SlideShare une entreprise Scribd logo
1  sur  80
Télécharger pour lire hors ligne
Building Full Stack Data Analytics Applications with Kafka and Spark
Agile Data Science 2.0
https://www.slideshare.net/rjurney/agile-data-science-20-big-data-science-meetup
or
http://bit.ly/agile_data_slides_2
Agile Data Science 2.0
Russell Jurney
2
Data Engineer
Data Scientist
Visualization Software Engineer
85%
85%
85%
Writer
85%
Teacher
50%
Russell Jurney is a veteran data
scientist and thought leader. He
coined the term Agile Data Science in
the book of that name from O’Reilly
in 2012, which outlines the first agile
development methodology for data
science. Russell has constructed
numerous full-stack analytics
products over the past ten years and
now works with clients helping them
extract value from their data assets.
Russell Jurney
Skill
Principal Consultant at Data Syndrome
Russell Jurney
Data Syndrome, LLC
Email : russell.jurney@gmail.com
Web : datasyndrome.com
Principal Consultant
Lorem Ipsum dolor siamet suame this placeholder for text can simply
random text. It has roots in a piece of classical. variazioni deiwords which
whichhtly. ven on your zuniga merida della is not denis.
Product Consulting
We build analytics products and systems
consisting of big data viz, predictions,
recommendations, reports and search.
Corporate Training
We offer training courses for data
scientists and engineers and data
science teams,
Video Training
We offer video training courses that rapidly
acclimate you with a technology and
technique.
Agile Data Science 2.0 4
What makes data science “agile data science”?
Theory
Agile Data Science 2.0 5
Yes. Building applications is a fundamental skill for today’s data scientist.
Data Products or Data Science?
Agile Data Science 2.0 6
Data Products
or
Data Science?
Agile Data Science 2.0 7
If someone else has to start over and rebuild it, it ain’t agile.
Big Data or Data Science?
Agile Data Science 2.0 8
Goal of
Methodology
The goal of agile data science in <140 characters: to
document and guide exploratory data analysis to
discover and follow the critical path to a compelling
product.
Agile Data Science 2.0 9
In analytics, the end-goal moves or is complex in nature, so we model as a
network of tasks rather than as a strictly linear process.
Critical Path
Agile Data Science 2.0
Agile Data Science Manifesto
10
Seven Principles for Agile Data Science
Discover and pursue the critical path to a killer product
Iterate, iterate, iterate: tables, charts, reports, predictions1.
Integrate the tyrannical opinion of data in product management4.
Get Meta. Describe the process, not just the end-state7.
Ship intermediate output. Even failed experiments have output2.
Climb up and down the data-value pyramid as we work5.
Prototype experiments over implementing tasks3.
6.
Agile Data Science 2.0 11
People will pay more for the things towards the top, but you need the things
on the bottom to have the things above. They are foundational. See:
Maslow’s Theory of Needs.
Data Value Pyramid
Agile Data Science 2.0 12
Things we use to build the apps
Tools
Agile Data Science 2.0
Agile Data Science 2.0 Stack
13
Apache Spark Apache Kafka MongoDB
Batch and Realtime
Realtime Queue Document Store
Flask
Simple Web App
Example of a high productivity stack for “big” data applications
ElasticSearch
Search
Agile Data Science 2.0
Flow of Data Processing
14
Tools and processes in collecting, refining, publishing and decorating data
{“hello”: “world”}
Data Syndrome: Agile Data Science 2.0
Apache Spark Ecosystem
15
HDFS, Amazon S3, Spark, Spark SQL, Spark MLlib, Spark Streaming
/
Agile Data Science 2.0 16
SQL or dataflow programming?
Programming Models
Agile Data Science 2.0 17
Describing what you want and letting the planner figure out how
SQL
SELECT associations2.object_id,
associations2.term_id, associations2.cat_ID,
associations2.term_taxonomy_id

FROM (SELECT objects_tags.object_id,
objects_tags.term_id, wp_cb_tags2cats.cat_ID,
categories.term_taxonomy_id

FROM (SELECT
wp_term_relationships.object_id,
wp_term_taxonomy.term_id,
wp_term_taxonomy.term_taxonomy_id

FROM wp_term_relationships

LEFT JOIN wp_term_taxonomy ON
wp_term_relationships.term_taxonomy_id =
wp_term_taxonomy.term_taxonomy_id

ORDER BY object_id ASC, term_id ASC) 

AS objects_tags

LEFT JOIN wp_cb_tags2cats ON
objects_tags.term_id = wp_cb_tags2cats.tag_ID

LEFT JOIN (SELECT
wp_term_relationships.object_id,
wp_term_taxonomy.term_id as cat_ID,
wp_term_taxonomy.term_taxonomy_id

FROM wp_term_relationships

LEFT JOIN wp_term_taxonomy ON
wp_term_relationships.term_taxonomy_id =
wp_term_taxonomy.term_taxonomy_id

WHERE wp_term_taxonomy.taxonomy =
'category'

GROUP BY object_id, cat_ID,
term_taxonomy_id

ORDER BY object_id, cat_ID,
term_taxonomy_id) 

AS categories on wp_cb_tags2cats.cat_ID
= categories.term_id

WHERE objects_tags.term_id =
wp_cb_tags2cats.tag_ID

GROUP BY object_id, term_id, cat_ID,
term_taxonomy_id

ORDER BY object_id ASC, term_id ASC, cat_ID
ASC) 

AS associations2

LEFT JOIN categories ON associations2.object_id
= categories.object_id

WHERE associations2.cat_ID <> categories.cat_ID

GROUP BY object_id, term_id, cat_ID,
term_taxonomy_id

ORDER BY object_id, term_id, cat_ID,
term_taxonomy_id
Agile Data Science 2.0 18
Flowing data through operations to effect change
Dataflow Programming
Agile Data Science 2.0 19
The best of both worlds!
SQL AND
Dataflow
Programming
# Flights that were late arriving...

late_arrivals =
on_time_dataframe.filter(on_time_dataframe.ArrD
elayMinutes > 0)

total_late_arrivals = late_arrivals.count()



# Flights that left late but made up time to
arrive on time...

on_time_heros = on_time_dataframe.filter(

(on_time_dataframe.DepDelayMinutes > 0)

&

(on_time_dataframe.ArrDelayMinutes <= 0)

)

total_on_time_heros = on_time_heros.count()



# Get the percentage of flights that are late,
rounded to 1 decimal place

pct_late = round((total_late_arrivals /
(total_flights * 1.0)) * 100, 1)



print("Total flights:
{:,}".format(total_flights))

print("Late departures:
{:,}".format(total_late_departures))

print("Late arrivals:
{:,}".format(total_late_arrivals))

print("Recoveries:
{:,}".format(total_on_time_heros))

print("Percentage Late: {}%".format(pct_late))



# Why are flights late? Lets look at some
delayed flights and the delay causes

late_flights = spark.sql("""

SELECT

ArrDelayMinutes,

WeatherDelay,

CarrierDelay,

NASDelay,

SecurityDelay,

LateAircraftDelay

FROM

on_time_performance

WHERE

WeatherDelay IS NOT NULL

OR

CarrierDelay IS NOT NULL

OR

NASDelay IS NOT NULL

OR

SecurityDelay IS NOT NULL

OR

LateAircraftDelay IS NOT NULL

ORDER BY

FlightDate

""")

late_flights.sample(False, 0.01).show()
# Calculate the percentage contribution to delay for each source

total_delays = spark.sql("""

SELECT

ROUND(SUM(WeatherDelay)/SUM(ArrDelayMinutes) * 100, 1) AS
pct_weather_delay,

ROUND(SUM(CarrierDelay)/SUM(ArrDelayMinutes) * 100, 1) AS
pct_carrier_delay,

ROUND(SUM(NASDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_nas_delay,

ROUND(SUM(SecurityDelay)/SUM(ArrDelayMinutes) * 100, 1) AS
pct_security_delay,

ROUND(SUM(LateAircraftDelay)/SUM(ArrDelayMinutes) * 100, 1) AS
pct_late_aircraft_delay

FROM on_time_performance

""")

total_delays.show()



# Generate a histogram of the weather and carrier delays

weather_delay_histogram = on_time_dataframe

.select("WeatherDelay")

.rdd

.flatMap(lambda x: x)

.histogram(10)



print("{}n{}".format(weather_delay_histogram[0],
weather_delay_histogram[1]))



# Eyeball the first to define our buckets

weather_delay_histogram = on_time_dataframe

.select("WeatherDelay")

.rdd

.flatMap(lambda x: x)

.histogram([1, 15, 30, 60, 120, 240, 480, 720, 24*60.0])

print(weather_delay_histogram)
# Transform the data into something easily consumed by d3

record = {'key': 1, 'data': []}

for label, count in zip(weather_delay_histogram[0],
weather_delay_histogram[1]):

record['data'].append(

{

'label': label,

'count': count

}

)



# Save to Mongo directly, since this is a Tuple not a dataframe or RDD

from pymongo import MongoClient

client = MongoClient()

client.relato.weather_delay_histogram.insert_one(record)
Agile Data Science 2.0 20
FAA on-time performance data
Data
Data Syndrome: Agile Data Science 2.0
Collect and Serialize Events in JSON
I never regret using JSON
21
Data Syndrome: Agile Data Science 2.0
FAA On-Time Performance Records
95% of commercial flights
22http://www.transtats.bts.gov/Fields.asp?table_id=236
Data Syndrome: Agile Data Science 2.0
FAA On-Time Performance Records
95% of commercial flights
23
"Year","Quarter","Month","DayofMonth","DayOfWeek","FlightDate","UniqueCarrier","AirlineID","Carrier","TailNum","FlightNum",
"OriginAirportID","OriginAirportSeqID","OriginCityMarketID","Origin","OriginCityName","OriginState","OriginStateFips",
"OriginStateName","OriginWac","DestAirportID","DestAirportSeqID","DestCityMarketID","Dest","DestCityName","DestState",
"DestStateFips","DestStateName","DestWac","CRSDepTime","DepTime","DepDelay","DepDelayMinutes","DepDel15","DepartureDelayGroups",
"DepTimeBlk","TaxiOut","WheelsOff","WheelsOn","TaxiIn","CRSArrTime","ArrTime","ArrDelay","ArrDelayMinutes","ArrDel15",
"ArrivalDelayGroups","ArrTimeBlk","Cancelled","CancellationCode","Diverted","CRSElapsedTime","ActualElapsedTime","AirTime",
"Flights","Distance","DistanceGroup","CarrierDelay","WeatherDelay","NASDelay","SecurityDelay","LateAircraftDelay",
"FirstDepTime","TotalAddGTime","LongestAddGTime","DivAirportLandings","DivReachedDest","DivActualElapsedTime","DivArrDelay",
"DivDistance","Div1Airport","Div1AirportID","Div1AirportSeqID","Div1WheelsOn","Div1TotalGTime","Div1LongestGTime",
"Div1WheelsOff","Div1TailNum","Div2Airport","Div2AirportID","Div2AirportSeqID","Div2WheelsOn","Div2TotalGTime",
"Div2LongestGTime","Div2WheelsOff","Div2TailNum","Div3Airport","Div3AirportID","Div3AirportSeqID","Div3WheelsOn",
"Div3TotalGTime","Div3LongestGTime","Div3WheelsOff","Div3TailNum","Div4Airport","Div4AirportID","Div4AirportSeqID",
"Div4WheelsOn","Div4TotalGTime","Div4LongestGTime","Div4WheelsOff","Div4TailNum","Div5Airport","Div5AirportID",
"Div5AirportSeqID","Div5WheelsOn","Div5TotalGTime","Div5LongestGTime","Div5WheelsOff","Div5TailNum"
Data Syndrome: Agile Data Science 2.0
openflights.org Database
Airports, Airlines, Routes
24
Data Syndrome: Agile Data Science 2.0
Scraping the FAA Registry
Airplane Data by Tail Number
25
Data Syndrome: Agile Data Science 2.0
Wikipedia Airlines Entries
Descriptions of Airlines
26
Data Syndrome: Agile Data Science 2.0
National Centers for Environmental Information
Historical Weather Observations
27
Agile Data Science 2.0 28
Working our way up the data value pyramid
Climbing the Stack
Agile Data Science 2.0 29
Starting by “plumbing” the system from end to end
Plumbing
Data Syndrome: Agile Data Science 2.0
Publishing Flight Records
Plumbing our master records through to the web
30
Data Syndrome: Agile Data Science 2.0
Publishing Flight Records to MongoDB
Plumbing our master records through to the web
31
import pymongo

import pymongo_spark

# Important: activate pymongo_spark.

pymongo_spark.activate()

# Load the parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')

# Convert to RDD of dicts and save to MongoDB

as_dict = on_time_dataframe.rdd.map(lambda row: row.asDict())
as_dict.saveToMongoDB(‘mongodb://localhost:27017/agile_data_science.on_time_performance')
Data Syndrome: Agile Data Science 2.0
Publishing Flight Records to ElasticSearch
Plumbing our master records through to the web
32
# Load the parquet file

on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')



# Save the DataFrame to Elasticsearch

on_time_dataframe.write.format("org.elasticsearch.spark.sql")

.option("es.resource","agile_data_science/on_time_performance")

.option("es.batch.size.entries","100")

.mode("overwrite")

.save()
Data Syndrome: Agile Data Science 2.0
Putting Records on the Web
Plumbing our master records through to the web
33
from flask import Flask, render_template, request

from pymongo import MongoClient

from bson import json_util



# Set up Flask and Mongo

app = Flask(__name__)

client = MongoClient()



# Controller: Fetch an email and display it

@app.route("/on_time_performance")

def on_time_performance():



carrier = request.args.get('Carrier')

flight_date = request.args.get('FlightDate')

flight_num = request.args.get('FlightNum')



flight = client.agile_data_science.on_time_performance.find_one({

'Carrier': carrier,

'FlightDate': flight_date,

'FlightNum': int(flight_num)

})



return json_util.dumps(flight)



if __name__ == "__main__":

app.run(debug=True)
Data Syndrome: Agile Data Science 2.0
Putting Records on the Web
Plumbing our master records through to the web
34
Data Syndrome: Agile Data Science 2.0
Putting Records on the Web
Plumbing our master records through to the web
35
Agile Data Science 2.0 36
Getting to know your data
Tables and Charts
Data Syndrome: Agile Data Science 2.0
Tables in PySpark
Back end development in PySpark
37
# Load the parquet file

on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')



# Use SQL to look at the total flights by month across 2015

on_time_dataframe.registerTempTable("on_time_dataframe")

total_flights_by_month = spark.sql(

"""SELECT Month, Year, COUNT(*) AS total_flights

FROM on_time_dataframe

GROUP BY Year, Month

ORDER BY Year, Month"""

