SlideShare a Scribd company logo
1 of 25
Differentiation Chap 9

Objective: How to find
Stationary Points
&
determine their nature
(maximum/minimum)
riazidan
The stationary points of a curve are the points where
the gradient is zero
e.g.

y = x3 − 3x2 − 9x

A local maximum
x

dy
=0
dx
x

A local minimum
The word local is usually omitted and the points called
maximum and minimum points.
e.g.1 Find the coordinates of the stationary points
on the curve y = x 3 − 3 x 2 − 9 x
y = x3 − 3x2 − 9x
Solution:

dy
⇒
= 3x2 − 6x − 9
dx
dy
⇒ 3 x 2 − 6 x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0
=0
dx
3( x − out + 1 = 0 ⇒ x = 3
Tip: Watch 3)( xfor )common factors or x = −1
x = 3 when finding )stationary points.
⇒ y = ( 3 3 − 3( 3) 2 − 9( 3)
= 27 − 27 − 27 = − 27
x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1)
= −1 − 3 + 9 = 5
The stationary points are (3, -27) and ( -1, 5)
Exercises
Find the coordinates of the stationary points of the
following functions
2
1. y = x − 4 x + 5

2.

y = 2 x 3 + 3 x 2 − 12 x + 1

Solutions:
dy
1.
= 2x − 4

dx
dy
= 0 ⇒ 2x − 4 = 0
dx
⇒ x=2

x = 2 ⇒ y = ( 2) 2 − 4( 2) + 5 = 1
Ans: St. pt. is ( 2, 1)
y = 2 x 3 + 3 x 2 − 12 x + 1

2.
Solution:

dy
= 6 x 2 + 6 x − 12
dx

dy
= 0 ⇒ 6( x 2 + x − 2) = 0 ⇒ 6( x − 1)( x + 2) = 0
dx
⇒ x = 1 or x = −2
x = 1 ⇒ y = −6
x = −2 ⇒ y = 2( −2) 3 + 3( −2) 2 − 12( −2) + 1 = 21
Ans: St. pts. are ( 1, −6) and ( −2, 21 )
We need to be able to determine the nature of a
stationary point ( whether it is a max or a min ).
There are several ways of doing this. e.g.
On the left of
a maximum,
the gradient is
positive

+

On the right of
a maximum,
the gradient is
negative

−
So, for a max the gradients are
0 At the max
On the left of
On the right of
the max
the max

−

+

The opposite is true for a minimum

−

0

+

Calculating the gradients on the left and right of a
stationary point tells us whether the point is a max or a
min.
e.g.2 Find the coordinates of the stationary point of the
2
curve y = x − 4 x + 1 . Is the point a max or min?

− − − − − − (1)
y = x2 − 4x + 1
Solution:
dy
⇒
= 2x − 4
dx
dy
=0
⇒
2x − 4 = 0 ⇒ x = 2
dx
y = ( 2) 2 − 4( 2) + 1
⇒ y = −3
Substitute in (1):
dy
= 2(1) − 4 = − 2 < 0
On the left of x = 2 e.g. at x = 1,
dx
dy
On the right of x = 2 e.g. at x = 3,
= 2( 3) − 4 = 2 > 0
dx
+
−
⇒ ( 2, − 3) is a min
We have
0
Another method for determining the nature of a
stationary point.
e.g.3 Consider

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

3
2
At the max of y = x + 3 x − 9 x + 10 the gradient is 0
but the gradient of the gradient is negative.
Another method for determining the nature of a
stationary point.
e.g.3 Consider

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

At the min of

y = x 3 + 3 x 2 − 9 x + 10
the gradient of the
gradient is positive.

