SlideShare a Scribd company logo
1 of 55
Download to read offline
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Propositional Equality, Identity Types
and Homotopies
Ruy de Queiroz
(joint work with Anjolina de Oliveira)
Centro de Inform´atica
Universidade Federal de Pernambuco (UFPE)
Recife, Brazil
Wokshop de L´ogica Aplicada
UnB, Bras´ılia, DF
05 Fev 2015
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Homotopy Type Theory
Univalent Foundations of Mathematics
Institute for Advanced Study, Princeton
484–600p. Open-source book: 27 main authors
Available on GitHub. Latest version March 2014
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Homotopy Type Theory
Univalent Foundations of Mathematics
“Homotopy type theory is a new branch of
mathematics that combines aspects of several
different fields in a surprising way. It is based on a
recently discovered connection between homotopy
theory and type theory. It touches on topics as
seemingly distant as the homotopy groups of spheres,
the algorithms for type checking, and the definition of
weak ∞-groupoids.”
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Geometry and Logic
Alexander Grothendieck
Alexander Grothendieck
B. 28 March 1928 Berlin, Prussia, Germany
D. 13 November 2014 (aged 86) Saint-Girons, Ari`ege, France
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Geometry and Logic
Alexander Grothendieck
. . . the study of n-truncated homotopy types (of
semisimplicial sets, or of topological spaces) [should
be] essentially equivalent to the study of so-called
n-groupoids. . . . This is expected to be achieved by
associating to any space (say) X its “fundamental
n-groupoid” Πn(X).... The obvious idea is that
0-objects of Πn(X) should be the points of X,
1-objects should be “homotopies” or paths between
points, 2-objects should be homotopies between
1-objects, etc.
(Grothendieck 1983)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Geometry and Logic
Vladimir Voevodsky
Some of the ways to approach the notion of space in
mathematics:
1 topological spaces
2 metric spaces
3 homotopy theory (no need to take sets as primitive objects:
starts from points and paths)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Geometry and Logic
Vladimir Voevodsky
Vladimir Voevodsky
B. 4 June 1966 Moscow, Russia
(Fields Medal, 2002, Motivic Homotopy)
(Institute for Advanced Study, Princeton)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Geometry and Logic
Vladimir Voevodsky
“From an observation by Grothendieck:
Formalism of higher equivalences (theory of grupoids)
=
Homotopy theory (theory of shapes up to a
deformation)
Combined with some other ideas it: leads to an encoding of
mathematics in terms of the homotopy theory. Unlike the usual
encodings in terms of the set theory this one respects
equivalences.”
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Equality as a Structure, not a Relation
Vladimir Voevodsky
“An equality between two abstract sets is not a relation but a
structure. It is not expressed by an assertion of a proposition
but by presenting an element of a set of possible equalities.
For example, the abstract sets corresponding to the sets {A, B}
and {C, D} can be equal either through the correspondence
that takes A to C and B to D or through the one that takes A to
D and B to C. This is one of the ways in which abstract sets are
not “things”.”
The Paul Bernays Lectures, September 2014, ETH Zurich
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Type Theory and Homotopy Theory
Steve Awodey
Steve Awodey
Professor of Philosophy and of Mathematics, CMU
Author of Category Theory, OUP, 2005
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Type Theory and Homotopy Theory
Steve Awodey
“The purpose of this informal survey article is to introduce the
reader to a new and surprising connection between Geometry,
Algebra, and Logic, which has recently come to light in the form
of an interpretation of the constructive type theory of Per
Martin-L¨of into homotopy theory, resulting in new examples of
certain algebraic structures which are important in topology.
This connection was discovered quite recently, and various
aspects of it are now under active investigation by several
researchers.”
(“Type Theory and Homotopy Theory”, 2010.)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Algebraic Structure: Groupoids
Steve Awodey
“A groupoid is like a group, but with a partially-defined
composition operation. Precisely, a groupoid can be defined as
a category in which every arrow has an inverse. A group is thus
a groupoid with only one object. Groupoids arise in topology as
generalized fundamental groups, not tied to a choice of
basepoint.”
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
What is a proof of an equality statement?
What is the formal counterpart of a proof of an equality?
In talking about proofs of an equality statement, two dichotomies
arise:
1 definitional equality versus propositional equality
2 intensional equality versus extensional equality
First step on the formalisation of proofs of equality statements: Per
Martin-L¨of’s Intuitionistic Type Theory (Log Coll ’73, published 1975)
with the so-called Identity Type
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Identity Types - Topological and Categorical Structure
Workshop, Uppsala, November 13–14, 2006
“The identity type, the type of proof objects for the
fundamental propositional equality, is one of the most
intriguing constructions of intensional dependent type
theory (also known as Martin-L¨of type theory). Its
complexity became apparent with the Hofmann–Streicher
groupoid model of type theory. This model also hinted at
some possible connections between type theory and
homotopy theory and higher categories. Exploration of this
connection is intended to be the main theme of the
workshop.”
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Type Theory and Homotopy Theory
Indeed, a whole new research avenue has since 2005 been explored
by people like Vladimir Voevodsky and Steve Awodey in trying to
make a bridge between type theory and homotopy theory, mainly via
the groupoid structure exposed in the Hofmann–Streicher (1994)
countermodel to the principle of Uniqueness of Identity Proofs (UIP).
In Hofmann & Streicher’s own words,
“We give a model of intensional Martin-L¨of type theory
based on groupoids and fibrations of groupoids in which
identity types may contain two distinct elements which are
not even propositionally equal. This shows that the principle
of uniqueness of identity proofs is not derivable in the
syntax”. (“LICS ’94, pp. 208–212.)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Identity Types as Topological Spaces
According to B. van den Berg and R. Garner (“Topological and
simplicial models of identity types”, ACM Transactions on
Computational Logic, Jan 2012),
“All of this work can be seen as an elaboration of the
following basic idea: that in Martin-L¨of type theory, a type A
is analogous to a topological space; elements a, b ∈ A to
points of that space; and elements of an identity type
p, q ∈ IdA(a, b) to paths or homotopies p, q : a → b in A.”.
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Identity Types as Topological Spaces
From the Homotopy type theory collective book (2013):
“In type theory, for every type A there is a (formerly
somewhat mysterious) type IdA of identifications of two
objects of A; in homotopy type theory, this is just the path
space AI
of all continuous maps I → A from the unit
interval. In this way, a term p : IdA(a, b) represents a path
p : a b in A.”
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types: Iteration
From Propositional to Predicate Logic and Beyond
In the same aforementioned workshop, B. van den Berg in his
contribution “Types as weak omega-categories” draws attention to the
power of the identity type in the iterating types to form a globular set:
“Fix a type X in a context Γ. Define a globular set as follows:
A0 consists of the terms of type X in context Γ,modulo
definitional equality; A1 consists of terms of the types
Id(X; p; q) (in context Γ) for elements p, q in A0, modulo
definitional equality; A2 consists of terms of well-formed
types Id(Id(X; p; q); r; s) (in context Γ) for elements p, q in
A0, r, s in A1, modulo definitional equality; etcetera...”
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types: Iteration
The homotopy interpretation
Here is how we can see the connections between proofs of equality
and homotopies:
a, b : A
p, q : IdA(a, b)
α, β : IdIdA(a,b)(p, q)
