساسيات ومبدأ عمل أبراج التبريد-...
Module (s 203) fundamentals of cooling tower أساسيات ومبدأ عمل أبراج التبريد-...Juma Yousef J. Saleh جمعة يوسف جمعة صالح
 
BS5 - Lecture 2 HVAC Systems
BS5 - Lecture 2 HVAC SystemsBS5 - Lecture 2 HVAC Systems
BS5 - Lecture 2 HVAC SystemsSiddharth Khanna
 
Ug20 geucm106 unit- v refrigeration & pumps
Ug20 geucm106   unit- v refrigeration & pumpsUg20 geucm106   unit- v refrigeration & pumps
Ug20 geucm106 unit- v refrigeration & pumpsreva85mok
 

Similaire à Day 2: Energy Audit of Air Conditioning And Cooling Systems (20)

Refrigeration and air conditioning in ship
Refrigeration and air conditioning in shipRefrigeration and air conditioning in ship
Refrigeration and air conditioning in ship
 
Effects of Changing Different Components in a Compression Refrigeration System
Effects of Changing Different Components in a Compression Refrigeration SystemEffects of Changing Different Components in a Compression Refrigeration System
Effects of Changing Different Components in a Compression Refrigeration System
 
Chiller Plant-EN - Catalogue
Chiller Plant-EN - CatalogueChiller Plant-EN - Catalogue
Chiller Plant-EN - Catalogue
 
Chiller Plant-EN - Catalogue
Chiller Plant-EN - CatalogueChiller Plant-EN - Catalogue
Chiller Plant-EN - Catalogue
 
condenser .pptx
condenser .pptxcondenser .pptx
condenser .pptx
 
cooling system in computer -air / water cooling
cooling system in computer -air / water coolingcooling system in computer -air / water cooling
cooling system in computer -air / water cooling
 
Hydracarbons in Commercial Refrigeration
Hydracarbons in Commercial RefrigerationHydracarbons in Commercial Refrigeration
Hydracarbons in Commercial Refrigeration
 
Cooling water (CW) system
Cooling water (CW) system Cooling water (CW) system
Cooling water (CW) system
 
Refrigeration and air conditioning ppt
Refrigeration and air conditioning pptRefrigeration and air conditioning ppt
Refrigeration and air conditioning ppt
 
Refrigeration and air conditioning ppt
Refrigeration and air conditioning pptRefrigeration and air conditioning ppt
Refrigeration and air conditioning ppt
 
HVAC Systems.ppt
HVAC Systems.pptHVAC Systems.ppt
HVAC Systems.ppt
 
ME8595 – THERMAL ENGINEERING - II
ME8595 – THERMAL ENGINEERING - IIME8595 – THERMAL ENGINEERING - II
ME8595 – THERMAL ENGINEERING - II
 
Determining the Best Heat Recovery System to Maximize Boiler Efficiency
Determining the Best Heat Recovery System to Maximize Boiler EfficiencyDetermining the Best Heat Recovery System to Maximize Boiler Efficiency
Determining the Best Heat Recovery System to Maximize Boiler Efficiency
 
Rooftop & Odyssey.ppt
Rooftop & Odyssey.pptRooftop & Odyssey.ppt
Rooftop & Odyssey.ppt
 
Condensers,expansiondevices,evaporators types
Condensers,expansiondevices,evaporators typesCondensers,expansiondevices,evaporators types
Condensers,expansiondevices,evaporators types
 
HTS Engineering Company Presentation by Evan Miller
HTS Engineering Company Presentation by Evan MillerHTS Engineering Company Presentation by Evan Miller
HTS Engineering Company Presentation by Evan Miller
 
Thermal Engineering - II
Thermal Engineering - IIThermal Engineering - II
Thermal Engineering - II
 
Module (s 203) fundamentals of cooling tower أساسيات ومبدأ عمل أبراج التبريد-...
Module (s 203) fundamentals of cooling tower أساسيات ومبدأ عمل أبراج التبريد-...Module (s 203) fundamentals of cooling tower أساسيات ومبدأ عمل أبراج التبريد-...
Module (s 203) fundamentals of cooling tower أساسيات ومبدأ عمل أبراج التبريد-...
 
BS5 - Lecture 2 HVAC Systems
BS5 - Lecture 2 HVAC SystemsBS5 - Lecture 2 HVAC Systems
BS5 - Lecture 2 HVAC Systems
 
Ug20 geucm106 unit- v refrigeration & pumps
Ug20 geucm106   unit- v refrigeration & pumpsUg20 geucm106   unit- v refrigeration & pumps
Ug20 geucm106 unit- v refrigeration & pumps
 

Plus de RCREEE

Gender challenges in clean energy sector can network
Gender challenges in clean energy sector can networkGender challenges in clean energy sector can network
Gender challenges in clean energy sector can networkRCREEE
 
Climate and energy policies advocacy of youth in the arab world
Climate and energy policies advocacy of youth in the arab worldClimate and energy policies advocacy of youth in the arab world
Climate and energy policies advocacy of youth in the arab worldRCREEE
 
Women in energy a world full of opportunities lcec
Women in energy a world full of opportunities  lcecWomen in energy a world full of opportunities  lcec
Women in energy a world full of opportunities lcecRCREEE
 
Women and sustainability in green mind
Women and sustainability in green mindWomen and sustainability in green mind
Women and sustainability in green mindRCREEE
 