)



# This map/asDict trick makes the rows print a little prettier. It is optional.

flights_chart_data = total_flights_by_month.map(lambda row: row.asDict())

flights_chart_data.collect()



# Save chart to MongoDB

import pymongo_spark

pymongo_spark.activate()

flights_chart_data.saveToMongoDB(

'mongodb://localhost:27017/agile_data_science.flights_by_month'

)
Data Syndrome: Agile Data Science 2.0
Tables in Flask and Jinja2
Front end development in Flask: controller and template
38
# Controller: Fetch a flight table

@app.route("/total_flights")

def total_flights():

total_flights = client.agile_data_science.flights_by_month.find({}, 

sort = [

('Year', 1),

('Month', 1)

])

return render_template('total_flights.html', total_flights=total_flights)
{% extends "layout.html" %}

{% block body %}

<div>

<p class="lead">Total Flights by Month</p>

<table class="table table-condensed table-striped" style="width: 200px;">

<thead>

<th>Month</th>

<th>Total Flights</th>

</thead>

<tbody>

{% for month in total_flights %}

<tr>

<td>{{month.Month}}</td>

<td>{{month.total_flights}}</td>

</tr>

{% endfor %}

</tbody>

</table>

</div>

{% endblock %}
Data Syndrome: Agile Data Science 2.0
Tables
Visualizing data
39
Data Syndrome: Agile Data Science 2.0
Charts in Flask and d3.js
Visualizing data with JSON and d3.js
40
# Serve the chart's data via an asynchronous request (formerly known as 'AJAX')

@app.route("/total_flights.json")

def total_flights_json():

total_flights = client.agile_data_science.flights_by_month.find({}, 

sort = [

('Year', 1),

('Month', 1)

])

return json_util.dumps(total_flights, ensure_ascii=False)
var width = 960,

height = 350;



var y = d3.scale.linear()

.range([height, 0]);

// We define the domain once we get our data in d3.json, below



var chart = d3.select(".chart")

.attr("width", width)

.attr("height", height);



d3.json("/total_flights.json", function(data) {



var defaultColor = 'steelblue';

var modeColor = '#4CA9F5';



var maxY = d3.max(data, function(d) { return d.total_flights; });

y.domain([0, maxY]);



var varColor = function(d, i) {

if(d['total_flights'] == maxY) { return modeColor; }

else { return defaultColor; }

}

var barWidth = width / data.length;

var bar = chart.selectAll("g")

.data(data)

.enter()

.append("g")

.attr("transform", function(d, i) { return "translate(" + i * barWidth + ",0)"; });



bar.append("rect")

.attr("y", function(d) { return y(d.total_flights); })

.attr("height", function(d) { return height - y(d.total_flights); })

.attr("width", barWidth - 1)

.style("fill", varColor);



bar.append("text")

.attr("x", barWidth / 2)

.attr("y", function(d) { return y(d.total_flights) + 3; })

.attr("dy", ".75em")

.text(function(d) { return d.total_flights; });

});
Data Syndrome: Agile Data Science 2.0
Charts
Visualizing data
41
Agile Data Science 2.0 42
Exploring your data through interaction
Reports
Data Syndrome: Agile Data Science 2.0
Creating Interactive Ontologies from Semi-Structured Data
Extracting and visualizing entities
43
Data Syndrome: Agile Data Science 2.0
Home Page
Extracting and decorating entities
44
Data Syndrome: Agile Data Science 2.0
Airline Entity
Extracting and decorating entities
45
Data Syndrome: Agile Data Science 2.0
Summarizing Airlines 1.0
Describing entities in aggregate
46
Data Syndrome: Agile Data Science 2.0
Summarizing Airlines 2.0
Describing entities in aggregate
47
Data Syndrome: Agile Data Science 2.0
Summarizing Airlines 3.0
Describing entities in aggregate
48
Data Syndrome: Agile Data Science 2.0
Summarizing Airlines 4.0
Describing entities in aggregate
49
Agile Data Science 2.0 50
Predicting the future for fun and profit
Predictions
Data Syndrome: Agile Data Science 2.0
Back End Design
Deep Storage and Spark vs Kafka and Spark Streaming
51
/
Batch Realtime
Historical Data
Train Model Apply Model
Realtime Data
Data Syndrome: Agile Data Science 2.0 52
jQuery in the web client submits a form to create the prediction request, and
then polls another url every few seconds until the prediction is ready. The
request generates a Kafka event, which a Spark Streaming worker processes
by applying the model we trained in batch. Having done so, it inserts a record
for the prediction in MongoDB, where the Flask app sends it to the web client
the next time it polls the server
Front End Design
/flights/delays/predict/classify_realtime/
Data Syndrome: Agile Data Science 2.0
User Interface
Where the user submits prediction requests
53
Data Syndrome: Agile Data Science 2.0
String Vectorization
From properties of items to vector format
54
Data Syndrome: Agile Data Science 2.0 55
scikit-learn was 166. Spark MLlib is very powerful!
http://bit.ly/train_model_spark
190 Line Model
# !/usr/bin/env python



import sys, os, re



# Pass date and base path to main() from airflow

def main(base_path):



# Default to "."

try: base_path

except NameError: base_path = "."

if not base_path:

base_path = "."



APP_NAME = "train_spark_mllib_model.py"



# If there is no SparkSession, create the environment

try:

sc and spark

except NameError as e:

import findspark

findspark.init()

import pyspark

import pyspark.sql



sc = pyspark.SparkContext()

spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()



#

# {

# "ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00","CRSDepTime":"2015-12-31T03:05:00.000-08:00",

# "Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN","Distance":368.0,

# "FlightDate":"2015-12-30T16:00:00.000-08:00","FlightNum":"6109","Origin":"TUS"

# }

#

from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType

from pyspark.sql.types import StructType, StructField

from pyspark.sql.functions import udf



schema = StructType([

StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0

StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"

StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"

StructField("Carrier", StringType(), True), # "Carrier":"WN"

StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31

StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4

StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365

StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0

StructField("Dest", StringType(), True), # "Dest":"SAN"

StructField("Distance", DoubleType(), True), # "Distance":368.0

StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"

StructField("FlightNum", StringType(), True), # "FlightNum":"6109"

StructField("Origin", StringType(), True), # "Origin":"TUS"

])



input_path = "{}/data/simple_flight_delay_features.jsonl.bz2".format(

base_path

)

features = spark.read.json(input_path, schema=schema)

features.first()



#

# Check for nulls in features before using Spark ML

#

null_counts = [(column, features.where(features[column].isNull()).count()) for column in features.columns]

cols_with_nulls = filter(lambda x: x[1] > 0, null_counts)

print(list(cols_with_nulls))



#

# Add a Route variable to replace FlightNum

#

from pyspark.sql.functions import lit, concat

features_with_route = features.withColumn(

'Route',

concat(

features.Origin,

lit('-'),

features.Dest

)

)

features_with_route.show(6)



#

# Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)

#

from pyspark.ml.feature import Bucketizer



# Setup the Bucketizer

splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]

arrival_bucketizer = Bucketizer(

splits=splits,

inputCol="ArrDelay",

outputCol="ArrDelayBucket"

)



# Save the bucketizer

arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)

arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)



# Apply the bucketizer

ml_bucketized_features = arrival_bucketizer.transform(features_with_route)

ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()



#

# Extract features tools in with pyspark.ml.feature

#

from pyspark.ml.feature import StringIndexer, VectorAssembler



# Turn category fields into indexes

for column in ["Carrier", "Origin", "Dest", "Route"]:

string_indexer = StringIndexer(

inputCol=column,

outputCol=column + "_index"

)



string_indexer_model = string_indexer.fit(ml_bucketized_features)

ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)



# Drop the original column

ml_bucketized_features = ml_bucketized_features.drop(column)



# Save the pipeline model

string_indexer_output_path = "{}/models/string_indexer_model_{}.bin".format(

base_path,

column

)

string_indexer_model.write().overwrite().save(string_indexer_output_path)



# Combine continuous, numeric fields with indexes of nominal ones

# ...into one feature vector

numeric_columns = [

"DepDelay", "Distance",

"DayOfMonth", "DayOfWeek",

"DayOfYear"]

index_columns = ["Carrier_index", "Origin_index",

"Dest_index", "Route_index"]

vector_assembler = VectorAssembler(

inputCols=numeric_columns + index_columns,

outputCol="Features_vec"

)

final_vectorized_features = vector_assembler.transform(ml_bucketized_features)



# Save the numeric vector assembler

vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(base_path)

vector_assembler.write().overwrite().save(vector_assembler_path)



# Drop the index columns

for column in index_columns:

final_vectorized_features = final_vectorized_features.drop(column)



# Inspect the finalized features

final_vectorized_features.show()



# Instantiate and fit random forest classifier on all the data

from pyspark.ml.classification import RandomForestClassifier

rfc = RandomForestClassifier(

featuresCol="Features_vec",

labelCol="ArrDelayBucket",

predictionCol="Prediction",

maxBins=4657,

maxMemoryInMB=1024

)

model = rfc.fit(final_vectorized_features)



# Save the new model over the old one

model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.5.0.bin".format(

base_path

)

model.write().overwrite().save(model_output_path)



# Evaluate model using test data

predictions = model.transform(final_vectorized_features)



from pyspark.ml.evaluation import MulticlassClassificationEvaluator

evaluator = MulticlassClassificationEvaluator(

predictionCol="Prediction",

labelCol="ArrDelayBucket",

metricName="accuracy"

)

accuracy = evaluator.evaluate(predictions)

print("Accuracy = {}".format(accuracy))



# Check the distribution of predictions

predictions.groupBy("Prediction").count().show()



# Check a sample

predictions.sample(False, 0.001, 18).orderBy("CRSDepTime").show(6)



if __name__ == "__main__":

main(sys.argv[1])

Data Syndrome: Agile Data Science 2.0
Initializing the Environment
Setting up the environment…
56
# !/usr/bin/env python



import sys, os, re



# Pass date and base path to main() from airflow

def main(base_path):



# Default to "."

try: base_path

except NameError: base_path = "."

if not base_path:

base_path = "."



APP_NAME = "train_spark_mllib_model.py"



# If there is no SparkSession, create the environment

try:

sc and spark

except NameError as e:

import findspark

findspark.init()

import pyspark

import pyspark.sql



sc = pyspark.SparkContext()

spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()
Data Syndrome: Agile Data Science 2.0
Loading the Training Data
Using DataFrames to load structured data…
57
from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType

from pyspark.sql.types import StructType, StructField

from pyspark.sql.functions import udf



schema = StructType([

StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0

StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"

StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"

StructField("Carrier", StringType(), True), # "Carrier":"WN"

StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31

StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4

StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365

StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0

StructField("Dest", StringType(), True), # "Dest":"SAN"

StructField("Distance", DoubleType(), True), # "Distance":368.0

StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"

StructField("FlightNum", StringType(), True), # "FlightNum":"6109"

StructField("Origin", StringType(), True), # "Origin":"TUS"

])



input_path = "{}/data/simple_flight_delay_features.jsonl.bz2".format(

base_path

)

features = spark.read.json(input_path, schema=schema)

features.first()
Data Syndrome: Agile Data Science 2.0
Checking for Nulls
Checking the data for null values that would crash Spark MLlib
58
#

# Check for nulls in features before using Spark ML

#

null_counts = [(column, features.where(features[column].isNull()).count()) for column in features.columns]

cols_with_nulls = filter(lambda x: x[1] > 0, null_counts)

print(list(cols_with_nulls))
Data Syndrome: Agile Data Science 2.0
Adding a Feature
Using DataFrame.withColumn to add a Route feature to the data…
59
#

# Add a Route variable to replace FlightNum

#

from pyspark.sql.functions import lit, concat

features_with_route = features.withColumn(

'Route',

concat(

features.Origin,

lit('-'),

features.Dest

)

)

features_with_route.show(6)
Data Syndrome: Agile Data Science 2.0
Bucketizing the Prediction Column
Using Bucketizer to convert a continuous variable to a nominal one…
60
#

# Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)

#

from pyspark.ml.feature import Bucketizer



# Setup the Bucketizer

splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]

arrival_bucketizer = Bucketizer(

splits=splits,

inputCol="ArrDelay",

outputCol="ArrDelayBucket"

)



# Save the bucketizer

arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)

arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)



# Apply the bucketizer

ml_bucketized_features = arrival_bucketizer.transform(features_with_route)

ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()
Data Syndrome: Agile Data Science 2.0
StringIndexing the String Columns
Using StringIndexer to convert nominal fields to numeric ones…
61
#

# Extract features tools in with pyspark.ml.feature

#

from pyspark.ml.feature import StringIndexer, VectorAssembler



# Turn category fields into indexes

for column in ["Carrier", "Origin", "Dest", "Route"]:

string_indexer = StringIndexer(

inputCol=column,

outputCol=column + "_index"

)



string_indexer_model = string_indexer.fit(ml_bucketized_features)

ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)



# Drop the original column

ml_bucketized_features = ml_bucketized_features.drop(column)



# Save the pipeline model

string_indexer_output_path = "{}/models/string_indexer_model_{}.bin".format(

base_path,

column

)

string_indexer_model.write().overwrite().save(string_indexer_output_path)
Data Syndrome: Agile Data Science 2.0
Vectorizing the Numeric Columns
Combining the numeric fields with VectorAssembler…
62
# Combine continuous, numeric fields with indexes of nominal ones

# ...into one feature vector

numeric_columns = [

"DepDelay", "Distance",

"DayOfMonth", "DayOfWeek",

"DayOfYear"]

index_columns = ["Carrier_index", "Origin_index",

"Dest_index", "Route_index"]

vector_assembler = VectorAssembler(

inputCols=numeric_columns + index_columns,

outputCol="Features_vec"

)

final_vectorized_features = vector_assembler.transform(ml_bucketized_features)



# Save the numeric vector assembler

vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(base_path)

vector_assembler.write().overwrite().save(vector_assembler_path)



# Drop the index columns

for column in index_columns:

final_vectorized_features = final_vectorized_features.drop(column)



# Inspect the finalized features

final_vectorized_features.show()
Data Syndrome: Agile Data Science 2.0
Training the Classifier Model
Creating and training a RandomForestClassifier model
63
# Instantiate and fit random forest classifier on all the data

from pyspark.ml.classification import RandomForestClassifier

rfc = RandomForestClassifier(

featuresCol="Features_vec",

labelCol="ArrDelayBucket",

predictionCol="Prediction",

maxBins=4657,

maxMemoryInMB=1024

)

model = rfc.fit(final_vectorized_features)



