There are two cultures in data science and analytics - those that develop analytic models and those that deploy analytic models into operational systems. In this talk, we review the life cycle of analytic models and provide an overview of some of the approaches that have been developed for managing analytic models and workflows and for deploying them, including using analytic engines and analytic containers . We give a quick overview of languages for analytic models (PMML) and analytic workflows (PFA). We also describe the emerging discipline of AnalyticOps that has borrowed some of the techniques of DevOps.