Energy entrepreneurship artik energy
Energy entrepreneurship  artik energyEnergy entrepreneurship  artik energy
Energy entrepreneurship artik energyRCREEE
 
The women behind ewb kuwait
The women behind ewb kuwaitThe women behind ewb kuwait
The women behind ewb kuwaitRCREEE
 
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...RCREEE
 
Women in energy sector in the mena region rcreee
Women in energy sector in the mena region rcreeeWomen in energy sector in the mena region rcreee
Women in energy sector in the mena region rcreeeRCREEE
 
Awakening diversity in the clean energy sector a key point to achieve sustai...
Awakening diversity in the clean energy sector  a key point to achieve sustai...Awakening diversity in the clean energy sector  a key point to achieve sustai...
Awakening diversity in the clean energy sector a key point to achieve sustai...RCREEE
 
Mitigating environmental impact in non renewable energy the role of women
Mitigating environmental impact in non renewable energy the role of womenMitigating environmental impact in non renewable energy the role of women
Mitigating environmental impact in non renewable energy the role of womenRCREEE
 
HLPD in Vienna_Key Messages
HLPD in Vienna_Key MessagesHLPD in Vienna_Key Messages
HLPD in Vienna_Key MessagesRCREEE
 
HLPD_Setting the scene
HLPD_Setting the sceneHLPD_Setting the scene
HLPD_Setting the sceneRCREEE
 
EU-Egypt Energy Cooperation: A successful model
EU-Egypt Energy Cooperation: A successful modelEU-Egypt Energy Cooperation: A successful model
EU-Egypt Energy Cooperation: A successful modelRCREEE
 
EU sustainable development policies& cooperation
EU sustainable development policies& cooperationEU sustainable development policies& cooperation
EU sustainable development policies& cooperationRCREEE
 
EU support to the Energy sector in Jordan
EU support to the Energy sector in JordanEU support to the Energy sector in Jordan
EU support to the Energy sector in JordanRCREEE
 
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...RCREEE
 
Netherlands Support to Sustainable Arab Development
Netherlands Support to Sustainable Arab DevelopmentNetherlands Support to Sustainable Arab Development
Netherlands Support to Sustainable Arab DevelopmentRCREEE
 
Report summary on Intended Nationnally determined contributions -Comprehensiv...
Report summary on Intended Nationnally determined contributions -Comprehensiv...Report summary on Intended Nationnally determined contributions -Comprehensiv...
Report summary on Intended Nationnally determined contributions -Comprehensiv...RCREEE
 
Energy productivity as a new paradigm for sustainable energy transitions
Energy productivity as a new paradigm for sustainable energy transitionsEnergy productivity as a new paradigm for sustainable energy transitions
Energy productivity as a new paradigm for sustainable energy transitionsRCREEE
 
Arab Region Progress in Sustainable Energy Challenges and Opportunities
Arab Region Progress in Sustainable Energy Challenges and OpportunitiesArab Region Progress in Sustainable Energy Challenges and Opportunities
Arab Region Progress in Sustainable Energy Challenges and OpportunitiesRCREEE
 

Plus de RCREEE (20)

Gender challenges in clean energy sector can network
Gender challenges in clean energy sector can networkGender challenges in clean energy sector can network
Gender challenges in clean energy sector can network
 
Climate and energy policies advocacy of youth in the arab world
Climate and energy policies advocacy of youth in the arab worldClimate and energy policies advocacy of youth in the arab world
Climate and energy policies advocacy of youth in the arab world
 
Women in energy a world full of opportunities lcec
Women in energy a world full of opportunities  lcecWomen in energy a world full of opportunities  lcec
Women in energy a world full of opportunities lcec
 
Women and sustainability in green mind
Women and sustainability in green mindWomen and sustainability in green mind
Women and sustainability in green mind
 
Energy entrepreneurship artik energy
Energy entrepreneurship  artik energyEnergy entrepreneurship  artik energy
Energy entrepreneurship artik energy
 
The women behind ewb kuwait
The women behind ewb kuwaitThe women behind ewb kuwait
The women behind ewb kuwait
 
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
 
Women in energy sector in the mena region rcreee
Women in energy sector in the mena region rcreeeWomen in energy sector in the mena region rcreee
Women in energy sector in the mena region rcreee
 
Awakening diversity in the clean energy sector a key point to achieve sustai...
Awakening diversity in the clean energy sector  a key point to achieve sustai...Awakening diversity in the clean energy sector  a key point to achieve sustai...
Awakening diversity in the clean energy sector a key point to achieve sustai...
 
Mitigating environmental impact in non renewable energy the role of women
Mitigating environmental impact in non renewable energy the role of womenMitigating environmental impact in non renewable energy the role of women
Mitigating environmental impact in non renewable energy the role of women
 
HLPD in Vienna_Key Messages
HLPD in Vienna_Key MessagesHLPD in Vienna_Key Messages
HLPD in Vienna_Key Messages
 
HLPD_Setting the scene
HLPD_Setting the sceneHLPD_Setting the scene
HLPD_Setting the scene
 
EU-Egypt Energy Cooperation: A successful model
EU-Egypt Energy Cooperation: A successful modelEU-Egypt Energy Cooperation: A successful model
EU-Egypt Energy Cooperation: A successful model
 
EU sustainable development policies& cooperation
EU sustainable development policies& cooperationEU sustainable development policies& cooperation
EU sustainable development policies& cooperation
 
EU support to the Energy sector in Jordan
EU support to the Energy sector in JordanEU support to the Energy sector in Jordan
EU support to the Energy sector in Jordan
 
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
 
Netherlands Support to Sustainable Arab Development
Netherlands Support to Sustainable Arab DevelopmentNetherlands Support to Sustainable Arab Development
Netherlands Support to Sustainable Arab Development
 
Report summary on Intended Nationnally determined contributions -Comprehensiv...
Report summary on Intended Nationnally determined contributions -Comprehensiv...Report summary on Intended Nationnally determined contributions -Comprehensiv...
Report summary on Intended Nationnally determined contributions -Comprehensiv...
 