d2y

The notation for the gradient of the gradient is
dx 2
“d 2 y by d x squared”
e.g.3 ( continued ) Find the stationary points on the
curve y = x 3 + 3 x 2 − 9 x + 10 and distinguish between
the max and the min.
y = x 3 + 3 x 2 − 9 x + 10
Solution:

dy
d2y
2
⇒
= 3x + 6x − 9 ⇒
= 6x + 6
2
dx
dx
2
dy
2 d y
Stationary points:
= 0 ⇒ 3 x + 6 x −is called the
9=0
dx
dx 2 nd
2 derivative
⇒ 3( x 2 + 2 x − 3) = 0
⇒ 3( x + 3)( x − 1) = 0
⇒

x = −3 or x = 1

We now need to find the y-coordinates of the st. pts.
y = x 3 + 3 x 2 − 9 x + 10
x = −3 ⇒

y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37

x =1

y = 1 + 3 − 9 + 10 = 5

⇒

To distinguish between max and min we use the 2nd
derivative, at the stationary points.

d2y
2

= 6x + 6

dx
d y
= 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 )
At x = −3 ,
2
dx
2

At x = 1 ,

d2y
dx

2

= 6 + 6 = 12 > 0 ⇒ min at (1, 5)
SUMMARY
 To find stationary points, solve the equation
dy
=0
dx
 Determine the nature of the stationary points

•

either by finding the gradients on the left
and right of the stationary points

+

−
•

⇒ minimum

0

0

+

−

⇒

maximum

or by finding the value of the 2nd derivative
at the stationary points

d2y
dx

2

< 0 ⇒ max

d2y
dx

2

> 0 ⇒ min
Exercises
Find the coordinates of the stationary points of the
following functions, determine the nature of each
and sketch the functions.
3
2
3

2

y = x + 3x − 2
Ans. (0, − 2) is a min.

1.

(−2 , 2)
2.

y = x + 3x − 2

is a max.

y = 2 + 3x − x3

Ans. (−1, 0)

(1 , 4)

is a min.
is a max.

y = 2 + 3x − x3
The following slides contain repeats of
information on earlier slides, shown without
colour, so that they can be printed and
photocopied.
For most purposes the slides can be printed
as “Handouts” with up to 6 slides per sheet.
The stationary points of a curve are the points where
the gradient is zero
e.g.

y = x3 − 3x2 − 9x

A local maximum
x

dy
=0
dx
x

A local minimum
The word local is usually omitted and the points called
maximum and minimum points.
e.g.1 Find the coordinates of the stationary points
y = x3 − 3x2 − 9x
on the curve
Solution:

⇒
dy
=0
dx

⇒

y = x3 − 3x2 − 9x
dy
= 3x2 − 6x − 9
dx
3x2 − 6x − 9 = 0 ⇒

3( x 2 − 2 x − 3) = 0

3( x − 3)( x + 1) = 0 ⇒ x = 3 or x = −1
x = 3 ⇒ y = ( 3) 3 − 3( 3) 2 − 9( 3)
= 27 − 27 − 27 = − 27
x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1)
= −1 − 3 + 9 = 5
The stationary points are (3, -27) and ( -1, 5)
Determining the nature of a Stationary Point
For a max we have
On the left of
the max

+

0

At the max

−

On the right of
the max

The opposite is true for a minimum

−

0

+

Calculating the gradients on the left and right
of a stationary point tells us whether the point
is a max or a min.
Another method for determining the nature of a
stationary point.
e.g. Consider

y

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

3
2
At the max of y = x + 3 x − 9 x + 10 the gradient is
0, but the gradient of the gradient is negative.
y = x 3 + 3 x 2 − 9 x + 10
The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

At the min of
y = x 3 + 3 x 2 − 9 x + 10
the gradient of the
gradient is positive.