· · · : IdIdId...
(· · · )
Now, consider the following interpretation:
Types Spaces
Terms Maps
a : A Points a : 1 → A
p : IdA(a, b) Paths p : a ⇒ b
α : IdIdA(a,b)(p, q) Homotopies α : p q
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Univalent Foundations of Mathematics
From Vladimir Voevodsky (IAS, Princeton) “Univalent
Foundations: New Foundations of Mathematics”, Mar 26, 2014:
“There were two main problems with the existing
foundational systems which made them inadequate.
Firstly, existing foundations of mathematics were
based on the languages of Predicate Logic and
languages of this class are too limited.
Secondly, existing foundations could not be used to
directly express statements about such objects as, for
example, the ones that my work on 2-theories was
about.”
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Univalent Foundations of Mathematics
From Vladimir Voevodsky (IAS, Princeton) “Univalent
Foundations: New Foundations of Mathematics”, Mar 26, 2014:
“Univalent Foundations, like ZFC-based foundations
and unlike category theory, is a complete foundational
system, but it is very different from ZFC. To provide a
format for comparison let me suppose that any
foundation for mathematics adequate both for human
reasoning and for computer verification should have
the following three components.”
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Univalent Foundations of Mathematics
From Vladimir Voevodsky (IAS, Princeton), “Univalent
Foundations: New Foundations of Mathematics”, Mar 26, 2014:
“The first component is a formal deduction system: a
language and rules of manipulating sentences in this
language that are purely formal, such that a record of
such manipulations can be verified by a computer
program.
The second component is a structure that provides a
meaning to the sentences of this language in terms of
mental objects intuitively comprehensible to humans.
The third component is a structure that enables
humans to encode mathematical ideas in terms of the
objects directly associated with the language.”
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Propositional Equality
Proofs of equality as (rewriting) computational paths
Motivated by looking at equalities in type theory as arising from the
existence of computational paths between two formal objects, our
purpose here is to offer a different perspective on the role and the
power of the notion of propositional equality as formalised in the
so-called Curry–Howard functional interpretation.
The main idea, i.e. proofs of equality statements as (reversible)
sequences of rewrites, goes back to a paper entitled “Equality in
labelled deductive systems and the functional interpretation of
propositional equality”, , presented in Dec 1993 at the 9th Amsterdam
Colloquium, and published in the proceedings in 1994.
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Brouwer–Heyting–Kolmogorov Interpretation
Proofs rather than truth-values
a proof of the proposition: is given by:
A ∧ B a proof of A and
a proof of B
A ∨ B a proof of A or
a proof of B
A → B a function that turns a proof of A
into a proof of B
∀xD
.P(x) a function that turns an element a
into a proof of P(a)
∃xD
.P(x) an element a (witness)
and a proof of P(a)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Brouwer–Heyting–Kolmogorov Interpretation: Formally
Canonical proofs rather than truth-values
a proof of the proposition: has the canonical form of:
A ∧ B p, q where p is a proof of A and
q is a proof of B
A ∨ B inl(p) where p is a proof of A or
inr(q) where q is a proof of B
(‘inl’ and ‘inr’ abbreviate
‘into the left/right disjunct’)
A → B λx.b(x) where b(p) is a proof of B
provided p is a proof of A
∀xD
.P(x) Λx.f(x) where f(a) is a proof of P(a)
provided a is an arbitrary individual chosen
from the domain D
∃xD
.P(x) εx.(f(x), a) where a is a witness
from the domain D, f(a) is a proof of P(a)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Brouwer–Heyting–Kolmogorov Interpretation
What is a proof of an equality statement?
a proof of the proposition: is given by:
t1 = t2 ?
(Perhaps a sequence of rewrites
starting from t1 and ending in t2?)
What is the logical status of the symbol “=”?
What would be a canonical/direct proof of t1 = t2?
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Statman’s Direct Computations
Terms, Equations, Measure
Definition (equations and systems of equations)
Let us consider equations E between individual terms
a, b, c, . . ., possibly containing function variables, and finite sets
of equations S.
Definition (measure)
A function M from terms to non-negative integers is called a
measure if M(a) ≤ M(b) implies M(c[a/x]) ≤ M(c[b/x]), and,
whenever x occurs in c, M(a) ≤ M(c[a/x]).
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Statman’s Direct Computations
Kreisel–Tait’s calculus K
Definition (calculus K)
The calculus K of Kreisel and Tait consists of the axioms a = a and
the rule of substituting equals for equals:
(1)
E[a/x] a
.
= b
E[b/x]
where a
.
= b is, ambiguously, a = b and b = a, together with the rules
(2)
sa = sb
a = b
(3)
0 = sa
b = c
(4)
a = sn
a
b = c
H will be the system consisting only of the rule (1)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Statman’s Direct Computations
Computations, Direct Computations
Definition (computation)
Computations T in K or H are binary trees of equation
occurrences built up from assumptions and axioms according
to the rules.
Definition (direct computation)
If M is a measure, we say that a computation T of E from S is
M-direct if for each term b occurring in T there is a term c
occurring in E or S with M(b) ≤ M(c).
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Equality
Sequences of conversions
(λx.(λy.yx)(λw.zw))v η (λx.(λy.yx)z)v β (λy.yv)z β zv
(λx.(λy.yx)(λw.zw))v β (λx.(λw.zw)x)v η (λx.zx)v β zv
(λx.(λy.yx)(λw.zw))v β (λx.(λw.zw)x)v β (λw.zw)v η zv
There is at least one sequence of conversions from the initial term to
the final term. (In this case we have given three!) Thus, in the formal
theory of λ-calculus, the term (λx.(λy.yx)(λw.zw))v is declared to be
equal to zv.
Now, some natural questions arise:
1 Are the sequences themselves normal?
2 Are there non-normal sequences?
3 If yes, how are the latter to be identified and (possibly)
normalised?
4 What happens if general rules of equality are involved?
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Equality
Propositional equality
Definition (Hindley & Seldin 2008)
P is β-equal or β-convertible to Q (notation P =β Q) iff Q is
obtained from P by a finite (perhaps empty) series of
β-contractions and reversed β-contractions and changes of
bound variables. That is, P =β Q iff there exist P0, . . . , Pn
(n ≥ 0) such that
P0 ≡ P, Pn ≡ Q,
(∀i ≤ n − 1)(Pi 1β Pi+1 or Pi+1 1β Pi or Pi ≡α Pi+1).
NB: equality with an existential force.
NB: equality as the reflexive, symmetric and transitive closure
of 1-step contraction
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computation
Existential Force
The same happens with λβη-equality:
Definition 7.5 (λβη-equality) (Hindley & Seldin 2008)
The equality-relation determined by the theory λβη is
called =βη; that is, we define
M =βη N ⇔ λβη M = N.
Note again that two terms are λβη-equal if there exists a proof
of their equality in the theory of λβη-equality.
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Equality
Gentzen’s ND for propositional equality
Remark
In setting up a set of Gentzen’s ND-style rules for equality we
need to account for:
1 definitional versus propositional equality;
2 there may be more than one normal proof of a certain
equality statement;
3 given a (possibly non-normal) proof, the process of
bringing it to a normal form should be finite and confluent.
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computation
Equality in Type Theory
Martin-L¨of’s Intuitionistic Type Theory:
Intensional (1975)
Extensional (1982(?), 1984)
Remark (Definitional vs. Propositional Equality)
definitional, i.e. those equalities that are given as rewrite
rules, orelse originate from general functional principles
(e.g. β, η, ξ, µ, ν, etc.);
propositional, i.e. the equalities that are supported (or
otherwise) by an evidence (a sequence of substitutions
and/or rewrites)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computation
Definitional Equality
Definition (Hindley & Seldin 2008)
(α) λx.M = λy.[y/x]M (y /∈ FV(M))
(β) (λx.M)N = [N/x]M
(η) (λx.Mx) = M (x /∈ FV(M))
(ξ)
M = M
λx.M = λx.M
(µ)
M = M
NM = NM
(ν)
M = M
MN = M N
(ρ) M = M
(σ)
M = N
N = M
(τ)