Energy productivity as a new paradigm for sustainable energy transitions
Energy productivity as a new paradigm for sustainable energy transitionsEnergy productivity as a new paradigm for sustainable energy transitions
Energy productivity as a new paradigm for sustainable energy transitions
 
Arab Region Progress in Sustainable Energy Challenges and Opportunities
Arab Region Progress in Sustainable Energy Challenges and OpportunitiesArab Region Progress in Sustainable Energy Challenges and Opportunities
Arab Region Progress in Sustainable Energy Challenges and Opportunities
 

Day 2: Energy Audit of Air Conditioning And Cooling Systems

  • 1. RCREEE Energy Audit in Building  RCREEE Energy Audit in Building Training Course Program  Tunis, 1st – 5th June 2010 Energy audit of air‐conditioning and  cooling systems by Adel Mourtada
  • 2. Content - Refrigeration cycle - AC/Refrigeration Systems and Components -Type of refrigeration - Assessment of refrigeration and AC -Energy Efficiency Measures Energy -Energy Audit of HVAC System in Commercial Building Utilities Adel Mourtada 2
  • 3. Typical Refrigeration Cycle Adel Mourtada 3
  • 4. Thermodynamic Cycle Thermodynamic Cycle Adel Mourtada 4
  • 5. - Refrigeration cycle - AC/Refrigeration Systems and Components -Type of refrigeration - Assessment of refrigeration and AC - Energy Efficiency Measures - Energy Audit of HVAC System in Commercial Building Utilities Adel Mourtada 5
  • 6. Components • R fi Refrigerant  • Evaporator/C hiller  hill • Compressor • Condenser • Receiver • Thermostatic     expansion  valve (TXV) Adel Mourtada 6
  • 7. Compressors There is a large variety of  compressors. Some of variations  p are: The compressor manufacturer Piston, vane, or scroll type The piston and cylinder  arrangement How the compressor is mounted Style and position of ports Type and number of drive belts Compressor displacement Fixed or variable displacement Adel Mourtada 7
  • 8. Evaporator Types Evaporator Types Plate evaporators, top, are  a series of stamped  aluminum plates that are  aluminum plates that are joined together. Tube and  fin evaporators, bottom,  fin evaporators, bottom, have tubes for the  refrigerant that are joined  to the fins. Adel Mourtada 8
  • 9. Refrigerant • Desirable properties: Desirable properties: – High latent heat of vaporization ‐ max cooling – Non toxicity (no health hazard) Non‐toxicity (no health hazard) – Desirable saturation temp (for operating pressure) – Chemical stability (non flammable/non explosive) Chemical stability (non‐flammable/non‐explosive) – Ease of leak detection – Low cost – Readily available • Commonly named “FREON” (R 114, etc.) Commonly named  FREON (R‐114, etc.) Adel Mourtada 9
  • 10. Condenser Types Condenser Types Condensers A and C are  round tube, serpentine  condensers. Condenser B is an  C d Bi oval/flat tube, serpentine  condenser. Condenser D is an  oval/flat tube, parallel  flow  condenser. Flat tube condensers are  more efficient. ffi i t Adel Mourtada 10
  • 11. Expansion Devices Expansion Devices • The expansion device separates the high  side from the low side and provides a  id f h l id d id restriction for the compressor to pump  against. • There are two styles of expansion  y p devices: ‐ The TXV can open or close to change  flow. It is controlled by the superheat  spring, thermal bulb that senses  spring, thermal bulb that senses evaporator outlet temperature, and  evaporator pressure ‐ The OT is a tubular, plastic device with a  small metal tube inside. The color of the  small metal tube inside The color of the OT is used to determine the diameter of  the tube. Most OT have a fixed diameter  orifice. Adel Mourtada 11
  • 12. AC Systems AC options / combinations: • Air Conditioning (for comfort / machine) g( ) • Split air conditioners • Fan coil units in a larger system • Air handling units in a larger system Adel Mourtada 12
  • 13. Refrigeration systems • Small capacity modular units of direct expansion type (50 Tons of Refrigeration) • Centralized chilled water plants with chilled water as a secondary coolant (>50 TR) 13 Adel Mourtada 13
  • 14. Refrigeration at large Commercial Buildings • Bank of units off-site with common • Chilled water pumps p p • Condenser water pumps • Cooling towers • More levels of refrigeration/AC, e.g. • Comfort air conditioning (20-25 oC) • Chilled water system (5 – 10 oC) Adel Mourtada 14
  • 15. - Refrigeration cycle - AC/R f i AC/Refrigeration S t ti Systems and d Components -Type of refrigeration - Assessment of refrigeration and AC g -Energy Efficiency Measures -Energy Audit of HVAC System in Commercial Building Utilities Adel Mourtada 15
  • 16. Type of refrigeration Refrigeration systems R fi ti t • V Vapour CCompression i Refrigeration (VCR): uses mechanical energy • Vapour Absorption Refrigeration (VAR): (VAR) uses thermal energy th l 16 Adel Mourtada 16
  • 17. Type of refrigeration Vapour Compression Refrigeration Choice f Ch i of compressor, design of d i f condenser and evaporator determined by: • Refrigerant • Required cooling • Load • E Ease of maintenance f i t • Physical space requirements • A il bilit of utilities (water, power) Availability f tiliti ( t ) 17 Adel Mourtada 17
