D’un point de vue général, la méthode statistique de régression consiste à estimer la relation mathématique entre un ensemble de variables, appelées variables explicatives ou descriptives ou indépendantes, et une variable observée ou mesurée. On cherche donc à déterminer, parmi une certaine classe de fonctions, la fonction qui décrive de façon optimale (en un certain sens) cette relation. La régression polynomiale consiste à estimer la relation entre variables explicatives et données observées à l’aide d’une fonction polynomiale de degré fixé k. Le nombre de paramètres inconnus est alors k + 1 et ils sont le plus souvent estimés en minimisant un critère des moindres carrés, qui est le carré de la distance euclidienne entre les valeurs observées et les valeurs prédites par le modèle polynomial. L’un des problèmes à résoudre dans ce contexte est évidemment le choix du degré du polynôme.