M = N N = P
M = P
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computation
Intuitionistic Type Theory
→-introduction
[x : A]
f(x) = g(x) : B
λx.f(x) = λx.g(x) : A → B
(ξ)
→-elimination
x = y : A g : A → B
gx = gy : B
(µ)
x : A g = h : A → B
gx = hx : B
(ν)
→-reduction
a : A
[x : A]
b(x) : B
(λx.b(x))a = b(a/x) : B
(β)
c : A → B
λx.cx = c : A → B
(η)
Role of ξ: Bishop’s constructive principles.
Role of η: “[In CL] All it says is that every term is equal to an
abstraction” [Hindley & Seldin, 1986]
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Lessons from Curry–Howard and Type Theory
Harmonious combination of logic and λ-calculus;
Proof terms as ‘record of deduction steps’,
Function symbols as first class citizens.
Cp.
∃xP(x)
[P(t)]
C
C
with
∃xP(x)
[t : D, f(t) : P(t)]
g(f, t) : C
? : C
in the term ‘?’ the variable f gets abstracted from, and this enforces a
kind of generality to f, even if this is not brought to the ‘logical’ level.
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Equality in Martin-L¨of’s Intensional Type Theory
A type a : A b : A
Idint
A (a, b) type
Idint
-formation
a : A
r(a) : Idint
A (a, a)
Idint
-introduction
a = b : A
r(a) : Idint
A (a, b)
Idint
-introduction
a : A b : A c : Idint
A (a, b)
[x:A]
d(x):C(x,x,r(x))
[x:A,y:A,z:Idint
A (x,y)]
C(x,y,z) type
J(c, d) : C(a, b, c)
Idint
-elimination
a : A
[x : A]
d(x) : C(x, x, r(x))
[x : A, y : A, z : Idint
A (x, y)]
C(x, y, z) type
J(r(a), d(x)) = d(a/x) : C(a, a, r(a))
Idint
-equality
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Equality in Martin-L¨of’s Extensional Type Theory
A type a : A b : A
Idext
A (a, b) type
Idext
-formation
a = b : A
r : Idext
A (a, b)
Idext
-introduction
c : Idext
A (a, b)
a = b : A
Idext
-elimination
c : Idext
A (a, b)
c = r : Idext
A (a, b)
Idext
-equality
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
The missing entity
Considering the lessons learned from Type Theory, the
judgement of the form:
a = b : A
which says that a and b are equal elements from domain D, let
us add a function symbol:
a =s b : A
where one is to read: a is equal to b because of ‘s’ (‘s’ being
the rewrite reason); ‘s’ is a term denoting a sequence of
equality identifiers (β, η, ξ, etc.), i.e. a composition of rewrites.
In other words, ‘s’ is the computational path from a to b.
(This formal entity is missing in both of Martin-L¨of’s
formulations of Identity Types.)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Propositional Equality
Id-introduction
a =s b : A
s(a, b) : IdA(a, b)
Id-elimination
m : IdA(a, b)
[a =g b : A]
h(g) : C
REWR(m, ´g.h(g)) : C
Id-reduction
a =s b : A
s(a, b) : IdA(a, b)
Id-intr
[a =g b : A]
h(g) : C
REWR(s(a, b), ´g.h(g)) : C
Id-elim
β
[a =s b : A]
h(s/g) : C
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Propositional Equality: A Simple Example of a Proof
By way of example, let us prove
ΠxA
ΠyA
(IdA(x, y) → IdA(y, x))
[p : IdA(x, y)]
[x =t y : A]
y =σ(t) x : A
(σ(t))(y, x) : IdA(y, x)
REWR(p,´t(σ(t))(y, x)) : IdA(y, x)
λp.REWR(p,´t(σ(t))(y, x)) : IdA(x, y) → IdA(y, x)
λy.λp.REWR(p,´t(σ(t))(y, x)) : ΠyA(IdA(x, y) → IdA(y, x))
λx.λy.λp.REWR(p,´t(σ(t))(y, x)) : ΠxAΠyA(IdA(x, y) → IdA(y, x))
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Propositional Equality: A Weak Version of Function Extensionality
With the formulation of propositional equality that we have just
defined, we can actually prove a weakened version of function
extensionality, namely
A → ΠfA→B
ΠgA→B
(ΠxA
.IdB(AP(f, x), AP(g, x)) → IdA→B(f, g))
which asserts that, if the domain A is nonempty, then in case f
and g agree on all points they must be considered to be
propositionally equal elements of type A → B.
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Propositional Equality: The Groupoid Laws
With the formulation of propositional equality that we have just
defined, we can also prove that all elements of an identity type
obey the groupoid laws, namely
1 Associativity
2 Existence of an identity element
3 Existence of inverses
Also, the groupoid operation, i.e. composition of
paths/sequences, is actually, partial, meaning that not all
elements will be connected via a path. (The groupoid
interpretation refutes the Uniqueness of Identity Proofs)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Propositional Equality: The Uniqueness of Identity Proofs
“We will call UIP (Uniqueness of Identity Proofs) the following
property. If a1, a2 are objects of type A then for any proofs p
and q of the proposition “a1 equals a2” there is another proof
establishing equality of p and q. (...) Notice that in traditional
logical formalism a principle like UIP cannot even be sensibly
expressed as proofs cannot be referred to by terms of the
object language and thus are not within the scope of
propositional equality.” (Hofmann & Streicher 1996)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Normal form for the rewrite reasons
Strategy:
Analyse possibilities of redundancy
Construct a rewriting system
Prove termination and confluence
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Normal form for the rewrite reasons
Definition (equation)
An equation in our LNDEQ is of the form:
s =r t : A
where s and t are terms, r is the identifier for the rewrite reason, and
A is the type (formula).
Definition (system of equations)
A system of equations S is a set of equations:
{s1 =r1
t1 : A1, . . . , sn =rn
tn : An}
where ri is the rewrite reason identifier for the ith equation in S.
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Normal form for the rewrite reasons
Definition (rewrite reason)
Given a system of equations S and an equation s =r t : A, if
S s =r t : A, i.e. there is a deduction/computation of the
equation starting from the equations in S, then the rewrite
reason r is built up from:
(i) the constants for rewrite reasons: { ρ, σ, τ, β, η, ν, ξ, µ };
(ii) the ri’s;
using the substitution operations:
(iii) subL;
(iv) subR;
and the operations for building new rewrite reasons:
(v) σ, τ, ξ, µ.
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Normal form for the rewrite reasons
Definition (general rules of equality)
The general rules for equality (reflexivity, symmetry and
transitivity) are defined as follows:
x : A
x =ρ x : A
(reflexivity)
x =t y : A
y =σ(t) x : A
(symmetry)
x =t y : A y =u z : A
x =τ(t,u) z : A
(transitivity)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Normal form for the rewrite reasons
Definition (subterm substitution)
The rule of “subterm substitution” is split into two rules:
x =r C[y] : A y =s u : A
x =subL(r,s) C[u] : A
x =r w : A C[w] =s u : A
C[x] =subR(r,s) u : A
where C[x] is the context in which the subterm x appears
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Reductions
Definition (reductions involving ρ and σ)
x =ρ x : A
x =σ(ρ) x : A
sr x =ρ x : A
x =r y : A
y =σ(r) x : A
x =σ(σ(r)) y : A
ss x =r y : A
Associated rewritings:
σ(ρ) sr ρ
σ(σ(r)) ss r
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Reductions
Definition (reductions involving τ)
x=r y:D y=σ(r)x:D
x=τ(r,σ(r))x:D tr x =ρ x : D
y=σ(r)x:D x=r y:D
y=τ(σ(r),r)y:D tsr y =ρ y : D
u=r v:D v=ρv:D
u=τ(r,ρ)v:D rrr u =r v : D
u=ρu:D u=r v:D
u=τ(ρ,r)v:D lrr u =r v : D
Associated equations: τ(r, σ(r)) tr ρ, τ(σ(r), r) tsr ρ, τ(r, ρ) rrr r,
τ(ρ, r) lrr r.
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Reductions
Definition
βrewr -×-reduction
x =r y : A z : B
x, z =ξ1(r) y, z : A × B
× -intr
FST( x, z ) =µ1(ξ1(r)) FST( y, z ) : A
× -elim
mx2l1 x =r y : A
Associated rewriting:
µ1(ξ1(r)) mx2l1 r
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Reductions
Definition
βrewr -×-reduction
x =r x : A y =s z : B
x, y =ξ∧(r,s) x , z : A × B
× -intr
FST( x, y ) =µ1(ξ∧(r,s)) FST( x , z ) : A
× -elim
mx2l2 x =r x : A
Associated rewriting:
µ1(ξ∧(r, s)) mx2l2 r
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Reductions
Working papers:
1 Propositional equality, identity types, and direct computational
paths
Ruy J.G.B. de Queiroz, Anjolina G. de Oliveira
http://arxiv.org/abs/1107.1901
[v1] Sun, 10 Jul 2011 21:28:26 GMT (33kb)
[v2] Thu, 1 Mar 2012 13:27:15 GMT (34kb)
[v3] Mon, 5 Aug 2013 20:26:40 GMT (37kb)
2 Sequences of Rewrites: A Categorical Interpretation
Arthur F. Ramos, Ruy J.G.B. de Queiroz, Anjolina G. de Oliveira
http://arxiv.org/abs/1412.2105
[v1] Fri, 5 Dec 2014 19:25:32 GMT (49kb,D)
(Short version: Feb 2015, submitted to WoLLIC 2015)
Ruy de Queiroz (joint work with Anjolina de Oliveira)
Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil
Propositional Equality, Identity Types and Homotopies