  • 18. What’s Solar Cooling? g • The core idea is to use the solar energy directly to  gy y produce chilled water. • The high temperature required by absorption  chillers is provided by solar troughs. p y g • The system doesn’t require “High Technology”  materials (like in PV systems) and has peak  p production in the moment of peak demand. p Chilled water Heat  Transfer Fluid Transfer Fluid Sustainable Architecture Applied to Replicable  Public Access Buildings www.sara‐project.net Adel Mourtada 18
  • 19. System combined to sub floor exchanger System combined to sub‐floor exchanger Sustainable Architecture Applied to Replicable  Public Access Buildings www.sara‐project.net Adel Mourtada 19
  • 20. Type of refrigeration Evaporative Cooling • Air in contact with water to cool it close to ‘wet bulb temperature’ • Advantage: efficient cooling at low cost • Disadvantage: air is rich in moisture Sprinkling Water Hot Air Cold Air 20 Adel Mourtada 20
  • 21. Type of refrigeration Main Features of Cooling Towers Adel Mourtada 21
  • 22. Type of refrigeration Components of a cooling tower • Frame and casing: support exterior enclosures • Fill: facilitate heat transfer by maximizing water / air contact i i i t i t t • Splash fill • Film fill • Cold water basin: receives water at bottom of tower 22 Adel Mourtada 22
  • 23. Type of refrigeration Components of a cooling tower • Drift eliminators: capture droplets in air stream • Air inlet: entry point of air • Louvers: equalize air flow into the fill and retain water within tower • N Nozzles: spray water t wet th fill l t to t the • Fans: deliver air flow in the tower 23 Adel Mourtada 23
  • 24. Type of refrigeration Mechanical Draft Cooling Towers • Large fans to force air through circulated water • Water falls over fill surfaces: maximum heat transfer • Cooling rates depend on many parameters • Large range of capacities • C b grouped, e.g. 8-cell tower Can be d 8 ll t 24 Adel Mourtada 24
  • 25. Type of refrigeration Forced Draft Cooling Towers F d D ft C li T • Air blown through tower g by centrifugal fan at air inlet • Advantages: suited for high air resistance & fans are relatively quiet • Disadvantages: recirculation due to high air entry air-entry and low air exit air-exit velocities 25 Adel Mourtada 25
  • 26. - Refrigeration cycle - AC/R f i AC/Refrigeration S t ti Systems and d Components -Type of refrigeration - Assessment of refrigeration and AC g -Energy Efficiency Measures - Energy Audit of HVAC System in Commercial Building Utilities Adel Mourtada 26
  • 27. Assessment of Refrigeration • Cooling effect: Tons of Refrigeration 1 TR = 3024 kCal/hr heat rejected • TR is assessed as: TR = Q x⋅Cp x⋅ (Ti – To) / 3024 p ( ) Q= mass flow rate of coolant in kg/hr Cp = is coolant specific heat in kCal /kg deg C Ti = inlet, temperature of coolant to evaporator (chiller) in 0C To T = outlet t tl t temperature of coolant from evaporator (chiller) i 0C t f l tf t ( hill ) in 27 Adel Mourtada 27
  • 28. Assessment of Refrigeration Specific Power Consumption (kW/TR) • Indicator of refrigeration system s system’s performance • kW/TR of centralized chilled water system is sum of • Compressor kW/TR • Chilled water pump kW/TR • Condenser water pump kW/TR p p • Cooling tower fan kW/TR 28 Adel Mourtada 28
  • 29. Assessment of Refrigeration Coefficient f Performance (COPCarnot) C ffi i t of P f • Standard measure of refrigeration efficiency • Depends on evaporator temperature Te and condensing temperature Tc: COPCarnot = Te / (Tc - Te) • COP calculated for type of compressor: Cooling effect (kW) COP = Power input to compressor (kW) 29 Adel Mourtada 29
  • 30. Assessment of Air Conditioning g Measure • Airflow Q (m3/s) at Fan Coil Units ( ( ) (FCU) or Air ) Handling Units (AHU): anemometer • Air density ρ (kg/m3) • Dry bulb and wet bulb temperature: psychrometer • Enthalpy (kCal/kg) of inlet air (hin) and outlet air (Hout) psychrometric charts ): h ti h t Calculate TR Q × ρ × (h in − h out ) TR = 3024 30 Adel Mourtada 30
  • 31. Assessment of Ai C diti i A t f Air Conditioning Indicative TR load profile • Small office cabins: 0.1 TR/m2 • Medium size office (10 – 30 people occupancy) with central A/C: 0.06 TR/m2 • Large multistoried office complexes with central A/C: 0 04 TR/m2 0.04 31 Adel Mourtada 31
  • 32. Considerations for Assessment • Accuracy of measurements • Inlet/outlet temp of chilled and condenser water • Flow of chilled and condenser water • Integrated Part Load Value (IPLV) • kW/TR for 100% load but most equipment operate between 50-75% of full load • IPLV calculates kW/TR with partial loads • Four points in cycle: 100%, 75%, 50%, 25% 32 Adel Mourtada 32
  • 33. Assessment of Cooling Towers Measured Parameters • Wet b lb temperature of air bulb temperat re • Dry bulb temperature of air • Cooling tower inlet water temperature C li t i l t t t t • Cooling tower outlet water temperature • Exhaust air temperature E h i • Electrical readings of pump and fan motors • Water flow rate • Air flow rate 33 Adel Mourtada 33