# Save the new model over the old one

model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.5.0.bin".format(

base_path

)

model.write().overwrite().save(model_output_path)
Data Syndrome: Agile Data Science 2.0
Evaluating the Classifier Model
Using MultiClassificationEvaluator to check the accuracy of the model…
64
# Evaluate model using test data

predictions = model.transform(final_vectorized_features)



from pyspark.ml.evaluation import MulticlassClassificationEvaluator

evaluator = MulticlassClassificationEvaluator(

predictionCol="Prediction",

labelCol="ArrDelayBucket",

metricName="accuracy"

)

accuracy = evaluator.evaluate(predictions)

print("Accuracy = {}".format(accuracy))



# Check the distribution of predictions

predictions.groupBy("Prediction").count().show()



# Check a sample

predictions.sample(False, 0.001, 18).orderBy("CRSDepTime").show(6)
Data Syndrome: Agile Data Science 2.0
Running Main
Just what it looks like…
65
if __name__ == "__main__":

main(sys.argv[1])
Data Syndrome: Agile Data Science 2.0 66
Using the model in realtime via Spark Streaming!
Deploying the Model
Data Syndrome: Agile Data Science 2.0
Loading the Models
Loading the models we trained in batch to reproduce the data pipeline
67
# ch08/make_predictions_streaming.py
# Load the arrival delay bucketizer

from pyspark.ml.feature import Bucketizer

arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)

arrival_bucketizer = Bucketizer.load(arrival_bucketizer_path)



# Load all the string field vectorizer pipelines into a dict

from pyspark.ml.feature import StringIndexerModel



string_indexer_models = {}

for column in ["Carrier", "DayOfMonth", "DayOfWeek", "DayOfYear",

"Origin", "Dest", "Route"]:

string_indexer_model_path = "{}/models/string_indexer_model_{}.bin".format(

base_path,

column

)

string_indexer_model = StringIndexerModel.load(string_indexer_model_path)

string_indexer_models[column] = string_indexer_model
Data Syndrome: Agile Data Science 2.0
Loading the Models
Loading the models we trained in batch to reproduce the data pipeline
68
# ch08/make_predictions_streaming.py
# Load the numeric vector assembler

from pyspark.ml.feature import VectorAssembler

vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(base_path)

vector_assembler = VectorAssembler.load(vector_assembler_path)



# Load the classifier model

from pyspark.ml.classification import RandomForestClassifier,
RandomForestClassificationModel

random_forest_model_path = "{}/models/spark_random_forest_classifier.flight_delays.
5.0.bin".format(

base_path

)

rfc = RandomForestClassificationModel.load(

random_forest_model_path
Data Syndrome: Agile Data Science 2.0
Connecting to Kafka
Creating a direct stream to the Kafka queue containing our prediction requests
69
#

# Process Prediction Requests in Streaming

#
from pyspark.streaming.kafka import KafkaUtils



stream = KafkaUtils.createDirectStream(

ssc,

[PREDICTION_TOPIC],

{

"metadata.broker.list": BROKERS,

"group.id": "0",

}

)



object_stream = stream.map(lambda x: json.loads(x[1]))

object_stream.pprint()
Data Syndrome: Agile Data Science 2.0
Repeating the Pipeline
Running the prediction requests through the same data flow as the training data
70
row_stream = object_stream.map(

lambda x: Row(

FlightDate=iso8601.parse_date(x['FlightDate']),

Origin=x['Origin'],

Distance=x['Distance'],

DayOfMonth=x['DayOfMonth'],

DayOfYear=x['DayOfYear'],

UUID=x['UUID'],

DepDelay=x['DepDelay'],

DayOfWeek=x['DayOfWeek'],

FlightNum=x['FlightNum'],

Dest=x['Dest'],

Timestamp=iso8601.parse_date(x['Timestamp']),

Carrier=x['Carrier']

)

)

row_stream.pprint()
# Do the classification and store to Mongo

row_stream.foreachRDD(classify_prediction_requests)



ssc.start()

ssc.awaitTermination()
Data Syndrome: Agile Data Science 2.0
Repeating the Pipeline
Running the prediction requests through the same data flow as the training data
71
def classify_prediction_requests(rdd):



from pyspark.sql.types import StringType, IntegerType, DoubleType, DateType, TimestampType

from pyspark.sql.types import StructType, StructField



prediction_request_schema = StructType([

StructField("Carrier", StringType(), True),

StructField("DayOfMonth", IntegerType(), True),

StructField("DayOfWeek", IntegerType(), True),

StructField("DayOfYear", IntegerType(), True),

StructField("DepDelay", DoubleType(), True),

StructField("Dest", StringType(), True),

StructField("Distance", DoubleType(), True),

StructField("FlightDate", DateType(), True),

StructField("FlightNum", StringType(), True),

StructField("Origin", StringType(), True),

StructField("Timestamp", TimestampType(), True),

StructField("UUID", StringType(), True),

])



prediction_requests_df = spark.createDataFrame(rdd, schema=prediction_request_schema)

prediction_requests_df.show()
from pyspark.sql.functions import lit, concat

prediction_requests_with_route = prediction_requests_df.withColumn(

'Route',

concat(

prediction_requests_df.Origin,

lit('-'),

prediction_requests_df.Dest

)

)

prediction_requests_with_route.show(6)
...
Data Syndrome: Agile Data Science 2.0
Repeating the Pipeline
Running the prediction requests through the same data flow as the training data
72
for column in ["Carrier", "DayOfMonth", "DayOfWeek", "DayOfYear",

"Origin", "Dest", "Route"]:

string_indexer_model = string_indexer_models[column]

prediction_requests_with_route = string_indexer_model.transform(prediction_requests_with_route)



# Vectorize numeric columns: DepDelay, Distance and index columns

final_vectorized_features = vector_assembler.transform(prediction_requests_with_route)



# Inspect the vectors

final_vectorized_features.show()



# Drop the individual index columns

index_columns = ["Carrier_index", "DayOfMonth_index", "DayOfWeek_index", "DayOfYear_index",

"Origin_index", "Dest_index", "Route_index"]

for column in index_columns:

final_vectorized_features = final_vectorized_features.drop(column)



# Inspect the finalized features

final_vectorized_features.show()



# Make the prediction

predictions = rfc.transform(final_vectorized_features)
# Drop the features vector and prediction metadata to give the original fields

predictions = predictions.drop("Features_vec")

final_predictions = predictions.drop("indices").drop("values").drop("rawPrediction").drop("probability")



# Inspect the output

final_predictions.show()
Data Syndrome: Agile Data Science 2.0
Storing to Mongo
Putting the result where our web application can access it
73
# Store to Mongo

if final_predictions.count() > 0:

final_predictions.rdd.map(lambda x: x.asDict()).saveToMongoDB(

"mongodb://localhost:27017/agile_data_science.flight_delay_classification_response"

)
Data Syndrome: Agile Data Science 2.0 74
Experimental setup for iteratively improving the predictive model
Improving the Model
Data Syndrome: Agile Data Science 2.0
Experiment Setup
Necessary to improve model
75
Data Syndrome: Agile Data Science 2.0 76
155 additional lines to setup an experiment
and add 3 new features to improvement the model
http://bit.ly/improved_model_spark
345 L.O.C.
# !/usr/bin/env python



import sys, os, re

import json

import datetime, iso8601

from tabulate import tabulate



# Pass date and base path to main() from airflow

def main(base_path):

APP_NAME = "train_spark_mllib_model.py"



# If there is no SparkSession, create the environment

try:

sc and spark

except NameError as e:

import findspark

findspark.init()

import pyspark

import pyspark.sql



sc = pyspark.SparkContext()

spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()



#

# {

# "ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00","CRSDepTime":"2015-12-31T03:05:00.000-08:00",

# "Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN","Distance":368.0,

# "FlightDate":"2015-12-30T16:00:00.000-08:00","FlightNum":"6109","Origin":"TUS"

# }

#

from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType

from pyspark.sql.types import StructType, StructField

from pyspark.sql.functions import udf



schema = StructType([

StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0

StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"

StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"

StructField("Carrier", StringType(), True), # "Carrier":"WN"

StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31

StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4

StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365

StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0

StructField("Dest", StringType(), True), # "Dest":"SAN"

StructField("Distance", DoubleType(), True), # "Distance":368.0

StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"

StructField("FlightNum", StringType(), True), # "FlightNum":"6109"

StructField("Origin", StringType(), True), # "Origin":"TUS"

])



input_path = "{}/data/simple_flight_delay_features.json".format(

base_path

)

features = spark.read.json(input_path, schema=schema)

features.first()



#

# Add a Route variable to replace FlightNum

#

from pyspark.sql.functions import lit, concat

features_with_route = features.withColumn(

'Route',

concat(

features.Origin,

lit('-'),

features.Dest

)

)

features_with_route.show(6)



#

# Add the hour of day of scheduled arrival/departure

#

from pyspark.sql.functions import hour

features_with_hour = features_with_route.withColumn(

"CRSDepHourOfDay",

hour(features.CRSDepTime)

)

features_with_hour = features_with_hour.withColumn(

"CRSArrHourOfDay",

hour(features.CRSArrTime)

)

features_with_hour.select("CRSDepTime", "CRSDepHourOfDay", "CRSArrTime", "CRSArrHourOfDay").show()



#

# Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)

#

from pyspark.ml.feature import Bucketizer



# Setup the Bucketizer

splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]

arrival_bucketizer = Bucketizer(

splits=splits,

inputCol="ArrDelay",

outputCol="ArrDelayBucket"

)



# Save the model

arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)

arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)



# Apply the model

ml_bucketized_features = arrival_bucketizer.transform(features_with_hour)

ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()



#

# Extract features tools in with pyspark.ml.feature

#

from pyspark.ml.feature import StringIndexer, VectorAssembler



# Turn category fields into indexes

for column in ["Carrier", "Origin", "Dest", "Route"]:

string_indexer = StringIndexer(

inputCol=column,

outputCol=column + "_index"

)



string_indexer_model = string_indexer.fit(ml_bucketized_features)

ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)

# Save the pipeline model

string_indexer_output_path = "{}/models/string_indexer_model_3.0.{}.bin".format(

base_path,

column

)

string_indexer_model.write().overwrite().save(string_indexer_output_path)



# Combine continuous, numeric fields with indexes of nominal ones

# ...into one feature vector

numeric_columns = [

"DepDelay", "Distance",

"DayOfMonth", "DayOfWeek",

"DayOfYear", "CRSDepHourOfDay",

"CRSArrHourOfDay"]

index_columns = ["Carrier_index", "Origin_index",

"Dest_index", "Route_index"]

vector_assembler = VectorAssembler(

inputCols=numeric_columns + index_columns,

outputCol="Features_vec"

)

final_vectorized_features = vector_assembler.transform(ml_bucketized_features)



# Save the numeric vector assembler

vector_assembler_path = "{}/models/numeric_vector_assembler_3.0.bin".format(base_path)

vector_assembler.write().overwrite().save(vector_assembler_path)



# Drop the index columns

for column in index_columns:

final_vectorized_features = final_vectorized_features.drop(column)



# Inspect the finalized features

final_vectorized_features.show()



#

# Cross validate, train and evaluate classifier: loop 5 times for 4 metrics

#



from collections import defaultdict

scores = defaultdict(list)

feature_importances = defaultdict(list)

metric_names = ["accuracy", "weightedPrecision", "weightedRecall", "f1"]

split_count = 3



for i in range(1, split_count + 1):

print("nRun {} out of {} of test/train splits in cross validation...".format(

i,

split_count,

)

)



# Test/train split

training_data, test_data = final_vectorized_features.randomSplit([0.8, 0.2])



# Instantiate and fit random forest classifier on all the data

from pyspark.ml.classification import RandomForestClassifier

rfc = RandomForestClassifier(

featuresCol="Features_vec",

labelCol="ArrDelayBucket",

predictionCol="Prediction",

maxBins=4657,

)

model = rfc.fit(training_data)



# Save the new model over the old one

model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.baseline.bin".format(

base_path

)

model.write().overwrite().save(model_output_path)



# Evaluate model using test data

predictions = model.transform(test_data)



# Evaluate this split's results for each metric

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

for metric_name in metric_names:

evaluator = MulticlassClassificationEvaluator(

labelCol="ArrDelayBucket",

predictionCol="Prediction",

metricName=metric_name

)

score = evaluator.evaluate(predictions)



scores[metric_name].append(score)

print("{} = {}".format(metric_name, score))



#

# Collect feature importances

#

feature_names = vector_assembler.getInputCols()

feature_importance_list = model.featureImportances

for feature_name, feature_importance in zip(feature_names, feature_importance_list):

feature_importances[feature_name].append(feature_importance)



#

# Evaluate average and STD of each metric and print a table

#

import numpy as np

score_averages = defaultdict(float)



# Compute the table data

average_stds = [] # ha

for metric_name in metric_names:

metric_scores = scores[metric_name]



average_accuracy = sum(metric_scores) / len(metric_scores)

score_averages[metric_name] = average_accuracy



std_accuracy = np.std(metric_scores)



average_stds.append((metric_name, average_accuracy, std_accuracy))



# Print the table

print("nExperiment Log")

print("--------------")

print(tabulate(average_stds, headers=["Metric", "Average", "STD"]))



#

# Persist the score to a sccore log that exists between runs

#

import pickle
# Load the score log or initialize an empty one

try:

score_log_filename = "{}/models/score_log.pickle".format(base_path)

score_log = pickle.load(open(score_log_filename, "rb"))

if not isinstance(score_log, list):

score_log = []

except IOError:

score_log = []



# Compute the existing score log entry

score_log_entry = {metric_name: score_averages[metric_name] for metric_name in metric_names}



# Compute and display the change in score for each metric

try:

last_log = score_log[-1]

except (IndexError, TypeError, AttributeError):

last_log = score_log_entry



experiment_report = []

for metric_name in metric_names:

run_delta = score_log_entry[metric_name] - last_log[metric_name]

experiment_report.append((metric_name, run_delta))



print("nExperiment Report")

print("-----------------")

print(tabulate(experiment_report, headers=["Metric", "Score"]))



# Append the existing average scores to the log

score_log.append(score_log_entry)



# Persist the log for next run

pickle.dump(score_log, open(score_log_filename, "wb"))



#

# Analyze and report feature importance changes

#



# Compute averages for each feature

feature_importance_entry = defaultdict(float)

for feature_name, value_list in feature_importances.items():

average_importance = sum(value_list) / len(value_list)

feature_importance_entry[feature_name] = average_importance



# Sort the feature importances in descending order and print

import operator

sorted_feature_importances = sorted(

feature_importance_entry.items(),

key=operator.itemgetter(1),

reverse=True

)



print("nFeature Importances")

print("-------------------")

print(tabulate(sorted_feature_importances, headers=['Name', 'Importance']))