More Related Content

What's hot

ASSESSING SIMILARITY BETWEEN ONTOLOGIES: THE CASE OF THE CONCEPTUAL SIMILARITY
ASSESSING SIMILARITY BETWEEN ONTOLOGIES: THE CASE OF THE CONCEPTUAL SIMILARITYASSESSING SIMILARITY BETWEEN ONTOLOGIES: THE CASE OF THE CONCEPTUAL SIMILARITY
ASSESSING SIMILARITY BETWEEN ONTOLOGIES: THE CASE OF THE CONCEPTUAL SIMILARITYIJwest
 
Modal Syllogistic - Master Thesis
Modal Syllogistic - Master ThesisModal Syllogistic - Master Thesis
Modal Syllogistic - Master ThesisTsvetan Vasilev
 
Commonsense reasoning as a key feature for dynamic knowledge invention and co...
Commonsense reasoning as a key feature for dynamic knowledge invention and co...Commonsense reasoning as a key feature for dynamic knowledge invention and co...
Commonsense reasoning as a key feature for dynamic knowledge invention and co...Antonio Lieto
 
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - LietoCognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - LietoAntonio Lieto
 
Jarrar.lecture notes.aai.2011s.ontology part2_whatisontology
Jarrar.lecture notes.aai.2011s.ontology part2_whatisontologyJarrar.lecture notes.aai.2011s.ontology part2_whatisontology
Jarrar.lecture notes.aai.2011s.ontology part2_whatisontologyPalGov
 
Knowledge Capturing via Conceptual Reframing: A Goal-oriented Framework for K...
Knowledge Capturing via Conceptual Reframing: A Goal-oriented Framework for K...Knowledge Capturing via Conceptual Reframing: A Goal-oriented Framework for K...
Knowledge Capturing via Conceptual Reframing: A Goal-oriented Framework for K...Antonio Lieto
 
Against Fantology
Against FantologyAgainst Fantology
Against FantologyBarry Smith
 
Extending the knowledge level of cognitive architectures with Conceptual Spac...
Extending the knowledge level of cognitive architectures with Conceptual Spac...Extending the knowledge level of cognitive architectures with Conceptual Spac...
Extending the knowledge level of cognitive architectures with Conceptual Spac...Antonio Lieto
 
Ontology engineering: Ontology alignment
Ontology engineering: Ontology alignmentOntology engineering: Ontology alignment
Ontology engineering: Ontology alignmentGuus Schreiber
 
ONTOLOGICAL MODEL FOR CHARACTER RECOGNITION BASED ON SPATIAL RELATIONS
ONTOLOGICAL MODEL FOR CHARACTER RECOGNITION BASED ON SPATIAL RELATIONSONTOLOGICAL MODEL FOR CHARACTER RECOGNITION BASED ON SPATIAL RELATIONS
ONTOLOGICAL MODEL FOR CHARACTER RECOGNITION BASED ON SPATIAL RELATIONSsipij
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its roleValeria de Paiva
 
Constructive Modal and Linear Logics
Constructive Modal and Linear LogicsConstructive Modal and Linear Logics
Constructive Modal and Linear LogicsValeria de Paiva
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its roleValeria de Paiva
 
Like Alice in Wonderland: Unraveling Reasoning and Cognition Using Analogies ...
Like Alice in Wonderland: Unraveling Reasoning and Cognition Using Analogies ...Like Alice in Wonderland: Unraveling Reasoning and Cognition Using Analogies ...
Like Alice in Wonderland: Unraveling Reasoning and Cognition Using Analogies ...Facultad de Informática UCM
 

What's hot (20)

ASSESSING SIMILARITY BETWEEN ONTOLOGIES: THE CASE OF THE CONCEPTUAL SIMILARITY
ASSESSING SIMILARITY BETWEEN ONTOLOGIES: THE CASE OF THE CONCEPTUAL SIMILARITYASSESSING SIMILARITY BETWEEN ONTOLOGIES: THE CASE OF THE CONCEPTUAL SIMILARITY
ASSESSING SIMILARITY BETWEEN ONTOLOGIES: THE CASE OF THE CONCEPTUAL SIMILARITY
 
Modal Syllogistic - Master Thesis
Modal Syllogistic - Master ThesisModal Syllogistic - Master Thesis
Modal Syllogistic - Master Thesis
 
Commonsense reasoning as a key feature for dynamic knowledge invention and co...
Commonsense reasoning as a key feature for dynamic knowledge invention and co...Commonsense reasoning as a key feature for dynamic knowledge invention and co...
Commonsense reasoning as a key feature for dynamic knowledge invention and co...
 
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - LietoCognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
 
Dialectics
DialecticsDialectics
Dialectics
 
Ontology matching
Ontology matchingOntology matching
Ontology matching
 
Jarrar.lecture notes.aai.2011s.ontology part2_whatisontology
Jarrar.lecture notes.aai.2011s.ontology part2_whatisontologyJarrar.lecture notes.aai.2011s.ontology part2_whatisontology
Jarrar.lecture notes.aai.2011s.ontology part2_whatisontology
 
Ontologies
OntologiesOntologies
Ontologies
 
Knowledge Capturing via Conceptual Reframing: A Goal-oriented Framework for K...
Knowledge Capturing via Conceptual Reframing: A Goal-oriented Framework for K...Knowledge Capturing via Conceptual Reframing: A Goal-oriented Framework for K...
Knowledge Capturing via Conceptual Reframing: A Goal-oriented Framework for K...
 
Against Fantology
Against FantologyAgainst Fantology
Against Fantology
 
Extending the knowledge level of cognitive architectures with Conceptual Spac...
Extending the knowledge level of cognitive architectures with Conceptual Spac...Extending the knowledge level of cognitive architectures with Conceptual Spac...
Extending the knowledge level of cognitive architectures with Conceptual Spac...
 