  • 34. Central Plant metrics • Chiller efficiency – kW/ton • Cooling tower efficiency – kW/ton • Condenser water pump efficiency – kW/ton • Chilled water pump efficiency – kW/ton Adel Mourtada 34
  • 35. - Refrigeration cycle - AC/Refrigeration Systems and Components -Type of refrigeration - Assessment of refrigeration and AC -Energy Efficiency Measures - Energy Audit of HVAC System in Commercial Building Utilities Adel Mourtada 35
  • 36. Energy Efficiency Measures gy y 1. Optimize process heat exchange 2. 2 Maintain heat exchanger surfaces 3. Multi-staging systems 4. Matching capacity to system load 5. Capacity control of compressors 6. Multi-level refrigeration for plant needs 7. Chilled 7 Chill d water storage t t 8. System design features 9. Optimize cooling tower 36 Adel Mourtada 36
  • 37. Energy Efficiency Measures 1. Optimize Process Heat Exchange p g High compressor safety margins: energy loss gy 1. Proper sizing heat transfer areas of heat exchangers and evaporators g p • Heat transfer coefficient on refrigerant side: 1400 – 2800 Watt/m2K • Heat transfer area refrigerant side: >0.5 m2/TR 2. Optimum driving force (difference Te and p g ( Tc): 1oC raise in Te = 3% power savings 37 Adel Mourtada 37
  • 38. Energy Efficiency Measures 1. Optimize Process Heat Exchange Evaporator Refrigeration Specific Power Increase Temperature (0C) Capacity*(tons) Consumption (kW/TR) kW/TR (%) 5.0 67.58 0.81 - 0.0 56.07 0.94 16.0 -5.0 45.98 1.08 33.0 -10.0 37.20 1.25 54.0 -20.0 23.12 1.67 106.0 Condenser temperature 40◦C Condensing Refrigeration Specific Power Increase Temperature (0C) p ) Capacity (tons) p y( ) Consumption (kW /TR) p ( ) kW/TR (%) ( ) 26.7 31.5 1.17 - 35.0 21.4 1.27 8.5 40.0 20.0 1.41 20.5 *Reciprocating compressor using R-22 refrigerant. Evaporator temperature.-10◦ C 38 Adel Mourtada 38
  • 39. Energy Efficiency Measures 1. Optimize Process Heat Exchange p g Selection of condensers • O ti Options: • Air cooled condensers • Air-cooled with water spray condensers • Shell & tube condensers with water-cooling • Water-cooled shell & tube condenser • Lower discharge pressure • Higher TR g • Lower power consumption 39 Adel Mourtada 39
  • 40. Energy Efficiency Measures 2. Maintain Heat Exchanger Surfaces g • Poor maintenance = increased power consumption • Maintain condensers and evaporators • S Separation of lubricating oil and refrigerant ti f l b i ti il d f i t • Timely defrosting of coils • Increased velocity of secondary coolant • Maintain cooling towers • 0 55◦C reduction in returning water from cooling 0.55 tower = 3.0 % reduced power 40 Adel Mourtada 40
  • 41. Energy Efficiency Measures 2. Maintain Heat Exchanger Surfaces Effect of poor maintenance on compressor power consumption Specific Increase Te Tc Refrigeration Power kW/TR Condition (0C) (0C) Capacity* (TR) Consumption (%) (kW/TR) Normal 7.2 40.5 17.0 0.69 - Dirty condenser y 7.2 46.1 15.6 0.84 20.4 Dirty evaporator 1.7 40.5 13.8 0.82 18.3 Dirty condenser 1.7 46.1 12.7 0.96 38.7 and evaporator 41 Adel Mourtada 41
  • 42. Energy Efficiency Measures 3. Multi-Staging Systems g g y • Suited for • Low temp applications with high compression • Wide temperature range • Two types for all compressor types • Compound • Cascade 42 Adel Mourtada 42
  • 43. Energy Efficiency Measures 3. Multi-Stage Systems a. Compound • Two low compression ratios = 1 high • First stage compressor meets cooling load • Second stage compressor meets load evaporator and flash gas • Single refrigerant b. b Cascade • Preferred for -46 oC to -101oC • Two systems with different refrigerants 43 Adel Mourtada 43
  • 44. Energy Efficiency Measures 4. Matching Capacity to Load System • Most applications have varying loads • Consequence of part-load operation q p p • COP increases • but lower efficiency • Match refrigeration capacity to load requires knowledge of • Compressor performance • Variations in ambient conditions • Cooling load 44 Adel Mourtada 44
  • 45. Energy Efficiency Measures 5. Capacity Control of Compressors • Cylinder unloading, vanes, valves • Reciprocating compressors: step-by-step through cylinder unloading: • Centrifugal compressors: continuous modulation through vane control • Screw compressors: sliding valves • Speed control p • Reciprocating compressors: ensure lubrication system is not affected • Centrifugal compressors: >50% of capacity 45 Adel Mourtada 45
  • 46. Energy Efficiency Measures 5. Capacity Control of Compressors • Temperature monitoring • Reciprocating compressors: return water (if varying loads) water leaving chiller loads), (constant loads) • Centrifugal compressors: outgoing water temperature • Screw compressors: outgoing water temperature • Part load applications: screw compressors more efficient 46 Adel Mourtada 46
  • 47. Energy Efficiency Measures 6. Multi-Level Refrigeration Bank of compressors at central plant • Monitor cooling and chiller load: 1 chiller full load l d more efficient than 2 chillers at part-load ffi i t th hill t tl d • Distribution system: individual chillers feed all branch lines; Isolation valves; Valves to isolate sections • Load individual compressors to full capacity before operating second compressor • Provide smaller capacity chiller to meet peak demands 47 Adel Mourtada 47