#

# Compare this run's feature importances with the previous run's

#



# Load the feature importance log or initialize an empty one

try:

feature_log_filename = "{}/models/feature_log.pickle".format(base_path)

feature_log = pickle.load(open(feature_log_filename, "rb"))

if not isinstance(feature_log, list):

feature_log = []

except IOError:

feature_log = []



# Compute and display the change in score for each feature

try:

last_feature_log = feature_log[-1]

except (IndexError, TypeError, AttributeError):

last_feature_log = defaultdict(float)

for feature_name, importance in feature_importance_entry.items():

last_feature_log[feature_name] = importance



# Compute the deltas

feature_deltas = {}

for feature_name in feature_importances.keys():

run_delta = feature_importance_entry[feature_name] - last_feature_log[feature_name]

feature_deltas[feature_name] = run_delta



# Sort feature deltas, biggest change first

import operator

sorted_feature_deltas = sorted(

feature_deltas.items(),

key=operator.itemgetter(1),

reverse=True

)



# Display sorted feature deltas

print("nFeature Importance Delta Report")

print("-------------------------------")

print(tabulate(sorted_feature_deltas, headers=["Feature", "Delta"]))



# Append the existing average deltas to the log

feature_log.append(feature_importance_entry)



# Persist the log for next run

pickle.dump(feature_log, open(feature_log_filename, "wb"))



if __name__ == "__main__":

main(sys.argv[1])

Data Syndrome: Agile Data Science 2.0 77
Next steps for learning more about Agile Data Science 2.0
Next Steps
Building Full-Stack Data Analytics Applications with Spark
http://bit.ly/agile_data_science
Available Now on O’Reilly Safari: http://bit.ly/agile_data_safari
Agile Data Science 2.0
Agile Data Science 2.0 79
Realtime Predictive
Analytics
Rapidly learn to build entire predictive systems driven by
Kafka, PySpark, Speak Streaming, Spark MLlib and with a web
front-end using Python/Flask and JQuery.
Available for purchase at http://datasyndrome.com/video
Data Syndrome Russell Jurney
Principal Consultant
Email : rjurney@datasyndrome.com
Web : datasyndrome.com
Data Syndrome, LLC
Product Consulting
We build analytics products
and systems consisting of
big data viz, predictions,
recommendations, reports
and search.
Corporate Training
We offer training courses
for data scientists and
engineers and data
science teams,
Video Training
We offer video training
courses that rapidly
acclimate you with a
technology and technique.

Contenu connexe

Tendances

Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0Russell Jurney
 
Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0Russell Jurney
 
Agile analytics applications on hadoop
Agile analytics applications on hadoopAgile analytics applications on hadoop
Agile analytics applications on hadoopRussell Jurney
 
Agile Data Science: Hadoop Analytics Applications
Agile Data Science: Hadoop Analytics ApplicationsAgile Data Science: Hadoop Analytics Applications
Agile Data Science: Hadoop Analytics ApplicationsRussell Jurney
 
Running Intelligent Applications inside a Database: Deep Learning with Python...
Running Intelligent Applications inside a Database: Deep Learning with Python...Running Intelligent Applications inside a Database: Deep Learning with Python...
Running Intelligent Applications inside a Database: Deep Learning with Python...Miguel González-Fierro
 
Telemetry doesn't have to be scary; Ben Ford
Telemetry doesn't have to be scary; Ben FordTelemetry doesn't have to be scary; Ben Ford
Telemetry doesn't have to be scary; Ben FordPuppet
 
Data science apps: beyond notebooks
Data science apps: beyond notebooksData science apps: beyond notebooks
Data science apps: beyond notebooksNatalino Busa
 
Increasing the Impact of Visualization Research
Increasing the Impact of Visualization ResearchIncreasing the Impact of Visualization Research
Increasing the Impact of Visualization ResearchKrist Wongsuphasawat
 
Big Data Analytics - Best of the Worst : Anti-patterns & Antidotes
Big Data Analytics - Best of the Worst : Anti-patterns & AntidotesBig Data Analytics - Best of the Worst : Anti-patterns & Antidotes
Big Data Analytics - Best of the Worst : Anti-patterns & AntidotesKrishna Sankar
 
Reproducible, Open Data Science in the Life Sciences
Reproducible, Open  Data Science in the  Life SciencesReproducible, Open  Data Science in the  Life Sciences
Reproducible, Open Data Science in the Life SciencesEamonn Maguire
 
Security Operations, Engineering, and Intelligence Integration through the po...
Security Operations, Engineering, and Intelligence Integration through the po...Security Operations, Engineering, and Intelligence Integration through the po...
Security Operations, Engineering, and Intelligence Integration through the po...Christopher Clark
 
ElasticES-Hadoop: Bridging the world of Hadoop and Elasticsearch
ElasticES-Hadoop: Bridging the world of Hadoop and ElasticsearchElasticES-Hadoop: Bridging the world of Hadoop and Elasticsearch
ElasticES-Hadoop: Bridging the world of Hadoop and ElasticsearchMapR Technologies
 

Tendances (14)

Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0
 
Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0
 
Agile analytics applications on hadoop
Agile analytics applications on hadoopAgile analytics applications on hadoop
Agile analytics applications on hadoop
 
Agile Data Science: Hadoop Analytics Applications
Agile Data Science: Hadoop Analytics ApplicationsAgile Data Science: Hadoop Analytics Applications
Agile Data Science: Hadoop Analytics Applications
 
Running Intelligent Applications inside a Database: Deep Learning with Python...
Running Intelligent Applications inside a Database: Deep Learning with Python...Running Intelligent Applications inside a Database: Deep Learning with Python...
Running Intelligent Applications inside a Database: Deep Learning with Python...
 
Telemetry doesn't have to be scary; Ben Ford
Telemetry doesn't have to be scary; Ben FordTelemetry doesn't have to be scary; Ben Ford
Telemetry doesn't have to be scary; Ben Ford
 
Data science apps: beyond notebooks
Data science apps: beyond notebooksData science apps: beyond notebooks
Data science apps: beyond notebooks
 
Increasing the Impact of Visualization Research
Increasing the Impact of Visualization ResearchIncreasing the Impact of Visualization Research
Increasing the Impact of Visualization Research
 
Big Data Analytics - Best of the Worst : Anti-patterns & Antidotes
Big Data Analytics - Best of the Worst : Anti-patterns & AntidotesBig Data Analytics - Best of the Worst : Anti-patterns & Antidotes
Big Data Analytics - Best of the Worst : Anti-patterns & Antidotes
 
Reproducible, Open Data Science in the Life Sciences
Reproducible, Open  Data Science in the  Life SciencesReproducible, Open  Data Science in the  Life Sciences
Reproducible, Open Data Science in the Life Sciences
 
Demo Eclipse Science
Demo Eclipse ScienceDemo Eclipse Science
Demo Eclipse Science
 
Security Operations, Engineering, and Intelligence Integration through the po...
Security Operations, Engineering, and Intelligence Integration through the po...Security Operations, Engineering, and Intelligence Integration through the po...
Security Operations, Engineering, and Intelligence Integration through the po...
 
ElasticES-Hadoop: Bridging the world of Hadoop and Elasticsearch
ElasticES-Hadoop: Bridging the world of Hadoop and ElasticsearchElasticES-Hadoop: Bridging the world of Hadoop and Elasticsearch
ElasticES-Hadoop: Bridging the world of Hadoop and Elasticsearch
 
D3 brown-bag
D3 brown-bagD3 brown-bag
D3 brown-bag
 

En vedette

Introduction to PySpark
Introduction to PySparkIntroduction to PySpark
Introduction to PySparkRussell Jurney
 
Predictive Analytics with Airflow and PySpark
Predictive Analytics with Airflow and PySparkPredictive Analytics with Airflow and PySpark
Predictive Analytics with Airflow and PySparkRussell Jurney
 
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...Lucas Jellema
 
Tracxn Research - Industrial Robotics Landscape, February 2017
Tracxn Research - Industrial Robotics Landscape, February 2017Tracxn Research - Industrial Robotics Landscape, February 2017
Tracxn Research - Industrial Robotics Landscape, February 2017Tracxn
 
Enabling Multimodel Graphs with Apache TinkerPop
Enabling Multimodel Graphs with Apache TinkerPopEnabling Multimodel Graphs with Apache TinkerPop
Enabling Multimodel Graphs with Apache TinkerPopJason Plurad
 
SF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in PythonSF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in PythonPaco Nathan
 
Blistering fast access to Hadoop with SQL
Blistering fast access to Hadoop with SQLBlistering fast access to Hadoop with SQL
Blistering fast access to Hadoop with SQLSimon Harris
 
Bitraf - Particle Photon IoT workshop
Bitraf - Particle Photon IoT workshopBitraf - Particle Photon IoT workshop
Bitraf - Particle Photon IoT workshopJens Brynildsen
 
Mapa mental de un lider tahi
Mapa mental de un lider  tahiMapa mental de un lider  tahi
Mapa mental de un lider tahiTahi04
 
ConsumerLab: The Self-Driving Future
ConsumerLab: The Self-Driving FutureConsumerLab: The Self-Driving Future
ConsumerLab: The Self-Driving FutureEricsson
 
Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn Research - Mobile Advertising Landscape, February 2017Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn Research - Mobile Advertising Landscape, February 2017Tracxn
 
2015 Internet Trends Report
2015 Internet Trends Report2015 Internet Trends Report
2015 Internet Trends ReportIQbal KHan
 

En vedette (16)

Introduction to PySpark
Introduction to PySparkIntroduction to PySpark
Introduction to PySpark
 
Predictive Analytics with Airflow and PySpark
Predictive Analytics with Airflow and PySparkPredictive Analytics with Airflow and PySpark
Predictive Analytics with Airflow and PySpark
 
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
 
Tracxn Research - Industrial Robotics Landscape, February 2017
Tracxn Research - Industrial Robotics Landscape, February 2017Tracxn Research - Industrial Robotics Landscape, February 2017
Tracxn Research - Industrial Robotics Landscape, February 2017
 
Enabling Multimodel Graphs with Apache TinkerPop
Enabling Multimodel Graphs with Apache TinkerPopEnabling Multimodel Graphs with Apache TinkerPop
Enabling Multimodel Graphs with Apache TinkerPop
 
SF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in PythonSF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in Python
 
Blistering fast access to Hadoop with SQL
Blistering fast access to Hadoop with SQLBlistering fast access to Hadoop with SQL
Blistering fast access to Hadoop with SQL
 
tarea 7 gabriel
tarea 7 gabrieltarea 7 gabriel
tarea 7 gabriel
 
Bitraf - Particle Photon IoT workshop
Bitraf - Particle Photon IoT workshopBitraf - Particle Photon IoT workshop
Bitraf - Particle Photon IoT workshop
 
JSON-LD Update
JSON-LD UpdateJSON-LD Update
JSON-LD Update
 
Mapa mental de un lider tahi
Mapa mental de un lider  tahiMapa mental de un lider  tahi
Mapa mental de un lider tahi
 
ConsumerLab: The Self-Driving Future
ConsumerLab: The Self-Driving FutureConsumerLab: The Self-Driving Future
ConsumerLab: The Self-Driving Future
 
Zipcar
ZipcarZipcar
Zipcar
 
Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn Research - Mobile Advertising Landscape, February 2017Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn Research - Mobile Advertising Landscape, February 2017
 
Feb 13 17 word of the day (1)
Feb 13 17 word of the day (1)Feb 13 17 word of the day (1)
Feb 13 17 word of the day (1)
 
2015 Internet Trends Report
2015 Internet Trends Report2015 Internet Trends Report
2015 Internet Trends Report
 

Similaire à Build Analytics Apps with Kafka and Spark

OLAP on the Cloud with Azure Databricks and Azure Synapse
OLAP on the Cloud with Azure Databricks and Azure SynapseOLAP on the Cloud with Azure Databricks and Azure Synapse
OLAP on the Cloud with Azure Databricks and Azure SynapseAtScale
 
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkBest Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkDatabricks
 
Data Seeding via Parameterized API Requests
Data Seeding via Parameterized API RequestsData Seeding via Parameterized API Requests
Data Seeding via Parameterized API RequestsRapidValue
 
Be a database professional
Be a database professionalBe a database professional
Be a database professionalSayed Ahmed
 
Data modeling star schema
Data modeling star schemaData modeling star schema
Data modeling star schemaSayed Ahmed
 
Be a database professional
Be a database professionalBe a database professional
Be a database professionalSayed Ahmed
 
10 ways to make your code rock
10 ways to make your code rock10 ways to make your code rock
10 ways to make your code rockmartincronje
 
NoSQL Endgame DevoxxUA Conference 2020
NoSQL Endgame DevoxxUA Conference 2020NoSQL Endgame DevoxxUA Conference 2020
NoSQL Endgame DevoxxUA Conference 2020Thodoris Bais
 
Ben ford intro
Ben ford introBen ford intro
Ben ford introPuppet
 
MIS5101 WK10 Outcome Measures
MIS5101 WK10 Outcome MeasuresMIS5101 WK10 Outcome Measures
MIS5101 WK10 Outcome MeasuresSteven Johnson
 
Secrets of Enterprise Data Mining: SQL Saturday Oregon 201411
Secrets of Enterprise Data Mining: SQL Saturday Oregon 201411Secrets of Enterprise Data Mining: SQL Saturday Oregon 201411
Secrets of Enterprise Data Mining: SQL Saturday Oregon 201411Mark Tabladillo
 
Multiplatform Spark solution for Graph datasources by Javier Dominguez
Multiplatform Spark solution for Graph datasources by Javier DominguezMultiplatform Spark solution for Graph datasources by Javier Dominguez
Multiplatform Spark solution for Graph datasources by Javier DominguezBig Data Spain
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQLYousun Jeong
 
Data science | What is Data science
Data science | What is Data scienceData science | What is Data science
Data science | What is Data scienceShilpaKrishna6
 
Open Source 101 2022 - MySQL Indexes and Histograms
Open Source 101 2022 - MySQL Indexes and HistogramsOpen Source 101 2022 - MySQL Indexes and Histograms
Open Source 101 2022 - MySQL Indexes and HistogramsFrederic Descamps
 
Intro to Spark and Spark SQL
Intro to Spark and Spark SQLIntro to Spark and Spark SQL
Intro to Spark and Spark SQLjeykottalam
 

Similaire à Build Analytics Apps with Kafka and Spark (20)

OLAP on the Cloud with Azure Databricks and Azure Synapse
OLAP on the Cloud with Azure Databricks and Azure SynapseOLAP on the Cloud with Azure Databricks and Azure Synapse
OLAP on the Cloud with Azure Databricks and Azure Synapse
 
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkBest Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache Spark
 
Data Seeding via Parameterized API Requests
Data Seeding via Parameterized API RequestsData Seeding via Parameterized API Requests
Data Seeding via Parameterized API Requests
 