Ontology engineering: Ontology alignment
Ontology engineering: Ontology alignmentOntology engineering: Ontology alignment
Ontology engineering: Ontology alignment
 
Seminar CCC
Seminar CCCSeminar CCC
Seminar CCC
 
ONTOLOGICAL MODEL FOR CHARACTER RECOGNITION BASED ON SPATIAL RELATIONS
ONTOLOGICAL MODEL FOR CHARACTER RECOGNITION BASED ON SPATIAL RELATIONSONTOLOGICAL MODEL FOR CHARACTER RECOGNITION BASED ON SPATIAL RELATIONS
ONTOLOGICAL MODEL FOR CHARACTER RECOGNITION BASED ON SPATIAL RELATIONS
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its role
 
Constructive Modal and Linear Logics
Constructive Modal and Linear LogicsConstructive Modal and Linear Logics
Constructive Modal and Linear Logics
 
Constructive Modalities
Constructive ModalitiesConstructive Modalities
Constructive Modalities
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its role
 
Like Alice in Wonderland: Unraveling Reasoning and Cognition Using Analogies ...
Like Alice in Wonderland: Unraveling Reasoning and Cognition Using Analogies ...Like Alice in Wonderland: Unraveling Reasoning and Cognition Using Analogies ...
Like Alice in Wonderland: Unraveling Reasoning and Cognition Using Analogies ...
 
Constructive Modalities
Constructive ModalitiesConstructive Modalities
Constructive Modalities
 

Similar to Identity Types in Type Theory and Homotopy Theory

Propositional Equality and Identity Types
Propositional Equality and Identity TypesPropositional Equality and Identity Types
Propositional Equality and Identity TypesRuy De Queiroz
 
Homotopic Foundations of the Theory of Computation
Homotopic Foundations of the Theory of ComputationHomotopic Foundations of the Theory of Computation
Homotopic Foundations of the Theory of ComputationRuy De Queiroz
 
Computations, Paths, Types and Proofs
Computations, Paths, Types and ProofsComputations, Paths, Types and Proofs
Computations, Paths, Types and ProofsRuy De Queiroz
 
Computational Paths and the Calculation of Fundamental Groups
 Computational Paths and the Calculation of Fundamental Groups Computational Paths and the Calculation of Fundamental Groups
Computational Paths and the Calculation of Fundamental GroupsRuy De Queiroz
 
The Ontological Files
The Ontological FilesThe Ontological Files
The Ontological FilesJulie Kwhl
 
Kyle Guzik 10 perspectives
Kyle Guzik 10 perspectivesKyle Guzik 10 perspectives
Kyle Guzik 10 perspectivesKyle Guzik
 
Differences Between Informal Logic, And Theoretical...
Differences Between Informal Logic, And Theoretical...Differences Between Informal Logic, And Theoretical...
Differences Between Informal Logic, And Theoretical...Claudia Brown
 
EDLD813 Paul Gruhn - My Research Autobiography
EDLD813 Paul Gruhn - My Research AutobiographyEDLD813 Paul Gruhn - My Research Autobiography
EDLD813 Paul Gruhn - My Research AutobiographyPaul Gruhn
 
Bruinsma farewell symposium 2017 short version for pub
Bruinsma farewell symposium 2017 short version for pubBruinsma farewell symposium 2017 short version for pub
Bruinsma farewell symposium 2017 short version for pubLieven J.R. Pauwels
 
Introduction To Business Research Methods
Introduction To Business Research MethodsIntroduction To Business Research Methods
Introduction To Business Research MethodsAnthony Yeong
 
Mapping Of Semantic Web Ontology
Mapping Of Semantic Web OntologyMapping Of Semantic Web Ontology
Mapping Of Semantic Web OntologyDotha Keller
 
Sale mixed methods
Sale mixed methodsSale mixed methods
Sale mixed methodspsdeeren
 
Exploring the underpinnings of research (2)
Exploring the underpinnings of research (2)Exploring the underpinnings of research (2)
Exploring the underpinnings of research (2)Jihan Hidayah Putri
 
Autoethnographic Writing Inside And Outside The Academy And Ethics
Autoethnographic Writing Inside And Outside The Academy And EthicsAutoethnographic Writing Inside And Outside The Academy And Ethics
Autoethnographic Writing Inside And Outside The Academy And EthicsBryce Nelson
 
THE REALITY OF THE EDUCATION IN SCIENTIFIC KNOWLEDGE
THE REALITY OF THE EDUCATION IN SCIENTIFIC KNOWLEDGETHE REALITY OF THE EDUCATION IN SCIENTIFIC KNOWLEDGE
THE REALITY OF THE EDUCATION IN SCIENTIFIC KNOWLEDGEOscar Martinez Peñate
 
semantics ppt 2.pptx
semantics ppt 2.pptxsemantics ppt 2.pptx
semantics ppt 2.pptxMaya
 
Theory of reality
Theory of realityTheory of reality
Theory of realityPS Deb
 

Similar to Identity Types in Type Theory and Homotopy Theory (20)

Propositional Equality and Identity Types
Propositional Equality and Identity TypesPropositional Equality and Identity Types
Propositional Equality and Identity Types
 
Homotopic Foundations of the Theory of Computation
Homotopic Foundations of the Theory of ComputationHomotopic Foundations of the Theory of Computation
Homotopic Foundations of the Theory of Computation
 
Computations, Paths, Types and Proofs
Computations, Paths, Types and ProofsComputations, Paths, Types and Proofs
Computations, Paths, Types and Proofs
 
Computational Paths and the Calculation of Fundamental Groups
 Computational Paths and the Calculation of Fundamental Groups Computational Paths and the Calculation of Fundamental Groups
Computational Paths and the Calculation of Fundamental Groups
 
The Ontological Files
The Ontological FilesThe Ontological Files
The Ontological Files
 
Csf Russo Measuring Variations
Csf Russo Measuring VariationsCsf Russo Measuring Variations
Csf Russo Measuring Variations
 
Kyle Guzik 10 perspectives
Kyle Guzik 10 perspectivesKyle Guzik 10 perspectives
Kyle Guzik 10 perspectives
 
Differences Between Informal Logic, And Theoretical...
Differences Between Informal Logic, And Theoretical...Differences Between Informal Logic, And Theoretical...
Differences Between Informal Logic, And Theoretical...
 
EDLD813 Paul Gruhn - My Research Autobiography
EDLD813 Paul Gruhn - My Research AutobiographyEDLD813 Paul Gruhn - My Research Autobiography
EDLD813 Paul Gruhn - My Research Autobiography
 
Bruinsma farewell symposium 2017 short version for pub
Bruinsma farewell symposium 2017 short version for pubBruinsma farewell symposium 2017 short version for pub
Bruinsma farewell symposium 2017 short version for pub
 
Haifa2011
Haifa2011Haifa2011
Haifa2011
 
Introduction To Business Research Methods
Introduction To Business Research MethodsIntroduction To Business Research Methods
Introduction To Business Research Methods
 
Analogical Reasoning
Analogical ReasoningAnalogical Reasoning
Analogical Reasoning
 
Mapping Of Semantic Web Ontology
Mapping Of Semantic Web OntologyMapping Of Semantic Web Ontology
Mapping Of Semantic Web Ontology
 
Sale mixed methods
Sale mixed methodsSale mixed methods
Sale mixed methods
 
Exploring the underpinnings of research (2)
Exploring the underpinnings of research (2)Exploring the underpinnings of research (2)
Exploring the underpinnings of research (2)
 
Autoethnographic Writing Inside And Outside The Academy And Ethics
Autoethnographic Writing Inside And Outside The Academy And EthicsAutoethnographic Writing Inside And Outside The Academy And Ethics
Autoethnographic Writing Inside And Outside The Academy And Ethics
 
THE REALITY OF THE EDUCATION IN SCIENTIFIC KNOWLEDGE
THE REALITY OF THE EDUCATION IN SCIENTIFIC KNOWLEDGETHE REALITY OF THE EDUCATION IN SCIENTIFIC KNOWLEDGE
THE REALITY OF THE EDUCATION IN SCIENTIFIC KNOWLEDGE
 
semantics ppt 2.pptx
semantics ppt 2.pptxsemantics ppt 2.pptx
semantics ppt 2.pptx
 
Theory of reality
Theory of realityTheory of reality
Theory of reality
 

More from Ruy De Queiroz

What formal equalities between rewriting paths have in common with homotopies...
What formal equalities between rewriting paths have in common with homotopies...What formal equalities between rewriting paths have in common with homotopies...
What formal equalities between rewriting paths have in common with homotopies...Ruy De Queiroz
 