  • 48. Energy Efficiency Measures 6. Multi Level Refrigeration Multi-Level Packaged units (instead of central plant) • Diverse applications with wide temp range and long distance • Benefits: economical flexible and reliable economical, • Disadvantage: central plants use less power Flow control • Reduced flow • Operation at normal flow with shut-off periods 48 Adel Mourtada 48
  • 49. Energy Efficiency Measures 7. Chilled Water Storage • Chilled water storage facility with insulation • Suited only if temp variations are acceptable • Economical because • Chillers operate during low peak demand hours: reduced peak demand charges • Chillers operate at nighttime: reduced tariffs and improved COP 49 Adel Mourtada 49
  • 50. Energy Efficiency Measures 8. System Design Features • FRP impellers film fills PVC drift eliminators impellers, fills, • Softened water for condensers • Economic insulation thickness • Roof coatings and false ceilings • Energy efficient heat recovery devices • Variable air volume systems • Sun film application for heat reflection • Optimizing lighting loads 50 Adel Mourtada 50
  • 51. Energy Efficiency Measures 9. System Design Features y g - Selecting a cooling tower - Fills - Pumps and water distribution - Fans and motors 51 Adel Mourtada 51
  • 52. Energy Efficiency Measures Selecting S l ti a cooling tower li t Capacity • Heat dissipation (kCal/hour) • Circulated flow rate (m3/hr) • Other factors 52 Adel Mourtada 52
  • 53. Energy Efficiency Measures Selecting a cooling tower Range • Range determined by process, not by system Approach • Closer to the wet bulb temperature • Bigger size cooling tower • More expensive 53 Adel Mourtada 53
  • 54. Energy Efficiency Measures Selecting a cooling tower Heat Load • Determined by process • Required cooling is controlled by the desired operating temperature • High heat load = large size and cost of cooling tower 54 Adel Mourtada 54
  • 55. Energy Efficiency Measures Selecting a cooling tower Wet bulb temperature – considerations: • Water i W t is cooled to temp hi h th wet bulb l dt t higher than t b lb temp • Conditions at tower site • Not to exceed 5% of design wet bulb temp • Is wet bulb temp specified as ambient (preferred) or inlet • Can tower deal with increased wet bulb temp • Cold water to exchange heat 55 Adel Mourtada 55
  • 56. Energy Efficiency Measures Selecting a cooling tower Relationship range, flow and heat load • Range increases with increased • Amount circulated water (flow) • Heat load • Causes of range increase • Inlet water temperature increases p • Exit water temperature decreases • Consequence = larger tower q g 56 Adel Mourtada 56
  • 57. Energy Efficiency Measures Selecting a cooling tower Relationship Approach and Wet bulb temperature • If approach stays the same (e.g. 4.45 oC) • Higher wet bulb temperature (26.67 oC) = more heat picked up (15.5 kCal/kg air) = smaller tower needed • Lower wet bulb temperature (21.11 oC) = less heat picked up (12.1 kCal/kg air) = larger tower needed 57 Adel Mourtada 57
  • 58. Energy Efficiency Measures Fill media di • Hot water distributed over fill media and cools down through evaporation • Fill media impacts electricity use • Efficiently designed fill media reduces pumping costs • Fill media influences heat exchange: surface area, duration of contact, turbulence 58 Adel Mourtada 58
  • 59. Energy Efficiency Measures Pumps and water distribution p • Pumps: see pumps session • O ti i cooling water treatment Optimize li t t t t • Increase cycles of concentration (COC) by cooling water treatment helps reduce make up water • Indirect electricity savings y g • Install drift eliminators • Reduce drift loss from 0 02% to only 0 003 – 0.02% 0.003 0.001% 59 Adel Mourtada 59
  • 60. Energy Efficiency Measures Cooling Tower Fans • Fans must overcome system resistance, pressure loss: impacts electricity use • Fan efficiency depends on blade profile fil • Replace metallic fans with FBR blades (20- 30% savings) • Use blades with aerodynamic profile (85-92% fan efficiency) y) 60 Adel Mourtada 60
  • 61. Benefits of Variable Flow • Lowest Energy consumption • Low Differential Pressure • Easier Operation • Reduced & Timely Maintenance • Greatest Diversity • Fewer or smaller chillers possible Adel Mourtada 61
  • 62. Why Variable Flow? Why Variable Flow? • Power varies with Cube of New Flow Ratio. - New Energy = New Flow / Old Flow (½), Cubed (½) = 1/8 - Most reliable operation. Therefore, Energy Savings = 7/8 of the original energy (less any losses from new equipment)! Adel Mourtada 62
  • 63. Energy Efficiency Measures Fill media Comparing 3 fill media: film fill more efficient Splash Fill Film Fill Low Clog Film Fill Possible L/G Ratio 1.1 – 1.5 1.5 – 2.0 1.4 – 1.8 Effective Heat Exchange 30 – 45 150 m2/m3 85 - 100 m2/m3 Area m2/m3 Fill Height Required 5 – 10 m 1.2 – 1.5 m 1.5 – 1.8 m Pumping Head 9 – 12 m 5–8m 6–9m Requirement Quantity of Air Required Q tit f Ai R i d High Hi h Much L M h Low Low L 63 Adel Mourtada 63