User 2013-oracle-big-data-analytics-1971985
User 2013-oracle-big-data-analytics-1971985User 2013-oracle-big-data-analytics-1971985
User 2013-oracle-big-data-analytics-1971985
 
Be a database professional
Be a database professionalBe a database professional
Be a database professional
 
Data modeling star schema
Data modeling star schemaData modeling star schema
Data modeling star schema
 
Be a database professional
Be a database professionalBe a database professional
Be a database professional
 
10 ways to make your code rock
10 ways to make your code rock10 ways to make your code rock
10 ways to make your code rock
 
NoSQL Endgame DevoxxUA Conference 2020
NoSQL Endgame DevoxxUA Conference 2020NoSQL Endgame DevoxxUA Conference 2020
NoSQL Endgame DevoxxUA Conference 2020
 
Ben ford intro
Ben ford introBen ford intro
Ben ford intro
 
MIS5101 WK10 Outcome Measures
MIS5101 WK10 Outcome MeasuresMIS5101 WK10 Outcome Measures
MIS5101 WK10 Outcome Measures
 
Secrets of Enterprise Data Mining: SQL Saturday Oregon 201411
Secrets of Enterprise Data Mining: SQL Saturday Oregon 201411Secrets of Enterprise Data Mining: SQL Saturday Oregon 201411
Secrets of Enterprise Data Mining: SQL Saturday Oregon 201411
 
Data herding
Data herdingData herding
Data herding
 
Data herding
Data herdingData herding
Data herding
 
Multiplatform Spark solution for Graph datasources by Javier Dominguez
Multiplatform Spark solution for Graph datasources by Javier DominguezMultiplatform Spark solution for Graph datasources by Javier Dominguez
Multiplatform Spark solution for Graph datasources by Javier Dominguez
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQL
 
Data science | What is Data science
Data science | What is Data scienceData science | What is Data science
Data science | What is Data science
 
DP-900.pdf
DP-900.pdfDP-900.pdf
DP-900.pdf
 
Open Source 101 2022 - MySQL Indexes and Histograms
Open Source 101 2022 - MySQL Indexes and HistogramsOpen Source 101 2022 - MySQL Indexes and Histograms
Open Source 101 2022 - MySQL Indexes and Histograms
 
Intro to Spark and Spark SQL
Intro to Spark and Spark SQLIntro to Spark and Spark SQL
Intro to Spark and Spark SQL
 

Dernier

Advantages of Cargo Cloud Solutions.pptx
Advantages of Cargo Cloud Solutions.pptxAdvantages of Cargo Cloud Solutions.pptx
Advantages of Cargo Cloud Solutions.pptxRTS corp
 
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptxThe Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptxRTS corp
 
What’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 UpdatesWhat’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 UpdatesVictoriaMetrics
 
Effectively Troubleshoot 9 Types of OutOfMemoryError
Effectively Troubleshoot 9 Types of OutOfMemoryErrorEffectively Troubleshoot 9 Types of OutOfMemoryError
Effectively Troubleshoot 9 Types of OutOfMemoryErrorTier1 app
 
Understanding Flamingo - DeepMind's VLM Architecture
Understanding Flamingo - DeepMind's VLM ArchitectureUnderstanding Flamingo - DeepMind's VLM Architecture
Understanding Flamingo - DeepMind's VLM Architecturerahul_net
 
Mastering Project Planning with Microsoft Project 2016.pptx
Mastering Project Planning with Microsoft Project 2016.pptxMastering Project Planning with Microsoft Project 2016.pptx
Mastering Project Planning with Microsoft Project 2016.pptxAS Design & AST.
 
eSoftTools IMAP Backup Software and migration tools
eSoftTools IMAP Backup Software and migration toolseSoftTools IMAP Backup Software and migration tools
eSoftTools IMAP Backup Software and migration toolsosttopstonverter
 
Keeping your build tool updated in a multi repository world
Keeping your build tool updated in a multi repository worldKeeping your build tool updated in a multi repository world
Keeping your build tool updated in a multi repository worldRoberto Pérez Alcolea
 
Ronisha Informatics Private Limited Catalogue
Ronisha Informatics Private Limited CatalogueRonisha Informatics Private Limited Catalogue
Ronisha Informatics Private Limited Catalogueitservices996
 
Zer0con 2024 final share short version.pdf
Zer0con 2024 final share short version.pdfZer0con 2024 final share short version.pdf
Zer0con 2024 final share short version.pdfmaor17
 
Osi security architecture in network.pptx
Osi security architecture in network.pptxOsi security architecture in network.pptx
Osi security architecture in network.pptxVinzoCenzo
 
VictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News UpdateVictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News UpdateVictoriaMetrics
 
OpenChain AI Study Group - Europe and Asia Recap - 2024-04-11 - Full Recording
OpenChain AI Study Group - Europe and Asia Recap - 2024-04-11 - Full RecordingOpenChain AI Study Group - Europe and Asia Recap - 2024-04-11 - Full Recording
OpenChain AI Study Group - Europe and Asia Recap - 2024-04-11 - Full RecordingShane Coughlan
 
GraphSummit Madrid - Product Vision and Roadmap - Luis Salvador Neo4j
GraphSummit Madrid - Product Vision and Roadmap - Luis Salvador Neo4jGraphSummit Madrid - Product Vision and Roadmap - Luis Salvador Neo4j
GraphSummit Madrid - Product Vision and Roadmap - Luis Salvador Neo4jNeo4j
 
JavaLand 2024 - Going serverless with Quarkus GraalVM native images and AWS L...
JavaLand 2024 - Going serverless with Quarkus GraalVM native images and AWS L...JavaLand 2024 - Going serverless with Quarkus GraalVM native images and AWS L...
JavaLand 2024 - Going serverless with Quarkus GraalVM native images and AWS L...Bert Jan Schrijver
 
The Ultimate Guide to Performance Testing in Low-Code, No-Code Environments (...
The Ultimate Guide to Performance Testing in Low-Code, No-Code Environments (...The Ultimate Guide to Performance Testing in Low-Code, No-Code Environments (...
The Ultimate Guide to Performance Testing in Low-Code, No-Code Environments (...kalichargn70th171
 
2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shards2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shardsChristopher Curtin
 
SAM Training Session - How to use EXCEL ?
SAM Training Session - How to use EXCEL ?SAM Training Session - How to use EXCEL ?
SAM Training Session - How to use EXCEL ?Alexandre Beguel
 
Amazon Bedrock in Action - presentation of the Bedrock's capabilities
Amazon Bedrock in Action - presentation of the Bedrock's capabilitiesAmazon Bedrock in Action - presentation of the Bedrock's capabilities
Amazon Bedrock in Action - presentation of the Bedrock's capabilitiesKrzysztofKkol1
 
Leveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + KobitonLeveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + KobitonApplitools
 

Dernier (20)

Advantages of Cargo Cloud Solutions.pptx
Advantages of Cargo Cloud Solutions.pptxAdvantages of Cargo Cloud Solutions.pptx
Advantages of Cargo Cloud Solutions.pptx
 
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptxThe Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
 
What’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 UpdatesWhat’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 Updates
 
Effectively Troubleshoot 9 Types of OutOfMemoryError
Effectively Troubleshoot 9 Types of OutOfMemoryErrorEffectively Troubleshoot 9 Types of OutOfMemoryError
Effectively Troubleshoot 9 Types of OutOfMemoryError
 
Understanding Flamingo - DeepMind's VLM Architecture
Understanding Flamingo - DeepMind's VLM ArchitectureUnderstanding Flamingo - DeepMind's VLM Architecture
Understanding Flamingo - DeepMind's VLM Architecture
 
Mastering Project Planning with Microsoft Project 2016.pptx
Mastering Project Planning with Microsoft Project 2016.pptxMastering Project Planning with Microsoft Project 2016.pptx
Mastering Project Planning with Microsoft Project 2016.pptx
 
eSoftTools IMAP Backup Software and migration tools
eSoftTools IMAP Backup Software and migration toolseSoftTools IMAP Backup Software and migration tools
eSoftTools IMAP Backup Software and migration tools
 
Keeping your build tool updated in a multi repository world
Keeping your build tool updated in a multi repository worldKeeping your build tool updated in a multi repository world
Keeping your build tool updated in a multi repository world
 
Ronisha Informatics Private Limited Catalogue
Ronisha Informatics Private Limited CatalogueRonisha Informatics Private Limited Catalogue
Ronisha Informatics Private Limited Catalogue
 
Zer0con 2024 final share short version.pdf
Zer0con 2024 final share short version.pdfZer0con 2024 final share short version.pdf
Zer0con 2024 final share short version.pdf
 
Osi security architecture in network.pptx
Osi security architecture in network.pptxOsi security architecture in network.pptx
Osi security architecture in network.pptx
 
VictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News UpdateVictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News Update
 
OpenChain AI Study Group - Europe and Asia Recap - 2024-04-11 - Full Recording
OpenChain AI Study Group - Europe and Asia Recap - 2024-04-11 - Full RecordingOpenChain AI Study Group - Europe and Asia Recap - 2024-04-11 - Full Recording
OpenChain AI Study Group - Europe and Asia Recap - 2024-04-11 - Full Recording
 
GraphSummit Madrid - Product Vision and Roadmap - Luis Salvador Neo4j
GraphSummit Madrid - Product Vision and Roadmap - Luis Salvador Neo4jGraphSummit Madrid - Product Vision and Roadmap - Luis Salvador Neo4j
GraphSummit Madrid - Product Vision and Roadmap - Luis Salvador Neo4j
 
JavaLand 2024 - Going serverless with Quarkus GraalVM native images and AWS L...
JavaLand 2024 - Going serverless with Quarkus GraalVM native images and AWS L...JavaLand 2024 - Going serverless with Quarkus GraalVM native images and AWS L...
JavaLand 2024 - Going serverless with Quarkus GraalVM native images and AWS L...
 
The Ultimate Guide to Performance Testing in Low-Code, No-Code Environments (...
The Ultimate Guide to Performance Testing in Low-Code, No-Code Environments (...The Ultimate Guide to Performance Testing in Low-Code, No-Code Environments (...
The Ultimate Guide to Performance Testing in Low-Code, No-Code Environments (...
 
2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shards2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shards
 
SAM Training Session - How to use EXCEL ?
SAM Training Session - How to use EXCEL ?SAM Training Session - How to use EXCEL ?
SAM Training Session - How to use EXCEL ?
 
Amazon Bedrock in Action - presentation of the Bedrock's capabilities
Amazon Bedrock in Action - presentation of the Bedrock's capabilitiesAmazon Bedrock in Action - presentation of the Bedrock's capabilities
Amazon Bedrock in Action - presentation of the Bedrock's capabilities
 
Leveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + KobitonLeveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
 

Build Analytics Apps with Kafka and Spark

  • 1. Building Full Stack Data Analytics Applications with Kafka and Spark Agile Data Science 2.0 https://www.slideshare.net/rjurney/agile-data-science-20-big-data-science-meetup or http://bit.ly/agile_data_slides_2
  • 2. Agile Data Science 2.0 Russell Jurney 2 Data Engineer Data Scientist Visualization Software Engineer 85% 85% 85% Writer 85% Teacher 50% Russell Jurney is a veteran data scientist and thought leader. He coined the term Agile Data Science in the book of that name from O’Reilly in 2012, which outlines the first agile development methodology for data science. Russell has constructed numerous full-stack analytics products over the past ten years and now works with clients helping them extract value from their data assets. Russell Jurney Skill Principal Consultant at Data Syndrome Russell Jurney Data Syndrome, LLC Email : russell.jurney@gmail.com Web : datasyndrome.com Principal Consultant
  • 3. Lorem Ipsum dolor siamet suame this placeholder for text can simply random text. It has roots in a piece of classical. variazioni deiwords which whichhtly. ven on your zuniga merida della is not denis. Product Consulting We build analytics products and systems consisting of big data viz, predictions, recommendations, reports and search. Corporate Training We offer training courses for data scientists and engineers and data science teams, Video Training We offer video training courses that rapidly acclimate you with a technology and technique.
  • 4. Agile Data Science 2.0 4 What makes data science “agile data science”? Theory
  • 5. Agile Data Science 2.0 5 Yes. Building applications is a fundamental skill for today’s data scientist. Data Products or Data Science?
  • 6. Agile Data Science 2.0 6 Data Products or Data Science?
  • 7. Agile Data Science 2.0 7 If someone else has to start over and rebuild it, it ain’t agile. Big Data or Data Science?
  • 8. Agile Data Science 2.0 8 Goal of Methodology The goal of agile data science in <140 characters: to document and guide exploratory data analysis to discover and follow the critical path to a compelling product.
  • 9. Agile Data Science 2.0 9 In analytics, the end-goal moves or is complex in nature, so we model as a network of tasks rather than as a strictly linear process. Critical Path
  • 10. Agile Data Science 2.0 Agile Data Science Manifesto 10 Seven Principles for Agile Data Science Discover and pursue the critical path to a killer product Iterate, iterate, iterate: tables, charts, reports, predictions1. Integrate the tyrannical opinion of data in product management4. Get Meta. Describe the process, not just the end-state7. Ship intermediate output. Even failed experiments have output2. Climb up and down the data-value pyramid as we work5. Prototype experiments over implementing tasks3. 6.
  • 11. Agile Data Science 2.0 11 People will pay more for the things towards the top, but you need the things on the bottom to have the things above. They are foundational. See: Maslow’s Theory of Needs. Data Value Pyramid
  • 12. Agile Data Science 2.0 12 Things we use to build the apps Tools
  • 13. Agile Data Science 2.0 Agile Data Science 2.0 Stack 13 Apache Spark Apache Kafka MongoDB Batch and Realtime Realtime Queue Document Store Flask Simple Web App Example of a high productivity stack for “big” data applications ElasticSearch Search
  • 14. Agile Data Science 2.0 Flow of Data Processing 14 Tools and processes in collecting, refining, publishing and decorating data {“hello”: “world”}
  • 15. Data Syndrome: Agile Data Science 2.0 Apache Spark Ecosystem 15 HDFS, Amazon S3, Spark, Spark SQL, Spark MLlib, Spark Streaming /
  • 16. Agile Data Science 2.0 16 SQL or dataflow programming? Programming Models
  • 17. Agile Data Science 2.0 17 Describing what you want and letting the planner figure out how SQL SELECT associations2.object_id, associations2.term_id, associations2.cat_ID, associations2.term_taxonomy_id
 FROM (SELECT objects_tags.object_id, objects_tags.term_id, wp_cb_tags2cats.cat_ID, categories.term_taxonomy_id
 FROM (SELECT wp_term_relationships.object_id, wp_term_taxonomy.term_id, wp_term_taxonomy.term_taxonomy_id
 FROM wp_term_relationships
 LEFT JOIN wp_term_taxonomy ON wp_term_relationships.term_taxonomy_id = wp_term_taxonomy.term_taxonomy_id
 ORDER BY object_id ASC, term_id ASC) 
 AS objects_tags
 LEFT JOIN wp_cb_tags2cats ON objects_tags.term_id = wp_cb_tags2cats.tag_ID
 LEFT JOIN (SELECT wp_term_relationships.object_id, wp_term_taxonomy.term_id as cat_ID, wp_term_taxonomy.term_taxonomy_id
 FROM wp_term_relationships
 LEFT JOIN wp_term_taxonomy ON wp_term_relationships.term_taxonomy_id = wp_term_taxonomy.term_taxonomy_id
 WHERE wp_term_taxonomy.taxonomy = 'category'
 GROUP BY object_id, cat_ID, term_taxonomy_id
 ORDER BY object_id, cat_ID, term_taxonomy_id) 
 AS categories on wp_cb_tags2cats.cat_ID = categories.term_id
 WHERE objects_tags.term_id = wp_cb_tags2cats.tag_ID
 GROUP BY object_id, term_id, cat_ID, term_taxonomy_id
 ORDER BY object_id ASC, term_id ASC, cat_ID ASC) 
 AS associations2
 LEFT JOIN categories ON associations2.object_id = categories.object_id
 WHERE associations2.cat_ID <> categories.cat_ID
 GROUP BY object_id, term_id, cat_ID, term_taxonomy_id
 ORDER BY object_id, term_id, cat_ID, term_taxonomy_id
  • 18. Agile Data Science 2.0 18 Flowing data through operations to effect change Dataflow Programming
  • 19. Agile Data Science 2.0 19 The best of both worlds! SQL AND Dataflow Programming # Flights that were late arriving...
 late_arrivals = on_time_dataframe.filter(on_time_dataframe.ArrD elayMinutes > 0)
 total_late_arrivals = late_arrivals.count()
 