d2y

The notation for the gradient of the gradient is
dx 2
“d 2 y by d x squared”
The gradient of the gradient is called the 2nd
derivative and is written as

d2y
dx 2
e.g. Find the stationary points on the curve
3
y = xand 3distinguish between the max
+ x 2 − 9 x + 10

and the=min.+ 3 x 2 − 9 x + 10
y x3
Solution:

dy
d2y
2
⇒
= 3x + 6x − 9 ⇒
= 6x + 6
2
dx
dx
dy
Stationary points:
= 0 ⇒ 3x2 + 6x − 9 = 0
dx
⇒ 3( x 2 + 2 x − 3) = 0
⇒ 3( x + 3)( x − 1) = 0
⇒

x = −3 or x = 1

We now need to find the y-coordinates of the st. pts.
y = x 3 + 3 x 2 − 9 x + 10
x = −3 ⇒

y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37

x =1

y = 1 + 3 − 9 + 10 = 5

⇒

To distinguish between max and min we use the 2nd
derivative,
d2y
2

= 6x + 6

dx
d2y
At x = −3 , 2 = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 )
dx
At

x =1 ,

d2y
dx

2

= 6 + 6 = 12 > 0 ⇒ min at (1, 5)
SUMMARY
 To find stationary points, solve the equation
dy
=0
dx
 Determine the nature of the stationary points

•

either by finding the gradients on the left
and right of the stationary points
0
−
+
−
⇒ maximum
⇒ minimum +
0
• or by finding the value of the 2nd derivative
at the stationary points

d2y
dx

2

< 0 ⇒ max

d2y
dx

2

> 0 ⇒ min

More Related Content

What's hot

Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functions
Jessica Garcia
 
Linear equations in one variable
Linear equations in one variableLinear equations in one variable
Linear equations in one variable
Abhaya Gupta
 
Equivalent equations
Equivalent equationsEquivalent equations
Equivalent equations
miburton
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
Lenie Zapata
 

What's hot (20)

Factorising quadratic expressions 1
Factorising quadratic expressions 1Factorising quadratic expressions 1
Factorising quadratic expressions 1
 
Solving linear equation
Solving linear equationSolving linear equation
Solving linear equation
 
Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functions
 
DIFFERENTIATION
DIFFERENTIATIONDIFFERENTIATION
DIFFERENTIATION
 
Linear equations in one variable
Linear equations in one variableLinear equations in one variable
Linear equations in one variable
 
Lesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient RulesLesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient Rules
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Quadratic functions my maths presentation
Quadratic functions my maths presentationQuadratic functions my maths presentation
Quadratic functions my maths presentation
 
Math for Bus. and Eco. Chapter 2
Math for Bus. and Eco. Chapter 2Math for Bus. and Eco. Chapter 2
Math for Bus. and Eco. Chapter 2
 
Differentiation using First Principle - By Mohd Noor Abdul Hamid
Differentiation using First Principle  - By Mohd Noor Abdul HamidDifferentiation using First Principle  - By Mohd Noor Abdul Hamid
Differentiation using First Principle - By Mohd Noor Abdul Hamid
 
Linear equations
Linear equationsLinear equations
Linear equations
 
Equivalent equations
Equivalent equationsEquivalent equations
Equivalent equations
 
Distributive Property
Distributive Property Distributive Property
Distributive Property
 
Polynomials
PolynomialsPolynomials
Polynomials
 
5 1 quadratic transformations
5 1 quadratic transformations5 1 quadratic transformations
5 1 quadratic transformations
 
Continuous functions
Continuous functionsContinuous functions
Continuous functions
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
Factorization
Factorization Factorization
Factorization
 
Absolute Value Notes
Absolute Value NotesAbsolute Value Notes
Absolute Value Notes
 

Viewers also liked (20)

Stationary points
Stationary pointsStationary points
Stationary points
 
IB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative testIB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative test
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
 
IB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative testIB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative test
 
C4 2012 june
C4 2012 juneC4 2012 june
C4 2012 june
 
C4 January 2012 QP
C4 January 2012 QPC4 January 2012 QP
C4 January 2012 QP
 
Simltaneous equations
Simltaneous equationsSimltaneous equations
Simltaneous equations
 
Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2
 
C3 bronze 1
C3 bronze 1C3 bronze 1
C3 bronze 1
 
Kinematics
KinematicsKinematics
Kinematics
 
M1 January 2012 QP
M1 January 2012 QPM1 January 2012 QP
M1 January 2012 QP
 
C3 January 2012 QP
C3 January 2012 QPC3 January 2012 QP
C3 January 2012 QP
 
C3 2012 june
C3 2012 juneC3 2012 june
C3 2012 june
 
Dynamics (full chapter)
Dynamics (full chapter)Dynamics (full chapter)
Dynamics (full chapter)
 