  • 64. VPF system configurations Manifolded M if ld d pumps – Redundancy – Reduced energy – VFD on all pumps VFD ll – Allows “overpumping”  for “Low ΔT for  Low ΔT  Syndrome” Adel Mourtada 64
  • 65. Keep it Simple • Well designed control system is Well designed control system is  mandatory. • Mi i i Minimize manual operation. l i • Develop clearly written operating  procedure and  backup                   failure mode. • Continual training of                                the operators. Adel Mourtada 65
  • 66. - Refrigeration cycle - AC/R f i AC/Refrigeration S t ti Systems and d Components -Type of refrigeration - Assessment of refrigeration and AC g -Energy Efficiency Measures -Energy Audit of HVAC System in Commercial Building Utilities Adel Mourtada 66
  • 67. Typical Cooling Load Profile yp g Load in TR Load in TR 300 250 200 150 Load in TR Load in TR 100 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 67 Adel Mourtada 67
  • 68. Energy Saving Possibilities Energy Saving Possibilities Reduce cooling Load Adequate Regulation Use VAV fans Use VAV fans Shift Cooling Demand To  Reduce Required chiller  Off Peak Hours Capacity  for meeting  the peak load Reduce Maximum  Electrical Demand and  Switch off Chillers during  Switch off Chillers during hence corresponding  h d peak tariff period  Electrical Installation Generate Hot Water up to  Generate Pure water  60 ºC through  through waste heat  waste heat recovery  recovery from Chiller from Chiller from Chiller 68 Adel Mourtada 68
  • 69. Interior Window Films  Interior Window Films • If acceptable by  building  g management,  y window films may be  a useful option.   Choose film tailored  for climate. Pay Back Period 2 years 69 Adel Mourtada 69
  • 70. Programmable Thermostats or BMS Programmable Thermostats or BMS • They work when They work when  you use them. Adel Mourtada 70
  • 71. VAV Fans Control • Static Pressure Reset on VAV Systems. – P id Provides significant fan energy savings  i ifi t f i since system is often at part load – Reduces fan noise “Variable air volume (VAV ) terminal units  shall be programmed to operate at the  minimum airflow when the zone  temperature is within the set  deadband.” Adel Mourtada 71
  • 72. Heat recovery from Chiller y Air‐ Air Chiller  Mode conditione d Space 700 kW (200  TR) cooling  load 140 kW  140 kW Electrical  Input 840 kW heat  840 kW heat About 8‐12% of heat can be recovered in Chiller mode (i.e. 65‐100 kW  Rejected   heat) through desuperheater (Free of Cost ) through  ~0.1 Carbon credit per hour  CT/aircooled ~ 720 Carbon Credits/ Year (24hrs x 300 Days) 720 Carbon Credits/ Year (24hrs x 300 Days) condenser d 72 Adel Mourtada 72
  • 73. Partial Heat Partial Heat Recovery Recovery Air cooled or  water cooled  50°C 55°C Additional condenser Desuperheater p refrigerant fi t fluid tank Liquid  Desuperheated  Gas  Gas Expansion  valve Compressors Evaporator Partial heat recovery  (Desuperheater) does not require  (Desuperheater) does not require 12°C any additional electrical input. It  Chilled water 7°C recovers (8‐12%) of waste heat  73 Adel Mourtada free of cost. 73
  • 74. Hot Water Economics ESTIMATES OF ANNUAL SAVINGS: Hot water capacity : 10000 Lts/day Diesel cost :  0.70$ per liter ; Diesel NCV :10100 Kcal/Liter ;  Boiler efficiency : 85% Saving by Heat Recovery system over diesel fired boiler   S i b di l fi d b il 7000 US$/year  74 Adel Mourtada 74
  • 75. Thermal Energy Storage System Thermal Energy Storage System CRISTOPIA STL phase change thermal energy storage  offers a unique solution to any of the following  energy management problems: • Reduction of installed power • Peak ‘shaving’ or ‘lopping’ of cyclic loads • Optimization of electrical resources.  • Increase cooling output to meet higher demand  Increase cooling output to meet higher demand without increasing existing plant capacity. • Energy management (off‐peak electricity) • Increase system reliability • Back‐up function • Protect ozone area by a limitation of CFC and HCFC 75 Adel Mourtada 75
  • 76. Some Possibilities with STL Discharge kW of refrigeration 1000,0 Direct Production Discharge 800,0 Charge 1200 k W o f re frig e ra tio n Direct Production 600,0 1000 Charge 400,0 800 f g 600 200,0 400 ,0 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 Hours 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hours Traditional  Peak shaving with  Solution chiller switched  kW of re frigeration 1,200 Daily Consumption 1,000 Peak shaving g 800 600 off during high  off during high 400 200 0 tariff period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Discharge 1 000 k W o f refr era tio n Hours Direct Production Discharge 800 Charge 1000 Charge ation rig 600 kW of refrigera 800 400 600 200 400 0 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 Hours 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hours Chiller switched off during high  Pay Back  Total storage during off  tariff period peak hours period 4 years
  • 77. ALMEE 77 Adel Mourtada 77
  • 78. ALMEE Adel Mourtada 78
  • 79. Thank you for your attention Adel Mourtada 79