 # Flights that left late but made up time to arrive on time...
 on_time_heros = on_time_dataframe.filter(
 (on_time_dataframe.DepDelayMinutes > 0)
 &
 (on_time_dataframe.ArrDelayMinutes <= 0)
 )
 total_on_time_heros = on_time_heros.count()
 
 # Get the percentage of flights that are late, rounded to 1 decimal place
 pct_late = round((total_late_arrivals / (total_flights * 1.0)) * 100, 1)
 
 print("Total flights: {:,}".format(total_flights))
 print("Late departures: {:,}".format(total_late_departures))
 print("Late arrivals: {:,}".format(total_late_arrivals))
 print("Recoveries: {:,}".format(total_on_time_heros))
 print("Percentage Late: {}%".format(pct_late))
 
 # Why are flights late? Lets look at some delayed flights and the delay causes
 late_flights = spark.sql("""
 SELECT
 ArrDelayMinutes,
 WeatherDelay,
 CarrierDelay,
 NASDelay,
 SecurityDelay,
 LateAircraftDelay
 FROM
 on_time_performance
 WHERE
 WeatherDelay IS NOT NULL
 OR
 CarrierDelay IS NOT NULL
 OR
 NASDelay IS NOT NULL
 OR
 SecurityDelay IS NOT NULL
 OR
 LateAircraftDelay IS NOT NULL
 ORDER BY
 FlightDate
 """)
 late_flights.sample(False, 0.01).show() # Calculate the percentage contribution to delay for each source
 total_delays = spark.sql("""
 SELECT
 ROUND(SUM(WeatherDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_weather_delay,
 ROUND(SUM(CarrierDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_carrier_delay,
 ROUND(SUM(NASDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_nas_delay,
 ROUND(SUM(SecurityDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_security_delay,
 ROUND(SUM(LateAircraftDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_late_aircraft_delay
 FROM on_time_performance
 """)
 total_delays.show()
 
 # Generate a histogram of the weather and carrier delays
 weather_delay_histogram = on_time_dataframe
 .select("WeatherDelay")
 .rdd
 .flatMap(lambda x: x)
 .histogram(10)
 
 print("{}n{}".format(weather_delay_histogram[0], weather_delay_histogram[1]))
 
 # Eyeball the first to define our buckets
 weather_delay_histogram = on_time_dataframe
 .select("WeatherDelay")
 .rdd
 .flatMap(lambda x: x)
 .histogram([1, 15, 30, 60, 120, 240, 480, 720, 24*60.0])
 print(weather_delay_histogram) # Transform the data into something easily consumed by d3
 record = {'key': 1, 'data': []}
 for label, count in zip(weather_delay_histogram[0], weather_delay_histogram[1]):
 record['data'].append(
 {
 'label': label,
 'count': count
 }
 )
 
 # Save to Mongo directly, since this is a Tuple not a dataframe or RDD
 from pymongo import MongoClient
 client = MongoClient()
 client.relato.weather_delay_histogram.insert_one(record)
  • 20. Agile Data Science 2.0 20 FAA on-time performance data Data
  • 21. Data Syndrome: Agile Data Science 2.0 Collect and Serialize Events in JSON I never regret using JSON 21
  • 22. Data Syndrome: Agile Data Science 2.0 FAA On-Time Performance Records 95% of commercial flights 22http://www.transtats.bts.gov/Fields.asp?table_id=236
  • 23. Data Syndrome: Agile Data Science 2.0 FAA On-Time Performance Records 95% of commercial flights 23 "Year","Quarter","Month","DayofMonth","DayOfWeek","FlightDate","UniqueCarrier","AirlineID","Carrier","TailNum","FlightNum", "OriginAirportID","OriginAirportSeqID","OriginCityMarketID","Origin","OriginCityName","OriginState","OriginStateFips", "OriginStateName","OriginWac","DestAirportID","DestAirportSeqID","DestCityMarketID","Dest","DestCityName","DestState", "DestStateFips","DestStateName","DestWac","CRSDepTime","DepTime","DepDelay","DepDelayMinutes","DepDel15","DepartureDelayGroups", "DepTimeBlk","TaxiOut","WheelsOff","WheelsOn","TaxiIn","CRSArrTime","ArrTime","ArrDelay","ArrDelayMinutes","ArrDel15", "ArrivalDelayGroups","ArrTimeBlk","Cancelled","CancellationCode","Diverted","CRSElapsedTime","ActualElapsedTime","AirTime", "Flights","Distance","DistanceGroup","CarrierDelay","WeatherDelay","NASDelay","SecurityDelay","LateAircraftDelay", "FirstDepTime","TotalAddGTime","LongestAddGTime","DivAirportLandings","DivReachedDest","DivActualElapsedTime","DivArrDelay", "DivDistance","Div1Airport","Div1AirportID","Div1AirportSeqID","Div1WheelsOn","Div1TotalGTime","Div1LongestGTime", "Div1WheelsOff","Div1TailNum","Div2Airport","Div2AirportID","Div2AirportSeqID","Div2WheelsOn","Div2TotalGTime", "Div2LongestGTime","Div2WheelsOff","Div2TailNum","Div3Airport","Div3AirportID","Div3AirportSeqID","Div3WheelsOn", "Div3TotalGTime","Div3LongestGTime","Div3WheelsOff","Div3TailNum","Div4Airport","Div4AirportID","Div4AirportSeqID", "Div4WheelsOn","Div4TotalGTime","Div4LongestGTime","Div4WheelsOff","Div4TailNum","Div5Airport","Div5AirportID", "Div5AirportSeqID","Div5WheelsOn","Div5TotalGTime","Div5LongestGTime","Div5WheelsOff","Div5TailNum"
  • 24. Data Syndrome: Agile Data Science 2.0 openflights.org Database Airports, Airlines, Routes 24
  • 25. Data Syndrome: Agile Data Science 2.0 Scraping the FAA Registry Airplane Data by Tail Number 25
  • 26. Data Syndrome: Agile Data Science 2.0 Wikipedia Airlines Entries Descriptions of Airlines 26
  • 27. Data Syndrome: Agile Data Science 2.0 National Centers for Environmental Information Historical Weather Observations 27
  • 28. Agile Data Science 2.0 28 Working our way up the data value pyramid Climbing the Stack
  • 29. Agile Data Science 2.0 29 Starting by “plumbing” the system from end to end Plumbing
  • 30. Data Syndrome: Agile Data Science 2.0 Publishing Flight Records Plumbing our master records through to the web 30
  • 31. Data Syndrome: Agile Data Science 2.0 Publishing Flight Records to MongoDB Plumbing our master records through to the web 31 import pymongo
 import pymongo_spark
 # Important: activate pymongo_spark.
 pymongo_spark.activate()
 # Load the parquet file on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
 # Convert to RDD of dicts and save to MongoDB
 as_dict = on_time_dataframe.rdd.map(lambda row: row.asDict()) as_dict.saveToMongoDB(‘mongodb://localhost:27017/agile_data_science.on_time_performance')
  • 32. Data Syndrome: Agile Data Science 2.0 Publishing Flight Records to ElasticSearch Plumbing our master records through to the web 32 # Load the parquet file
 on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
 
 # Save the DataFrame to Elasticsearch
 on_time_dataframe.write.format("org.elasticsearch.spark.sql")
 .option("es.resource","agile_data_science/on_time_performance")
 .option("es.batch.size.entries","100")
 .mode("overwrite")
 .save()
  • 33. Data Syndrome: Agile Data Science 2.0 Putting Records on the Web Plumbing our master records through to the web 33 from flask import Flask, render_template, request
 from pymongo import MongoClient
 from bson import json_util
 
 # Set up Flask and Mongo
 app = Flask(__name__)
 client = MongoClient()
 
 # Controller: Fetch an email and display it
 @app.route("/on_time_performance")
 def on_time_performance():
 
 carrier = request.args.get('Carrier')
 flight_date = request.args.get('FlightDate')
 flight_num = request.args.get('FlightNum')
 
 flight = client.agile_data_science.on_time_performance.find_one({
 'Carrier': carrier,
 'FlightDate': flight_date,
 'FlightNum': int(flight_num)
 })
 
 return json_util.dumps(flight)
 
 if __name__ == "__main__":
 app.run(debug=True)
  • 34. Data Syndrome: Agile Data Science 2.0 Putting Records on the Web Plumbing our master records through to the web 34
  • 35. Data Syndrome: Agile Data Science 2.0 Putting Records on the Web Plumbing our master records through to the web 35
  • 36. Agile Data Science 2.0 36 Getting to know your data Tables and Charts
  • 37. Data Syndrome: Agile Data Science 2.0 Tables in PySpark Back end development in PySpark 37 # Load the parquet file
 on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
 
 # Use SQL to look at the total flights by month across 2015
 on_time_dataframe.registerTempTable("on_time_dataframe")
 total_flights_by_month = spark.sql(
 """SELECT Month, Year, COUNT(*) AS total_flights
 FROM on_time_dataframe
 GROUP BY Year, Month
 ORDER BY Year, Month"""
 )
 
 # This map/asDict trick makes the rows print a little prettier. It is optional.
 flights_chart_data = total_flights_by_month.map(lambda row: row.asDict())
 flights_chart_data.collect()
 
 # Save chart to MongoDB
 import pymongo_spark
 pymongo_spark.activate()
 flights_chart_data.saveToMongoDB(
 'mongodb://localhost:27017/agile_data_science.flights_by_month'
 )
  • 38. Data Syndrome: Agile Data Science 2.0 Tables in Flask and Jinja2 Front end development in Flask: controller and template 38 # Controller: Fetch a flight table
 @app.route("/total_flights")
 def total_flights():
 total_flights = client.agile_data_science.flights_by_month.find({}, 
 sort = [
 ('Year', 1),
 ('Month', 1)
 ])
 return render_template('total_flights.html', total_flights=total_flights) {% extends "layout.html" %}
 {% block body %}
 <div>
 <p class="lead">Total Flights by Month</p>
 <table class="table table-condensed table-striped" style="width: 200px;">
 <thead>
 <th>Month</th>
 <th>Total Flights</th>
 </thead>
 <tbody>
 {% for month in total_flights %}
 <tr>
 <td>{{month.Month}}</td>
 <td>{{month.total_flights}}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
 {% endblock %}
  • 39. Data Syndrome: Agile Data Science 2.0 Tables Visualizing data 39
  • 40. Data Syndrome: Agile Data Science 2.0 Charts in Flask and d3.js Visualizing data with JSON and d3.js 40 # Serve the chart's data via an asynchronous request (formerly known as 'AJAX')
 @app.route("/total_flights.json")
 def total_flights_json():
 total_flights = client.agile_data_science.flights_by_month.find({}, 
 sort = [
 ('Year', 1),
 ('Month', 1)
 ])
 return json_util.dumps(total_flights, ensure_ascii=False) var width = 960,
 height = 350;
 
 var y = d3.scale.linear()
 .range([height, 0]);
 // We define the domain once we get our data in d3.json, below
 
 var chart = d3.select(".chart")
 .attr("width", width)
 .attr("height", height);
 
 d3.json("/total_flights.json", function(data) {
 
 var defaultColor = 'steelblue';
 var modeColor = '#4CA9F5';
 
 var maxY = d3.max(data, function(d) { return d.total_flights; });
 y.domain([0, maxY]);
 
 var varColor = function(d, i) {
 if(d['total_flights'] == maxY) { return modeColor; }
 else { return defaultColor; }
 }
 var barWidth = width / data.length;
 var bar = chart.selectAll("g")
 .data(data)
 .enter()
 .append("g")
 .attr("transform", function(d, i) { return "translate(" + i * barWidth + ",0)"; });
 
 bar.append("rect")
 .attr("y", function(d) { return y(d.total_flights); })
 .attr("height", function(d) { return height - y(d.total_flights); })
 .attr("width", barWidth - 1)
 .style("fill", varColor);
 
 bar.append("text")
 .attr("x", barWidth / 2)
 .attr("y", function(d) { return y(d.total_flights) + 3; })
 .attr("dy", ".75em")
 .text(function(d) { return d.total_flights; });
 });
  • 41. Data Syndrome: Agile Data Science 2.0 Charts Visualizing data 41
  • 42. Agile Data Science 2.0 42 Exploring your data through interaction Reports
  • 43. Data Syndrome: Agile Data Science 2.0 Creating Interactive Ontologies from Semi-Structured Data Extracting and visualizing entities 43
  • 44. Data Syndrome: Agile Data Science 2.0 Home Page Extracting and decorating entities 44
  • 45. Data Syndrome: Agile Data Science 2.0 Airline Entity Extracting and decorating entities 45
  • 46. Data Syndrome: Agile Data Science 2.0 Summarizing Airlines 1.0 Describing entities in aggregate 46
  • 47. Data Syndrome: Agile Data Science 2.0 Summarizing Airlines 2.0 Describing entities in aggregate 47
  • 48. Data Syndrome: Agile Data Science 2.0 Summarizing Airlines 3.0 Describing entities in aggregate 48
  • 49. Data Syndrome: Agile Data Science 2.0 Summarizing Airlines 4.0 Describing entities in aggregate 49
  • 50. Agile Data Science 2.0 50 Predicting the future for fun and profit Predictions
  • 51. Data Syndrome: Agile Data Science 2.0 Back End Design Deep Storage and Spark vs Kafka and Spark Streaming 51 / Batch Realtime Historical Data Train Model Apply Model Realtime Data
  • 52. Data Syndrome: Agile Data Science 2.0 52 jQuery in the web client submits a form to create the prediction request, and then polls another url every few seconds until the prediction is ready. The request generates a Kafka event, which a Spark Streaming worker processes by applying the model we trained in batch. Having done so, it inserts a record for the prediction in MongoDB, where the Flask app sends it to the web client the next time it polls the server Front End Design /flights/delays/predict/classify_realtime/
  • 53. Data Syndrome: Agile Data Science 2.0 User Interface Where the user submits prediction requests 53
  • 54. Data Syndrome: Agile Data Science 2.0 String Vectorization From properties of items to vector format 54
  • 55. Data Syndrome: Agile Data Science 2.0 55 scikit-learn was 166. Spark MLlib is very powerful! http://bit.ly/train_model_spark 190 Line Model # !/usr/bin/env python
 
 import sys, os, re
 
 # Pass date and base path to main() from airflow
 def main(base_path):
 
 # Default to "."
 try: base_path
 except NameError: base_path = "."
 if not base_path:
 base_path = "."
 
 APP_NAME = "train_spark_mllib_model.py"
 