Kinematics jan 27
Kinematics jan 27Kinematics jan 27
Kinematics jan 27
 
Kinematics displacement velocity graphs
Kinematics   displacement velocity graphsKinematics   displacement velocity graphs
Kinematics displacement velocity graphs
 
C4 EDEXCEL HELP
C4 EDEXCEL HELPC4 EDEXCEL HELP
C4 EDEXCEL HELP
 
dynamics text (M1)
dynamics text (M1)dynamics text (M1)
dynamics text (M1)
 
Increasing decreasing functions
Increasing decreasing functionsIncreasing decreasing functions
Increasing decreasing functions
 
Numerical analysis stationary variables
Numerical analysis  stationary variablesNumerical analysis  stationary variables
Numerical analysis stationary variables
 

Similar to Differentiation jan 21, 2014

C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
fatima d
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions
dicosmo178
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtys
Lina Ša
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
akabaka12
 
maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiation
tenwoalex
 

Similar to Differentiation jan 21, 2014 (20)

C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions
 
Algebra Revision.ppt
Algebra Revision.pptAlgebra Revision.ppt
Algebra Revision.ppt
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtys
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
Quadraticequation
QuadraticequationQuadraticequation
Quadraticequation
 
Derivatives
DerivativesDerivatives
Derivatives
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Core 1 revision notes a
Core 1 revision notes aCore 1 revision notes a
Core 1 revision notes a
 
整卷
整卷整卷
整卷
 
Integration
IntegrationIntegration
Integration
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiation
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Differentiation.pptx
Differentiation.pptxDifferentiation.pptx
Differentiation.pptx
 

More from Mohammed Ahmed (7)

vectors
vectorsvectors
vectors
 
vectors
vectorsvectors
vectors
 
Moments
MomentsMoments
Moments
 
statics
staticsstatics
statics
 
Chap 3 3a to 3d
Chap 3 3a to 3dChap 3 3a to 3d
Chap 3 3a to 3d
 
C2 differentiation jan 22
C2 differentiation jan 22C2 differentiation jan 22
C2 differentiation jan 22
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their Graphs
 

Recently uploaded

會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
CaitlinCummins3
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
 
An Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppAn Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge App
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptx
 
“O BEIJO” EM ARTE .
“O BEIJO” EM ARTE                       .“O BEIJO” EM ARTE                       .
“O BEIJO” EM ARTE .
 
Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
size separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceuticssize separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceutics
 
Capitol Tech Univ Doctoral Presentation -May 2024
Capitol Tech Univ Doctoral Presentation -May 2024Capitol Tech Univ Doctoral Presentation -May 2024
Capitol Tech Univ Doctoral Presentation -May 2024
 
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjj
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjjStl Algorithms in C++ jjjjjjjjjjjjjjjjjj
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjj
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
 
How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17
 
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING IIII BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
 
Word Stress rules esl .pptx
Word Stress rules esl               .pptxWord Stress rules esl               .pptx
Word Stress rules esl .pptx
 
demyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptxdemyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptx
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
Graduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptxGraduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptx
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/
 
Software testing for project report .pdf
Software testing for project report .pdfSoftware testing for project report .pdf
Software testing for project report .pdf
 