  • 80. Annex - Instruments Required - Cost Effectives Measures Adel Mourtada 80
  • 81. Instruments Required Instruments Required • Power Analyzer: Used for measuring electrical parameters of motors such as kW, kVA, pf, V, A and Hz • Temperature Indicator & Probe • Pressure Gauge: To measure operating pressure and pressure drop in the system • Stroboscope: To measure the speed of the driven equipment and motor • Ultra sonic flow meter or online flow meter • Sling hygrometer or digital hygrometer • A Anemometer t • In addition to the above calibrated online instruments can be used • PH meter Adel Mourtada 81
  • 82. Measurements & Observation Energy consumption pattern of pumps and cooling tower fans Motor electrical parameters (kW, kVA, Pf, A, V, Hz, THD) for pumps and cooling tower fans Pump operating parameters to be measured/monitored for each pump are: - Discharge, - Head (suction & discharge) - Valve position – Temperature - Load variation, Power variation parameters of pumps - Pumps operating hours and operating schedule Pressure drop in the system (between discharge and user point) Pressure drop and temperatures across the users (heat exchangers, condensers, etc) Cooling water flow rate to users - Pump /Motor g p speedd Actual pressure at the user end User area pressure of operation and requirement Adel Mourtada 82
  • 83. Exploration of Energy Conservation Possibilities Water pumping and cooling tower • Improvement of systems and drives • Use of energy efficient pumps • Correcting inaccuracies of the Pump sizing / Trimming of impellers • Use of high efficiency motors • Integration of variable speed drives into pumps: The integration of adjustable speed drives (VFD) into compressors could lead to energy efficiency improvements, depending on load characteristics • High Performance Lubricants: The low temperature fluidity and high temperature stability of high performance lubricants can increase energy efficiency by reducing frictional losses • Improvements in condenser performance I t i d f • Improvement in cooling tower performance • Application potential for energy efficient fans for cooling tower fans • Measuring and tracking system performance Adel Mourtada 83
  • 84. Exploration of Energy Conservation Possibilities p gy • Measuring water use and energy consumption is essential in determining whether changes i i li d i i h h h in maintenance practices or investment in equipment could be cost effective • In this case it is advised to monitor the water flow rate and condenser parameters, cooling tower parameters p p periodically i.e. at least once y in a three months and energy consumption on daily basis. This will help in identifying the - - Deviations in water flow rates - Heat duty of condenser and cooling towers - Measures to up keep the performance Adel Mourtada 84
  • 85. Exploration of Energy Conservation Possibilities p gy System Effect Factors • Equipment cannot perform at its optimum capacity if fans, pumps, and blowers have poor inlet and outlet conditions • Correction of system effect factors (SEFs) can have a significant effect on performance and energy savings • Elimination f Eli i i of cavitation: Fl i i Flow, pressure, andd efficiency are reduced in pumps operating under cavitation. Performance can be restored to manufacturer s manufacturer’s specifications through modifications. This usually involves inlet alterations and may involve elevation of a supply tank Adel Mourtada 85
  • 86. Exploration of Energy Conservation Possibilities p gy • Internal Running Clearances: The internal running clearances b t l between rotating and non-rotating t ti d t ti elements strongly influence the turbo machine's ability to meet rated performance. Proper set-up reduces the amount of leakage ( g (re-circulation) from ) the discharge to the suction side of the impeller • Reducing work load of pumping: Reducing of obstructions in the suction / delivery pipes thereby ypp y reduction in frictional losses. This includes removal of unnecessary valves of the system due to changes. Even system and layout changes may help in this including increased pipe diameter Replacement of diameter. components deteriorated due to wear and tear during operation, modifications in piping system Adel Mourtada 86
  • 87. Sources: - “Energy Equipments” UNEP/SIDA/Gerlap, - “HVAC System Design”, Mark Hydeman, P.E., FASHRAE Taylor Engineering, LLC. - “Building Automatic System Bradley Chapman, DWEYER Building System” - “Solar Cooling”, Eco buildings, SARA. - “Ventilation for buildings Energy performance of buildings Guidelines for inspection of air-conditioning systems- EN 15240”, Intelligence Energy. - “Energy Efficiency Guidelines”, Brahm Segal, Power Correction System. - “Results of HVAC system monitoring of tertiary buildings in Italy”, M. Masoero, C. Silvi, J. Toniolo , Politecnico di Torino, HarmonAC - “Saving Energy Municipal Buildings and More”, Ben J Sliwinski Building More” J. Research Council School of Architecture, University of Illinois at Urbana- Champaign. Kreider Curtis Rabl, Mac gGaw Hill. - “Cleanrooms Energy Benchmarking”, Lawrence Berkley laboratory. Adel Mourtada 87