 # If there is no SparkSession, create the environment
 try:
 sc and spark
 except NameError as e:
 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql
 
 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()
 
 #
 # {
 # "ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00","CRSDepTime":"2015-12-31T03:05:00.000-08:00",
 # "Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN","Distance":368.0,
 # "FlightDate":"2015-12-30T16:00:00.000-08:00","FlightNum":"6109","Origin":"TUS"
 # }
 #
 from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType
 from pyspark.sql.types import StructType, StructField
 from pyspark.sql.functions import udf
 
 schema = StructType([
 StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0
 StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"
 StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"
 StructField("Carrier", StringType(), True), # "Carrier":"WN"
 StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31
 StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4
 StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365
 StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0
 StructField("Dest", StringType(), True), # "Dest":"SAN"
 StructField("Distance", DoubleType(), True), # "Distance":368.0
 StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"
 StructField("FlightNum", StringType(), True), # "FlightNum":"6109"
 StructField("Origin", StringType(), True), # "Origin":"TUS"
 ])
 
 input_path = "{}/data/simple_flight_delay_features.jsonl.bz2".format(
 base_path
 )
 features = spark.read.json(input_path, schema=schema)
 features.first()
 
 #
 # Check for nulls in features before using Spark ML
 #
 null_counts = [(column, features.where(features[column].isNull()).count()) for column in features.columns]
 cols_with_nulls = filter(lambda x: x[1] > 0, null_counts)
 print(list(cols_with_nulls))
 
 #
 # Add a Route variable to replace FlightNum
 #
 from pyspark.sql.functions import lit, concat
 features_with_route = features.withColumn(
 'Route',
 concat(
 features.Origin,
 lit('-'),
 features.Dest
 )
 )
 features_with_route.show(6)
 
 #
 # Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)
 #
 from pyspark.ml.feature import Bucketizer
 
 # Setup the Bucketizer
 splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]
 arrival_bucketizer = Bucketizer(
 splits=splits,
 inputCol="ArrDelay",
 outputCol="ArrDelayBucket"
 )
 
 # Save the bucketizer
 arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)
 arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)
 
 # Apply the bucketizer
 ml_bucketized_features = arrival_bucketizer.transform(features_with_route)
 ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()
 
 #
 # Extract features tools in with pyspark.ml.feature
 #
 from pyspark.ml.feature import StringIndexer, VectorAssembler
 
 # Turn category fields into indexes
 for column in ["Carrier", "Origin", "Dest", "Route"]:
 string_indexer = StringIndexer(
 inputCol=column,
 outputCol=column + "_index"
 )
 
 string_indexer_model = string_indexer.fit(ml_bucketized_features)
 ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)
 
 # Drop the original column
 ml_bucketized_features = ml_bucketized_features.drop(column)
 
 # Save the pipeline model
 string_indexer_output_path = "{}/models/string_indexer_model_{}.bin".format(
 base_path,
 column
 )
 string_indexer_model.write().overwrite().save(string_indexer_output_path)
 
 # Combine continuous, numeric fields with indexes of nominal ones
 # ...into one feature vector
 numeric_columns = [
 "DepDelay", "Distance",
 "DayOfMonth", "DayOfWeek",
 "DayOfYear"]
 index_columns = ["Carrier_index", "Origin_index",
 "Dest_index", "Route_index"]
 vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"
 )
 final_vectorized_features = vector_assembler.transform(ml_bucketized_features)
 
 # Save the numeric vector assembler
 vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(base_path)
 vector_assembler.write().overwrite().save(vector_assembler_path)
 
 # Drop the index columns
 for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)
 
 # Inspect the finalized features
 final_vectorized_features.show()
 
 # Instantiate and fit random forest classifier on all the data
 from pyspark.ml.classification import RandomForestClassifier
 rfc = RandomForestClassifier(
 featuresCol="Features_vec",
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 maxBins=4657,
 maxMemoryInMB=1024
 )
 model = rfc.fit(final_vectorized_features)
 
 # Save the new model over the old one
 model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.5.0.bin".format(
 base_path
 )
 model.write().overwrite().save(model_output_path)
 
 # Evaluate model using test data
 predictions = model.transform(final_vectorized_features)
 
 from pyspark.ml.evaluation import MulticlassClassificationEvaluator
 evaluator = MulticlassClassificationEvaluator(
 predictionCol="Prediction",
 labelCol="ArrDelayBucket",
 metricName="accuracy"
 )
 accuracy = evaluator.evaluate(predictions)
 print("Accuracy = {}".format(accuracy))
 
 # Check the distribution of predictions
 predictions.groupBy("Prediction").count().show()
 
 # Check a sample
 predictions.sample(False, 0.001, 18).orderBy("CRSDepTime").show(6)
 
 if __name__ == "__main__":
 main(sys.argv[1])

  • 56. Data Syndrome: Agile Data Science 2.0 Initializing the Environment Setting up the environment… 56 # !/usr/bin/env python
 
 import sys, os, re
 
 # Pass date and base path to main() from airflow
 def main(base_path):
 
 # Default to "."
 try: base_path
 except NameError: base_path = "."
 if not base_path:
 base_path = "."
 
 APP_NAME = "train_spark_mllib_model.py"
 
 # If there is no SparkSession, create the environment
 try:
 sc and spark
 except NameError as e:
 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql
 
 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()
  • 57. Data Syndrome: Agile Data Science 2.0 Loading the Training Data Using DataFrames to load structured data… 57 from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType
 from pyspark.sql.types import StructType, StructField
 from pyspark.sql.functions import udf
 
 schema = StructType([
 StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0
 StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"
 StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"
 StructField("Carrier", StringType(), True), # "Carrier":"WN"
 StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31
 StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4
 StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365
 StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0
 StructField("Dest", StringType(), True), # "Dest":"SAN"
 StructField("Distance", DoubleType(), True), # "Distance":368.0
 StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"
 StructField("FlightNum", StringType(), True), # "FlightNum":"6109"
 StructField("Origin", StringType(), True), # "Origin":"TUS"
 ])
 
 input_path = "{}/data/simple_flight_delay_features.jsonl.bz2".format(
 base_path
 )
 features = spark.read.json(input_path, schema=schema)
 features.first()
  • 58. Data Syndrome: Agile Data Science 2.0 Checking for Nulls Checking the data for null values that would crash Spark MLlib 58 #
 # Check for nulls in features before using Spark ML
 #
 null_counts = [(column, features.where(features[column].isNull()).count()) for column in features.columns]
 cols_with_nulls = filter(lambda x: x[1] > 0, null_counts)
 print(list(cols_with_nulls))
  • 59. Data Syndrome: Agile Data Science 2.0 Adding a Feature Using DataFrame.withColumn to add a Route feature to the data… 59 #
 # Add a Route variable to replace FlightNum
 #
 from pyspark.sql.functions import lit, concat
 features_with_route = features.withColumn(
 'Route',
 concat(
 features.Origin,
 lit('-'),
 features.Dest
 )
 )
 features_with_route.show(6)
  • 60. Data Syndrome: Agile Data Science 2.0 Bucketizing the Prediction Column Using Bucketizer to convert a continuous variable to a nominal one… 60 #
 # Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)
 #
 from pyspark.ml.feature import Bucketizer
 
 # Setup the Bucketizer
 splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]
 arrival_bucketizer = Bucketizer(
 splits=splits,
 inputCol="ArrDelay",
 outputCol="ArrDelayBucket"
 )
 
 # Save the bucketizer
 arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)
 arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)
 
 # Apply the bucketizer
 ml_bucketized_features = arrival_bucketizer.transform(features_with_route)
 ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()
  • 61. Data Syndrome: Agile Data Science 2.0 StringIndexing the String Columns Using StringIndexer to convert nominal fields to numeric ones… 61 #
 # Extract features tools in with pyspark.ml.feature
 #
 from pyspark.ml.feature import StringIndexer, VectorAssembler
 
 # Turn category fields into indexes
 for column in ["Carrier", "Origin", "Dest", "Route"]:
 string_indexer = StringIndexer(
 inputCol=column,
 outputCol=column + "_index"
 )
 
 string_indexer_model = string_indexer.fit(ml_bucketized_features)
 ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)
 
 # Drop the original column
 ml_bucketized_features = ml_bucketized_features.drop(column)
 
 # Save the pipeline model
 string_indexer_output_path = "{}/models/string_indexer_model_{}.bin".format(
 base_path,
 column
 )
 string_indexer_model.write().overwrite().save(string_indexer_output_path)
  • 62. Data Syndrome: Agile Data Science 2.0 Vectorizing the Numeric Columns Combining the numeric fields with VectorAssembler… 62 # Combine continuous, numeric fields with indexes of nominal ones
 # ...into one feature vector
 numeric_columns = [
 "DepDelay", "Distance",
 "DayOfMonth", "DayOfWeek",
 "DayOfYear"]
 index_columns = ["Carrier_index", "Origin_index",
 "Dest_index", "Route_index"]
 vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"
 )
 final_vectorized_features = vector_assembler.transform(ml_bucketized_features)
 
 # Save the numeric vector assembler
 vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(base_path)
 vector_assembler.write().overwrite().save(vector_assembler_path)
 
 # Drop the index columns
 for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)
 
 # Inspect the finalized features
 final_vectorized_features.show()
  • 63. Data Syndrome: Agile Data Science 2.0 Training the Classifier Model Creating and training a RandomForestClassifier model 63 # Instantiate and fit random forest classifier on all the data
 from pyspark.ml.classification import RandomForestClassifier
 rfc = RandomForestClassifier(
 featuresCol="Features_vec",
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 maxBins=4657,
 maxMemoryInMB=1024
 )
 model = rfc.fit(final_vectorized_features)
 
 # Save the new model over the old one
 model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.5.0.bin".format(
 base_path
 )
 model.write().overwrite().save(model_output_path)
  • 64. Data Syndrome: Agile Data Science 2.0 Evaluating the Classifier Model Using MultiClassificationEvaluator to check the accuracy of the model… 64 # Evaluate model using test data
 predictions = model.transform(final_vectorized_features)
 
 from pyspark.ml.evaluation import MulticlassClassificationEvaluator
 evaluator = MulticlassClassificationEvaluator(
 predictionCol="Prediction",
 labelCol="ArrDelayBucket",
 metricName="accuracy"
 )
 accuracy = evaluator.evaluate(predictions)
 print("Accuracy = {}".format(accuracy))
 
 # Check the distribution of predictions
 predictions.groupBy("Prediction").count().show()
 
 # Check a sample
 predictions.sample(False, 0.001, 18).orderBy("CRSDepTime").show(6)
  • 65. Data Syndrome: Agile Data Science 2.0 Running Main Just what it looks like… 65 if __name__ == "__main__":
 main(sys.argv[1])
  • 66. Data Syndrome: Agile Data Science 2.0 66 Using the model in realtime via Spark Streaming! Deploying the Model
  • 67. Data Syndrome: Agile Data Science 2.0 Loading the Models Loading the models we trained in batch to reproduce the data pipeline 67 # ch08/make_predictions_streaming.py # Load the arrival delay bucketizer
 from pyspark.ml.feature import Bucketizer
 arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)
 arrival_bucketizer = Bucketizer.load(arrival_bucketizer_path)
 
 # Load all the string field vectorizer pipelines into a dict
 from pyspark.ml.feature import StringIndexerModel
 
 string_indexer_models = {}
 for column in ["Carrier", "DayOfMonth", "DayOfWeek", "DayOfYear",
 "Origin", "Dest", "Route"]:
 string_indexer_model_path = "{}/models/string_indexer_model_{}.bin".format(
 base_path,
 column
 )
 string_indexer_model = StringIndexerModel.load(string_indexer_model_path)
 string_indexer_models[column] = string_indexer_model
  • 68. Data Syndrome: Agile Data Science 2.0 Loading the Models Loading the models we trained in batch to reproduce the data pipeline 68 # ch08/make_predictions_streaming.py # Load the numeric vector assembler
 from pyspark.ml.feature import VectorAssembler
 vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(base_path)
 vector_assembler = VectorAssembler.load(vector_assembler_path)
 