Differentiation jan 21, 2014

  • 1. Differentiation Chap 9 Objective: How to find Stationary Points & determine their nature (maximum/minimum) riazidan
  • 2. The stationary points of a curve are the points where the gradient is zero e.g. y = x3 − 3x2 − 9x A local maximum x dy =0 dx x A local minimum The word local is usually omitted and the points called maximum and minimum points.
  • 3. e.g.1 Find the coordinates of the stationary points on the curve y = x 3 − 3 x 2 − 9 x y = x3 − 3x2 − 9x Solution: dy ⇒ = 3x2 − 6x − 9 dx dy ⇒ 3 x 2 − 6 x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0 =0 dx 3( x − out + 1 = 0 ⇒ x = 3 Tip: Watch 3)( xfor )common factors or x = −1 x = 3 when finding )stationary points. ⇒ y = ( 3 3 − 3( 3) 2 − 9( 3) = 27 − 27 − 27 = − 27 x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1) = −1 − 3 + 9 = 5 The stationary points are (3, -27) and ( -1, 5)
  • 4. Exercises Find the coordinates of the stationary points of the following functions 2 1. y = x − 4 x + 5 2. y = 2 x 3 + 3 x 2 − 12 x + 1 Solutions: dy 1. = 2x − 4 dx dy = 0 ⇒ 2x − 4 = 0 dx ⇒ x=2 x = 2 ⇒ y = ( 2) 2 − 4( 2) + 5 = 1 Ans: St. pt. is ( 2, 1)
  • 5. y = 2 x 3 + 3 x 2 − 12 x + 1 2. Solution: dy = 6 x 2 + 6 x − 12 dx dy = 0 ⇒ 6( x 2 + x − 2) = 0 ⇒ 6( x − 1)( x + 2) = 0 dx ⇒ x = 1 or x = −2 x = 1 ⇒ y = −6 x = −2 ⇒ y = 2( −2) 3 + 3( −2) 2 − 12( −2) + 1 = 21 Ans: St. pts. are ( 1, −6) and ( −2, 21 )
  • 6. We need to be able to determine the nature of a stationary point ( whether it is a max or a min ). There are several ways of doing this. e.g. On the left of a maximum, the gradient is positive + On the right of a maximum, the gradient is negative −
  • 7. So, for a max the gradients are 0 At the max On the left of On the right of the max the max − + The opposite is true for a minimum − 0 + Calculating the gradients on the left and right of a stationary point tells us whether the point is a max or a min.
  • 8. e.g.2 Find the coordinates of the stationary point of the 2 curve y = x − 4 x + 1 . Is the point a max or min? − − − − − − (1) y = x2 − 4x + 1 Solution: dy ⇒ = 2x − 4 dx dy =0 ⇒ 2x − 4 = 0 ⇒ x = 2 dx y = ( 2) 2 − 4( 2) + 1 ⇒ y = −3 Substitute in (1): dy = 2(1) − 4 = − 2 < 0 On the left of x = 2 e.g. at x = 1, dx dy On the right of x = 2 e.g. at x = 3, = 2( 3) − 4 = 2 > 0 dx + − ⇒ ( 2, − 3) is a min We have 0
  • 9. Another method for determining the nature of a stationary point. e.g.3 Consider y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx 3 2 At the max of y = x + 3 x − 9 x + 10 the gradient is 0 but the gradient of the gradient is negative.
  • 10. Another method for determining the nature of a stationary point. e.g.3 Consider y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx At the min of y = x 3 + 3 x 2 − 9 x + 10 the gradient of the gradient is positive. d2y The notation for the gradient of the gradient is dx 2 “d 2 y by d x squared”
  • 11. e.g.3 ( continued ) Find the stationary points on the curve y = x 3 + 3 x 2 − 9 x + 10 and distinguish between the max and the min. y = x 3 + 3 x 2 − 9 x + 10 Solution: dy d2y 2 ⇒ = 3x + 6x − 9 ⇒ = 6x + 6 2 dx dx 2 dy 2 d y Stationary points: = 0 ⇒ 3 x + 6 x −is called the 9=0 dx dx 2 nd 2 derivative ⇒ 3( x 2 + 2 x − 3) = 0 ⇒ 3( x + 3)( x − 1) = 0 ⇒ x = −3 or x = 1 We now need to find the y-coordinates of the st. pts.