Connections between Logic and Geometry via Term Rewriting
 Connections between Logic and Geometry via Term Rewriting Connections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term RewritingRuy De Queiroz
 
Law and Legal uses for blockchain technologies
Law and Legal uses for blockchain technologiesLaw and Legal uses for blockchain technologies
Law and Legal uses for blockchain technologiesRuy De Queiroz
 
Criptografia como aliado
Criptografia como aliadoCriptografia como aliado
Criptografia como aliadoRuy De Queiroz
 
Privacidade, Segurança, Identidade
Privacidade, Segurança, IdentidadePrivacidade, Segurança, Identidade
Privacidade, Segurança, IdentidadeRuy De Queiroz
 
From Tractatus to Later Writings and Back
From Tractatus to Later Writings and BackFrom Tractatus to Later Writings and Back
From Tractatus to Later Writings and BackRuy De Queiroz
 
Desafios na Interseção entre Direito e Tecnologia
Desafios na Interseção entre  Direito e TecnologiaDesafios na Interseção entre  Direito e Tecnologia
Desafios na Interseção entre Direito e TecnologiaRuy De Queiroz
 
Connections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term RewritingConnections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term RewritingRuy De Queiroz
 
Teoria da Computação: Histórias e Perspectivas, (TeoComp-NE)
Teoria da Computação:  Histórias e Perspectivas,  (TeoComp-NE)Teoria da Computação:  Histórias e Perspectivas,  (TeoComp-NE)
Teoria da Computação: Histórias e Perspectivas, (TeoComp-NE)Ruy De Queiroz
 
Consensus in Permissionless Decentralized Networks
Consensus in Permissionless Decentralized NetworksConsensus in Permissionless Decentralized Networks
Consensus in Permissionless Decentralized NetworksRuy De Queiroz
 
Linguagem, Lógica e a Natureza da Matemática
Linguagem, Lógica e a Natureza da MatemáticaLinguagem, Lógica e a Natureza da Matemática
Linguagem, Lógica e a Natureza da MatemáticaRuy De Queiroz
 
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)Ruy De Queiroz
 
Cibersegurança na Internet das Coisas
Cibersegurança na Internet das CoisasCibersegurança na Internet das Coisas
Cibersegurança na Internet das CoisasRuy De Queiroz
 
Capitalismo de Vigilância e Proteção de Dados Pessoais
Capitalismo de Vigilância e Proteção de Dados PessoaisCapitalismo de Vigilância e Proteção de Dados Pessoais
Capitalismo de Vigilância e Proteção de Dados PessoaisRuy De Queiroz
 
Privacidade e Proteção de Dados Pessoais
Privacidade e Proteção de Dados PessoaisPrivacidade e Proteção de Dados Pessoais
Privacidade e Proteção de Dados PessoaisRuy De Queiroz
 
Fake News, Deep Fakes, e seus efeitos sobre a Democracia
Fake News, Deep Fakes, e seus efeitos sobre a DemocraciaFake News, Deep Fakes, e seus efeitos sobre a Democracia
Fake News, Deep Fakes, e seus efeitos sobre a DemocraciaRuy De Queiroz
 
Tecnologia e O Ritmo de Evolução
Tecnologia e  O Ritmo de EvoluçãoTecnologia e  O Ritmo de Evolução
Tecnologia e O Ritmo de EvoluçãoRuy De Queiroz
 
O Papel da Criptografia Moderna na Proteção às Garantias Individuais
O Papel da Criptografia Moderna na Proteção às Garantias IndividuaisO Papel da Criptografia Moderna na Proteção às Garantias Individuais
O Papel da Criptografia Moderna na Proteção às Garantias IndividuaisRuy De Queiroz
 
Linguagem, lógica e a natureza da matemática
Linguagem, lógica e a natureza da matemáticaLinguagem, lógica e a natureza da matemática
Linguagem, lógica e a natureza da matemáticaRuy De Queiroz
 
Inovação e Regulação 2.0
Inovação e Regulação 2.0Inovação e Regulação 2.0
Inovação e Regulação 2.0Ruy De Queiroz
 

More from Ruy De Queiroz (20)

What formal equalities between rewriting paths have in common with homotopies...
What formal equalities between rewriting paths have in common with homotopies...What formal equalities between rewriting paths have in common with homotopies...
What formal equalities between rewriting paths have in common with homotopies...
 
Connections between Logic and Geometry via Term Rewriting
 Connections between Logic and Geometry via Term Rewriting Connections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term Rewriting
 
Law and Legal uses for blockchain technologies
Law and Legal uses for blockchain technologiesLaw and Legal uses for blockchain technologies
Law and Legal uses for blockchain technologies
 
Criptografia como aliado
Criptografia como aliadoCriptografia como aliado
Criptografia como aliado
 
Privacidade, Segurança, Identidade
Privacidade, Segurança, IdentidadePrivacidade, Segurança, Identidade
Privacidade, Segurança, Identidade
 
From Tractatus to Later Writings and Back
From Tractatus to Later Writings and BackFrom Tractatus to Later Writings and Back
From Tractatus to Later Writings and Back
 
Desafios na Interseção entre Direito e Tecnologia
Desafios na Interseção entre  Direito e TecnologiaDesafios na Interseção entre  Direito e Tecnologia
Desafios na Interseção entre Direito e Tecnologia
 
Connections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term RewritingConnections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term Rewriting
 
Teoria da Computação: Histórias e Perspectivas, (TeoComp-NE)
Teoria da Computação:  Histórias e Perspectivas,  (TeoComp-NE)Teoria da Computação:  Histórias e Perspectivas,  (TeoComp-NE)
Teoria da Computação: Histórias e Perspectivas, (TeoComp-NE)
 
Consensus in Permissionless Decentralized Networks
Consensus in Permissionless Decentralized NetworksConsensus in Permissionless Decentralized Networks
Consensus in Permissionless Decentralized Networks
 
Linguagem, Lógica e a Natureza da Matemática
Linguagem, Lógica e a Natureza da MatemáticaLinguagem, Lógica e a Natureza da Matemática
Linguagem, Lógica e a Natureza da Matemática
 
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
 
Cibersegurança na Internet das Coisas
Cibersegurança na Internet das CoisasCibersegurança na Internet das Coisas
Cibersegurança na Internet das Coisas
 
Capitalismo de Vigilância e Proteção de Dados Pessoais
Capitalismo de Vigilância e Proteção de Dados PessoaisCapitalismo de Vigilância e Proteção de Dados Pessoais
Capitalismo de Vigilância e Proteção de Dados Pessoais
 
Privacidade e Proteção de Dados Pessoais
Privacidade e Proteção de Dados PessoaisPrivacidade e Proteção de Dados Pessoais
Privacidade e Proteção de Dados Pessoais
 
Fake News, Deep Fakes, e seus efeitos sobre a Democracia
Fake News, Deep Fakes, e seus efeitos sobre a DemocraciaFake News, Deep Fakes, e seus efeitos sobre a Democracia
Fake News, Deep Fakes, e seus efeitos sobre a Democracia
 
Tecnologia e O Ritmo de Evolução
Tecnologia e  O Ritmo de EvoluçãoTecnologia e  O Ritmo de Evolução
Tecnologia e O Ritmo de Evolução
 
O Papel da Criptografia Moderna na Proteção às Garantias Individuais
O Papel da Criptografia Moderna na Proteção às Garantias IndividuaisO Papel da Criptografia Moderna na Proteção às Garantias Individuais
O Papel da Criptografia Moderna na Proteção às Garantias Individuais
 
Linguagem, lógica e a natureza da matemática
Linguagem, lógica e a natureza da matemáticaLinguagem, lógica e a natureza da matemática
Linguagem, lógica e a natureza da matemática
 