 # Load the classifier model
 from pyspark.ml.classification import RandomForestClassifier, RandomForestClassificationModel
 random_forest_model_path = "{}/models/spark_random_forest_classifier.flight_delays. 5.0.bin".format(
 base_path
 )
 rfc = RandomForestClassificationModel.load(
 random_forest_model_path
  • 69. Data Syndrome: Agile Data Science 2.0 Connecting to Kafka Creating a direct stream to the Kafka queue containing our prediction requests 69 #
 # Process Prediction Requests in Streaming
 # from pyspark.streaming.kafka import KafkaUtils
 
 stream = KafkaUtils.createDirectStream(
 ssc,
 [PREDICTION_TOPIC],
 {
 "metadata.broker.list": BROKERS,
 "group.id": "0",
 }
 )
 
 object_stream = stream.map(lambda x: json.loads(x[1]))
 object_stream.pprint()
  • 70. Data Syndrome: Agile Data Science 2.0 Repeating the Pipeline Running the prediction requests through the same data flow as the training data 70 row_stream = object_stream.map(
 lambda x: Row(
 FlightDate=iso8601.parse_date(x['FlightDate']),
 Origin=x['Origin'],
 Distance=x['Distance'],
 DayOfMonth=x['DayOfMonth'],
 DayOfYear=x['DayOfYear'],
 UUID=x['UUID'],
 DepDelay=x['DepDelay'],
 DayOfWeek=x['DayOfWeek'],
 FlightNum=x['FlightNum'],
 Dest=x['Dest'],
 Timestamp=iso8601.parse_date(x['Timestamp']),
 Carrier=x['Carrier']
 )
 )
 row_stream.pprint() # Do the classification and store to Mongo
 row_stream.foreachRDD(classify_prediction_requests)
 
 ssc.start()
 ssc.awaitTermination()
  • 71. Data Syndrome: Agile Data Science 2.0 Repeating the Pipeline Running the prediction requests through the same data flow as the training data 71 def classify_prediction_requests(rdd):
 
 from pyspark.sql.types import StringType, IntegerType, DoubleType, DateType, TimestampType
 from pyspark.sql.types import StructType, StructField
 
 prediction_request_schema = StructType([
 StructField("Carrier", StringType(), True),
 StructField("DayOfMonth", IntegerType(), True),
 StructField("DayOfWeek", IntegerType(), True),
 StructField("DayOfYear", IntegerType(), True),
 StructField("DepDelay", DoubleType(), True),
 StructField("Dest", StringType(), True),
 StructField("Distance", DoubleType(), True),
 StructField("FlightDate", DateType(), True),
 StructField("FlightNum", StringType(), True),
 StructField("Origin", StringType(), True),
 StructField("Timestamp", TimestampType(), True),
 StructField("UUID", StringType(), True),
 ])
 
 prediction_requests_df = spark.createDataFrame(rdd, schema=prediction_request_schema)
 prediction_requests_df.show() from pyspark.sql.functions import lit, concat
 prediction_requests_with_route = prediction_requests_df.withColumn(
 'Route',
 concat(
 prediction_requests_df.Origin,
 lit('-'),
 prediction_requests_df.Dest
 )
 )
 prediction_requests_with_route.show(6) ...
  • 72. Data Syndrome: Agile Data Science 2.0 Repeating the Pipeline Running the prediction requests through the same data flow as the training data 72 for column in ["Carrier", "DayOfMonth", "DayOfWeek", "DayOfYear",
 "Origin", "Dest", "Route"]:
 string_indexer_model = string_indexer_models[column]
 prediction_requests_with_route = string_indexer_model.transform(prediction_requests_with_route)
 
 # Vectorize numeric columns: DepDelay, Distance and index columns
 final_vectorized_features = vector_assembler.transform(prediction_requests_with_route)
 
 # Inspect the vectors
 final_vectorized_features.show()
 
 # Drop the individual index columns
 index_columns = ["Carrier_index", "DayOfMonth_index", "DayOfWeek_index", "DayOfYear_index",
 "Origin_index", "Dest_index", "Route_index"]
 for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)
 
 # Inspect the finalized features
 final_vectorized_features.show()
 
 # Make the prediction
 predictions = rfc.transform(final_vectorized_features) # Drop the features vector and prediction metadata to give the original fields
 predictions = predictions.drop("Features_vec")
 final_predictions = predictions.drop("indices").drop("values").drop("rawPrediction").drop("probability")
 
 # Inspect the output
 final_predictions.show()
  • 73. Data Syndrome: Agile Data Science 2.0 Storing to Mongo Putting the result where our web application can access it 73 # Store to Mongo
 if final_predictions.count() > 0:
 final_predictions.rdd.map(lambda x: x.asDict()).saveToMongoDB(
 "mongodb://localhost:27017/agile_data_science.flight_delay_classification_response"
 )
  • 74. Data Syndrome: Agile Data Science 2.0 74 Experimental setup for iteratively improving the predictive model Improving the Model
  • 75. Data Syndrome: Agile Data Science 2.0 Experiment Setup Necessary to improve model 75
  • 76. Data Syndrome: Agile Data Science 2.0 76 155 additional lines to setup an experiment and add 3 new features to improvement the model http://bit.ly/improved_model_spark 345 L.O.C. # !/usr/bin/env python
 
 import sys, os, re
 import json
 import datetime, iso8601
 from tabulate import tabulate
 
 # Pass date and base path to main() from airflow
 def main(base_path):
 APP_NAME = "train_spark_mllib_model.py"
 
 # If there is no SparkSession, create the environment
 try:
 sc and spark
 except NameError as e:
 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql
 
 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()
 
 #
 # {
 # "ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00","CRSDepTime":"2015-12-31T03:05:00.000-08:00",
 # "Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN","Distance":368.0,
 # "FlightDate":"2015-12-30T16:00:00.000-08:00","FlightNum":"6109","Origin":"TUS"
 # }
 #
 from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType
 from pyspark.sql.types import StructType, StructField
 from pyspark.sql.functions import udf
 
 schema = StructType([
 StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0
 StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"
 StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"
 StructField("Carrier", StringType(), True), # "Carrier":"WN"
 StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31
 StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4
 StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365
 StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0
 StructField("Dest", StringType(), True), # "Dest":"SAN"
 StructField("Distance", DoubleType(), True), # "Distance":368.0
 StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"
 StructField("FlightNum", StringType(), True), # "FlightNum":"6109"
 StructField("Origin", StringType(), True), # "Origin":"TUS"
 ])
 
 input_path = "{}/data/simple_flight_delay_features.json".format(
 base_path
 )
 features = spark.read.json(input_path, schema=schema)
 features.first()
 
 #
 # Add a Route variable to replace FlightNum
 #
 from pyspark.sql.functions import lit, concat
 features_with_route = features.withColumn(
 'Route',
 concat(
 features.Origin,
 lit('-'),
 features.Dest
 )
 )
 features_with_route.show(6)
 
 #
 # Add the hour of day of scheduled arrival/departure
 #
 from pyspark.sql.functions import hour
 features_with_hour = features_with_route.withColumn(
 "CRSDepHourOfDay",
 hour(features.CRSDepTime)
 )
 features_with_hour = features_with_hour.withColumn(
 "CRSArrHourOfDay",
 hour(features.CRSArrTime)
 )
 features_with_hour.select("CRSDepTime", "CRSDepHourOfDay", "CRSArrTime", "CRSArrHourOfDay").show()
 
 #
 # Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)
 #
 from pyspark.ml.feature import Bucketizer
 
 # Setup the Bucketizer
 splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]
 arrival_bucketizer = Bucketizer(
 splits=splits,
 inputCol="ArrDelay",
 outputCol="ArrDelayBucket"
 )
 
 # Save the model
 arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)
 arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)
 
 # Apply the model
 ml_bucketized_features = arrival_bucketizer.transform(features_with_hour)
 ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()
 
 #
 # Extract features tools in with pyspark.ml.feature
 #
 from pyspark.ml.feature import StringIndexer, VectorAssembler
 
 # Turn category fields into indexes
 for column in ["Carrier", "Origin", "Dest", "Route"]:
 string_indexer = StringIndexer(
 inputCol=column,
 outputCol=column + "_index"
 )
 
 string_indexer_model = string_indexer.fit(ml_bucketized_features)
 ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)
 # Save the pipeline model
 string_indexer_output_path = "{}/models/string_indexer_model_3.0.{}.bin".format(
 base_path,
 column
 )
 string_indexer_model.write().overwrite().save(string_indexer_output_path)
 
 # Combine continuous, numeric fields with indexes of nominal ones
 # ...into one feature vector
 numeric_columns = [
 "DepDelay", "Distance",
 "DayOfMonth", "DayOfWeek",
 "DayOfYear", "CRSDepHourOfDay",
 "CRSArrHourOfDay"]
 index_columns = ["Carrier_index", "Origin_index",
 "Dest_index", "Route_index"]
 vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"
 )
 final_vectorized_features = vector_assembler.transform(ml_bucketized_features)
 
 # Save the numeric vector assembler
 vector_assembler_path = "{}/models/numeric_vector_assembler_3.0.bin".format(base_path)
 vector_assembler.write().overwrite().save(vector_assembler_path)
 
 # Drop the index columns
 for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)
 
 # Inspect the finalized features
 final_vectorized_features.show()
 
 #
 # Cross validate, train and evaluate classifier: loop 5 times for 4 metrics
 #
 
 from collections import defaultdict
 scores = defaultdict(list)
 feature_importances = defaultdict(list)
 metric_names = ["accuracy", "weightedPrecision", "weightedRecall", "f1"]
 split_count = 3
 
 for i in range(1, split_count + 1):
 print("nRun {} out of {} of test/train splits in cross validation...".format(
 i,
 split_count,
 )
 )
 
 # Test/train split
 training_data, test_data = final_vectorized_features.randomSplit([0.8, 0.2])
 
 # Instantiate and fit random forest classifier on all the data
 from pyspark.ml.classification import RandomForestClassifier
 rfc = RandomForestClassifier(
 featuresCol="Features_vec",
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 maxBins=4657,
 )
 model = rfc.fit(training_data)
 
 # Save the new model over the old one
 model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.baseline.bin".format(
 base_path
 )
 model.write().overwrite().save(model_output_path)
 
 # Evaluate model using test data
 predictions = model.transform(test_data)
 
 # Evaluate this split's results for each metric
 from pyspark.ml.evaluation import MulticlassClassificationEvaluator
 for metric_name in metric_names:
 evaluator = MulticlassClassificationEvaluator(
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 metricName=metric_name
 )
 score = evaluator.evaluate(predictions)
 
 scores[metric_name].append(score)
 print("{} = {}".format(metric_name, score))
 
 #
 # Collect feature importances
 #
 feature_names = vector_assembler.getInputCols()
 feature_importance_list = model.featureImportances
 for feature_name, feature_importance in zip(feature_names, feature_importance_list):
 feature_importances[feature_name].append(feature_importance)
 
 #
 # Evaluate average and STD of each metric and print a table
 #
 import numpy as np
 score_averages = defaultdict(float)
 
 # Compute the table data
 average_stds = [] # ha
 for metric_name in metric_names:
 metric_scores = scores[metric_name]
 
 average_accuracy = sum(metric_scores) / len(metric_scores)
 score_averages[metric_name] = average_accuracy
 
 std_accuracy = np.std(metric_scores)
 
 average_stds.append((metric_name, average_accuracy, std_accuracy))
 
 # Print the table
 print("nExperiment Log")
 print("--------------")
 print(tabulate(average_stds, headers=["Metric", "Average", "STD"]))
 
 #
 # Persist the score to a sccore log that exists between runs
 #
 import pickle # Load the score log or initialize an empty one
 try:
 score_log_filename = "{}/models/score_log.pickle".format(base_path)
 score_log = pickle.load(open(score_log_filename, "rb"))
 if not isinstance(score_log, list):
 score_log = []
 except IOError:
 score_log = []
 
 # Compute the existing score log entry
 score_log_entry = {metric_name: score_averages[metric_name] for metric_name in metric_names}
 
 # Compute and display the change in score for each metric
 try:
 last_log = score_log[-1]
 except (IndexError, TypeError, AttributeError):
 last_log = score_log_entry
 
 experiment_report = []
 for metric_name in metric_names:
 run_delta = score_log_entry[metric_name] - last_log[metric_name]
 experiment_report.append((metric_name, run_delta))
 
 print("nExperiment Report")
 print("-----------------")
 print(tabulate(experiment_report, headers=["Metric", "Score"]))
 
 # Append the existing average scores to the log
 score_log.append(score_log_entry)
 
 # Persist the log for next run
 pickle.dump(score_log, open(score_log_filename, "wb"))
 
 #
 # Analyze and report feature importance changes
 #
 
 # Compute averages for each feature
 feature_importance_entry = defaultdict(float)
 for feature_name, value_list in feature_importances.items():
 average_importance = sum(value_list) / len(value_list)
 feature_importance_entry[feature_name] = average_importance
 
 # Sort the feature importances in descending order and print
 import operator
 sorted_feature_importances = sorted(
 feature_importance_entry.items(),
 key=operator.itemgetter(1),
 reverse=True
 )
 
 print("nFeature Importances")
 print("-------------------")
 print(tabulate(sorted_feature_importances, headers=['Name', 'Importance']))
 
 #
 # Compare this run's feature importances with the previous run's
 #
 
 # Load the feature importance log or initialize an empty one
 try:
 feature_log_filename = "{}/models/feature_log.pickle".format(base_path)
 feature_log = pickle.load(open(feature_log_filename, "rb"))
 if not isinstance(feature_log, list):
 feature_log = []
 except IOError:
 feature_log = []
 
 # Compute and display the change in score for each feature
 try:
 last_feature_log = feature_log[-1]
 except (IndexError, TypeError, AttributeError):
 last_feature_log = defaultdict(float)
 for feature_name, importance in feature_importance_entry.items():
 last_feature_log[feature_name] = importance
 
 # Compute the deltas
 feature_deltas = {}
 for feature_name in feature_importances.keys():
 run_delta = feature_importance_entry[feature_name] - last_feature_log[feature_name]
 feature_deltas[feature_name] = run_delta
 
 # Sort feature deltas, biggest change first
 import operator
 sorted_feature_deltas = sorted(
 feature_deltas.items(),
 key=operator.itemgetter(1),
 reverse=True
 )
 
 # Display sorted feature deltas
 print("nFeature Importance Delta Report")
 print("-------------------------------")
 print(tabulate(sorted_feature_deltas, headers=["Feature", "Delta"]))
 
 # Append the existing average deltas to the log
 feature_log.append(feature_importance_entry)
 
 # Persist the log for next run
 pickle.dump(feature_log, open(feature_log_filename, "wb"))
 
 if __name__ == "__main__":
 main(sys.argv[1])

  • 77. Data Syndrome: Agile Data Science 2.0 77 Next steps for learning more about Agile Data Science 2.0 Next Steps
  • 78. Building Full-Stack Data Analytics Applications with Spark http://bit.ly/agile_data_science Available Now on O’Reilly Safari: http://bit.ly/agile_data_safari Agile Data Science 2.0
  • 79. Agile Data Science 2.0 79 Realtime Predictive Analytics Rapidly learn to build entire predictive systems driven by Kafka, PySpark, Speak Streaming, Spark MLlib and with a web front-end using Python/Flask and JQuery. Available for purchase at http://datasyndrome.com/video
  • 80. Data Syndrome Russell Jurney Principal Consultant Email : rjurney@datasyndrome.com Web : datasyndrome.com Data Syndrome, LLC Product Consulting We build analytics products and systems consisting of big data viz, predictions, recommendations, reports and search. Corporate Training We offer training courses for data scientists and engineers and data science teams, Video Training We offer video training courses that rapidly acclimate you with a technology and technique.