  • 12. y = x 3 + 3 x 2 − 9 x + 10 x = −3 ⇒ y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37 x =1 y = 1 + 3 − 9 + 10 = 5 ⇒ To distinguish between max and min we use the 2nd derivative, at the stationary points. d2y 2 = 6x + 6 dx d y = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 ) At x = −3 , 2 dx 2 At x = 1 , d2y dx 2 = 6 + 6 = 12 > 0 ⇒ min at (1, 5)
  • 13. SUMMARY  To find stationary points, solve the equation dy =0 dx  Determine the nature of the stationary points • either by finding the gradients on the left and right of the stationary points + − • ⇒ minimum 0 0 + − ⇒ maximum or by finding the value of the 2nd derivative at the stationary points d2y dx 2 < 0 ⇒ max d2y dx 2 > 0 ⇒ min
  • 14. Exercises Find the coordinates of the stationary points of the following functions, determine the nature of each and sketch the functions. 3 2 3 2 y = x + 3x − 2 Ans. (0, − 2) is a min. 1. (−2 , 2) 2. y = x + 3x − 2 is a max. y = 2 + 3x − x3 Ans. (−1, 0) (1 , 4) is a min. is a max. y = 2 + 3x − x3
  • 15.
  • 16. The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.
  • 17. The stationary points of a curve are the points where the gradient is zero e.g. y = x3 − 3x2 − 9x A local maximum x dy =0 dx x A local minimum The word local is usually omitted and the points called maximum and minimum points.
  • 18. e.g.1 Find the coordinates of the stationary points y = x3 − 3x2 − 9x on the curve Solution: ⇒ dy =0 dx ⇒ y = x3 − 3x2 − 9x dy = 3x2 − 6x − 9 dx 3x2 − 6x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0 3( x − 3)( x + 1) = 0 ⇒ x = 3 or x = −1 x = 3 ⇒ y = ( 3) 3 − 3( 3) 2 − 9( 3) = 27 − 27 − 27 = − 27 x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1) = −1 − 3 + 9 = 5 The stationary points are (3, -27) and ( -1, 5)
  • 19. Determining the nature of a Stationary Point For a max we have On the left of the max + 0 At the max − On the right of the max The opposite is true for a minimum − 0 + Calculating the gradients on the left and right of a stationary point tells us whether the point is a max or a min.
  • 20. Another method for determining the nature of a stationary point. e.g. Consider y y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx 3 2 At the max of y = x + 3 x − 9 x + 10 the gradient is 0, but the gradient of the gradient is negative.
  • 21. y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx At the min of y = x 3 + 3 x 2 − 9 x + 10 the gradient of the gradient is positive. d2y The notation for the gradient of the gradient is dx 2 “d 2 y by d x squared”
  • 22. The gradient of the gradient is called the 2nd derivative and is written as d2y dx 2
  • 23. e.g. Find the stationary points on the curve 3 y = xand 3distinguish between the max + x 2 − 9 x + 10 and the=min.+ 3 x 2 − 9 x + 10 y x3 Solution: dy d2y 2 ⇒ = 3x + 6x − 9 ⇒ = 6x + 6 2 dx dx dy Stationary points: = 0 ⇒ 3x2 + 6x − 9 = 0 dx ⇒ 3( x 2 + 2 x − 3) = 0 ⇒ 3( x + 3)( x − 1) = 0 ⇒ x = −3 or x = 1 We now need to find the y-coordinates of the st. pts.
  • 24. y = x 3 + 3 x 2 − 9 x + 10 x = −3 ⇒ y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37 x =1 y = 1 + 3 − 9 + 10 = 5 ⇒ To distinguish between max and min we use the 2nd derivative, d2y 2 = 6x + 6 dx d2y At x = −3 , 2 = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 ) dx At x =1 , d2y dx 2 = 6 + 6 = 12 > 0 ⇒ min at (1, 5)
  • 25. SUMMARY  To find stationary points, solve the equation dy =0 dx  Determine the nature of the stationary points • either by finding the gradients on the left and right of the stationary points 0 − + − ⇒ maximum ⇒ minimum + 0 • or by finding the value of the 2nd derivative at the stationary points d2y dx 2 < 0 ⇒ max d2y dx 2 > 0 ⇒ min