Inovação e Regulação 2.0
Inovação e Regulação 2.0Inovação e Regulação 2.0
Inovação e Regulação 2.0
 

Recently uploaded

Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 

Recently uploaded (20)

Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 

Identity Types in Type Theory and Homotopy Theory

  • 1. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Propositional Equality, Identity Types and Homotopies Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Wokshop de L´ogica Aplicada UnB, Bras´ılia, DF 05 Fev 2015 Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 2. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Homotopy Type Theory Univalent Foundations of Mathematics Institute for Advanced Study, Princeton 484–600p. Open-source book: 27 main authors Available on GitHub. Latest version March 2014 Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 3. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Homotopy Type Theory Univalent Foundations of Mathematics “Homotopy type theory is a new branch of mathematics that combines aspects of several different fields in a surprising way. It is based on a recently discovered connection between homotopy theory and type theory. It touches on topics as seemingly distant as the homotopy groups of spheres, the algorithms for type checking, and the definition of weak ∞-groupoids.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 4. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Geometry and Logic Alexander Grothendieck Alexander Grothendieck B. 28 March 1928 Berlin, Prussia, Germany D. 13 November 2014 (aged 86) Saint-Girons, Ari`ege, France Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 5. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Geometry and Logic Alexander Grothendieck . . . the study of n-truncated homotopy types (of semisimplicial sets, or of topological spaces) [should be] essentially equivalent to the study of so-called n-groupoids. . . . This is expected to be achieved by associating to any space (say) X its “fundamental n-groupoid” Πn(X).... The obvious idea is that 0-objects of Πn(X) should be the points of X, 1-objects should be “homotopies” or paths between points, 2-objects should be homotopies between 1-objects, etc. (Grothendieck 1983) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 6. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Geometry and Logic Vladimir Voevodsky Some of the ways to approach the notion of space in mathematics: 1 topological spaces 2 metric spaces 3 homotopy theory (no need to take sets as primitive objects: starts from points and paths) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 7. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Geometry and Logic Vladimir Voevodsky Vladimir Voevodsky B. 4 June 1966 Moscow, Russia (Fields Medal, 2002, Motivic Homotopy) (Institute for Advanced Study, Princeton) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 8. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Geometry and Logic Vladimir Voevodsky “From an observation by Grothendieck: Formalism of higher equivalences (theory of grupoids) = Homotopy theory (theory of shapes up to a deformation) Combined with some other ideas it: leads to an encoding of mathematics in terms of the homotopy theory. Unlike the usual encodings in terms of the set theory this one respects equivalences.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 9. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Equality as a Structure, not a Relation Vladimir Voevodsky “An equality between two abstract sets is not a relation but a structure. It is not expressed by an assertion of a proposition but by presenting an element of a set of possible equalities. For example, the abstract sets corresponding to the sets {A, B} and {C, D} can be equal either through the correspondence that takes A to C and B to D or through the one that takes A to D and B to C. This is one of the ways in which abstract sets are not “things”.” The Paul Bernays Lectures, September 2014, ETH Zurich Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 10. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Type Theory and Homotopy Theory Steve Awodey Steve Awodey Professor of Philosophy and of Mathematics, CMU Author of Category Theory, OUP, 2005 Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 11. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Type Theory and Homotopy Theory Steve Awodey “The purpose of this informal survey article is to introduce the reader to a new and surprising connection between Geometry, Algebra, and Logic, which has recently come to light in the form of an interpretation of the constructive type theory of Per Martin-L¨of into homotopy theory, resulting in new examples of certain algebraic structures which are important in topology. This connection was discovered quite recently, and various aspects of it are now under active investigation by several researchers.” (“Type Theory and Homotopy Theory”, 2010.) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 12. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Algebraic Structure: Groupoids Steve Awodey “A groupoid is like a group, but with a partially-defined composition operation. Precisely, a groupoid can be defined as a category in which every arrow has an inverse. A group is thus a groupoid with only one object. Groupoids arise in topology as generalized fundamental groups, not tied to a choice of basepoint.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 13. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E What is a proof of an equality statement? What is the formal counterpart of a proof of an equality? In talking about proofs of an equality statement, two dichotomies arise: 1 definitional equality versus propositional equality 2 intensional equality versus extensional equality First step on the formalisation of proofs of equality statements: Per Martin-L¨of’s Intuitionistic Type Theory (Log Coll ’73, published 1975) with the so-called Identity Type Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 14. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Identity Types - Topological and Categorical Structure Workshop, Uppsala, November 13–14, 2006 “The identity type, the type of proof objects for the fundamental propositional equality, is one of the most intriguing constructions of intensional dependent type theory (also known as Martin-L¨of type theory). Its complexity became apparent with the Hofmann–Streicher groupoid model of type theory. This model also hinted at some possible connections between type theory and homotopy theory and higher categories. Exploration of this connection is intended to be the main theme of the workshop.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 15. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Type Theory and Homotopy Theory Indeed, a whole new research avenue has since 2005 been explored by people like Vladimir Voevodsky and Steve Awodey in trying to make a bridge between type theory and homotopy theory, mainly via the groupoid structure exposed in the Hofmann–Streicher (1994) countermodel to the principle of Uniqueness of Identity Proofs (UIP). In Hofmann & Streicher’s own words, “We give a model of intensional Martin-L¨of type theory based on groupoids and fibrations of groupoids in which identity types may contain two distinct elements which are not even propositionally equal. This shows that the principle of uniqueness of identity proofs is not derivable in the syntax”. (“LICS ’94, pp. 208–212.) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 16. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Identity Types as Topological Spaces According to B. van den Berg and R. Garner (“Topological and simplicial models of identity types”, ACM Transactions on Computational Logic, Jan 2012), “All of this work can be seen as an elaboration of the following basic idea: that in Martin-L¨of type theory, a type A is analogous to a topological space; elements a, b ∈ A to points of that space; and elements of an identity type p, q ∈ IdA(a, b) to paths or homotopies p, q : a → b in A.”. Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 17. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Identity Types as Topological Spaces From the Homotopy type theory collective book (2013): “In type theory, for every type A there is a (formerly somewhat mysterious) type IdA of identifications of two objects of A; in homotopy type theory, this is just the path space AI of all continuous maps I → A from the unit interval. In this way, a term p : IdA(a, b) represents a path p : a b in A.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 18. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types: Iteration From Propositional to Predicate Logic and Beyond In the same aforementioned workshop, B. van den Berg in his contribution “Types as weak omega-categories” draws attention to the power of the identity type in the iterating types to form a globular set: “Fix a type X in a context Γ. Define a globular set as follows: A0 consists of the terms of type X in context Γ,modulo definitional equality; A1 consists of terms of the types Id(X; p; q) (in context Γ) for elements p, q in A0, modulo definitional equality; A2 consists of terms of well-formed types Id(Id(X; p; q); r; s) (in context Γ) for elements p, q in A0, r, s in A1, modulo definitional equality; etcetera...” Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 19. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types: Iteration The homotopy interpretation Here is how we can see the connections between proofs of equality and homotopies: a, b : A p, q : IdA(a, b) α, β : IdIdA(a,b)(p, q) · · · : IdIdId... (· · · ) Now, consider the following interpretation: Types Spaces Terms Maps a : A Points a : 1 → A p : IdA(a, b) Paths p : a ⇒ b α : IdIdA(a,b)(p, q) Homotopies α : p q Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 20. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Univalent Foundations of Mathematics From Vladimir Voevodsky (IAS, Princeton) “Univalent Foundations: New Foundations of Mathematics”, Mar 26, 2014: “There were two main problems with the existing foundational systems which made them inadequate. Firstly, existing foundations of mathematics were based on the languages of Predicate Logic and languages of this class are too limited. Secondly, existing foundations could not be used to directly express statements about such objects as, for example, the ones that my work on 2-theories was about.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 21. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Univalent Foundations of Mathematics From Vladimir Voevodsky (IAS, Princeton) “Univalent Foundations: New Foundations of Mathematics”, Mar 26, 2014: “Univalent Foundations, like ZFC-based foundations and unlike category theory, is a complete foundational system, but it is very different from ZFC. To provide a format for comparison let me suppose that any foundation for mathematics adequate both for human reasoning and for computer verification should have the following three components.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 22. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Univalent Foundations of Mathematics From Vladimir Voevodsky (IAS, Princeton), “Univalent Foundations: New Foundations of Mathematics”, Mar 26, 2014: “The first component is a formal deduction system: a language and rules of manipulating sentences in this language that are purely formal, such that a record of such manipulations can be verified by a computer program. The second component is a structure that provides a meaning to the sentences of this language in terms of mental objects intuitively comprehensible to humans. The third component is a structure that enables humans to encode mathematical ideas in terms of the objects directly associated with the language.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 23. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Propositional Equality Proofs of equality as (rewriting) computational paths Motivated by looking at equalities in type theory as arising from the existence of computational paths between two formal objects, our purpose here is to offer a different perspective on the role and the power of the notion of propositional equality as formalised in the so-called Curry–Howard functional interpretation. The main idea, i.e. proofs of equality statements as (reversible) sequences of rewrites, goes back to a paper entitled “Equality in labelled deductive systems and the functional interpretation of propositional equality”, , presented in Dec 1993 at the 9th Amsterdam Colloquium, and published in the proceedings in 1994. Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 24. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Brouwer–Heyting–Kolmogorov Interpretation Proofs rather than truth-values a proof of the proposition: is given by: A ∧ B a proof of A and a proof of B A ∨ B a proof of A or a proof of B A → B a function that turns a proof of A into a proof of B ∀xD .P(x) a function that turns an element a into a proof of P(a) ∃xD .P(x) an element a (witness) and a proof of P(a) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 25. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Brouwer–Heyting–Kolmogorov Interpretation: Formally Canonical proofs rather than truth-values a proof of the proposition: has the canonical form of: A ∧ B p, q where p is a proof of A and q is a proof of B A ∨ B inl(p) where p is a proof of A or inr(q) where q is a proof of B (‘inl’ and ‘inr’ abbreviate ‘into the left/right disjunct’) A → B λx.b(x) where b(p) is a proof of B provided p is a proof of A ∀xD .P(x) Λx.f(x) where f(a) is a proof of P(a) provided a is an arbitrary individual chosen from the domain D ∃xD .P(x) εx.(f(x), a) where a is a witness from the domain D, f(a) is a proof of P(a) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 26. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Brouwer–Heyting–Kolmogorov Interpretation What is a proof of an equality statement? a proof of the proposition: is given by: t1 = t2 ? (Perhaps a sequence of rewrites starting from t1 and ending in t2?) What is the logical status of the symbol “=”? What would be a canonical/direct proof of t1 = t2? Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 27. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Statman’s Direct Computations Terms, Equations, Measure Definition (equations and systems of equations) Let us consider equations E between individual terms a, b, c, . . ., possibly containing function variables, and finite sets of equations S. Definition (measure) A function M from terms to non-negative integers is called a measure if M(a) ≤ M(b) implies M(c[a/x]) ≤ M(c[b/x]), and, whenever x occurs in c, M(a) ≤ M(c[a/x]). Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 28. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Statman’s Direct Computations Kreisel–Tait’s calculus K Definition (calculus K) The calculus K of Kreisel and Tait consists of the axioms a = a and the rule of substituting equals for equals: (1) E[a/x] a . = b E[b/x] where a . = b is, ambiguously, a = b and b = a, together with the rules (2) sa = sb a = b (3) 0 = sa b = c (4) a = sn a b = c H will be the system consisting only of the rule (1) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 29. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Statman’s Direct Computations Computations, Direct Computations Definition (computation) Computations T in K or H are binary trees of equation occurrences built up from assumptions and axioms according to the rules. Definition (direct computation) If M is a measure, we say that a computation T of E from S is M-direct if for each term b occurring in T there is a term c occurring in E or S with M(b) ≤ M(c). Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 30. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Equality Sequences of conversions (λx.(λy.yx)(λw.zw))v η (λx.(λy.yx)z)v β (λy.yv)z β zv (λx.(λy.yx)(λw.zw))v β (λx.(λw.zw)x)v η (λx.zx)v β zv (λx.(λy.yx)(λw.zw))v β (λx.(λw.zw)x)v β (λw.zw)v η zv There is at least one sequence of conversions from the initial term to the final term. (In this case we have given three!) Thus, in the formal theory of λ-calculus, the term (λx.(λy.yx)(λw.zw))v is declared to be equal to zv. Now, some natural questions arise: 1 Are the sequences themselves normal? 2 Are there non-normal sequences? 3 If yes, how are the latter to be identified and (possibly) normalised? 4 What happens if general rules of equality are involved? Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 31. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Equality Propositional equality Definition (Hindley & Seldin 2008) P is β-equal or β-convertible to Q (notation P =β Q) iff Q is obtained from P by a finite (perhaps empty) series of β-contractions and reversed β-contractions and changes of bound variables. That is, P =β Q iff there exist P0, . . . , Pn (n ≥ 0) such that P0 ≡ P, Pn ≡ Q, (∀i ≤ n − 1)(Pi 1β Pi+1 or Pi+1 1β Pi or Pi ≡α Pi+1). NB: equality with an existential force. NB: equality as the reflexive, symmetric and transitive closure of 1-step contraction Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 32. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computation Existential Force The same happens with λβη-equality: Definition 7.5 (λβη-equality) (Hindley & Seldin 2008) The equality-relation determined by the theory λβη is called =βη; that is, we define M =βη N ⇔ λβη M = N. Note again that two terms are λβη-equal if there exists a proof of their equality in the theory of λβη-equality. Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 33. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Equality Gentzen’s ND for propositional equality Remark In setting up a set of Gentzen’s ND-style rules for equality we need to account for: 1 definitional versus propositional equality; 2 there may be more than one normal proof of a certain equality statement; 3 given a (possibly non-normal) proof, the process of bringing it to a normal form should be finite and confluent. Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 34. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computation Equality in Type Theory Martin-L¨of’s Intuitionistic Type Theory: Intensional (1975) Extensional (1982(?), 1984) Remark (Definitional vs. Propositional Equality) definitional, i.e. those equalities that are given as rewrite rules, orelse originate from general functional principles (e.g. β, η, ξ, µ, ν, etc.); propositional, i.e. the equalities that are supported (or otherwise) by an evidence (a sequence of substitutions and/or rewrites) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 35. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computation Definitional Equality Definition (Hindley & Seldin 2008) (α) λx.M = λy.[y/x]M (y /∈ FV(M)) (β) (λx.M)N = [N/x]M (η) (λx.Mx) = M (x /∈ FV(M)) (ξ) M = M λx.M = λx.M (µ) M = M NM = NM (ν) M = M MN = M N (ρ) M = M (σ) M = N N = M (τ) M = N N = P M = P Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 36. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computation Intuitionistic Type Theory →-introduction [x : A] f(x) = g(x) : B λx.f(x) = λx.g(x) : A → B (ξ) →-elimination x = y : A g : A → B gx = gy : B (µ) x : A g = h : A → B gx = hx : B (ν) →-reduction a : A [x : A] b(x) : B (λx.b(x))a = b(a/x) : B (β) c : A → B λx.cx = c : A → B (η) Role of ξ: Bishop’s constructive principles. Role of η: “[In CL] All it says is that every term is equal to an abstraction” [Hindley & Seldin, 1986] Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 37. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Lessons from Curry–Howard and Type Theory Harmonious combination of logic and λ-calculus; Proof terms as ‘record of deduction steps’, Function symbols as first class citizens. Cp. ∃xP(x) [P(t)] C C with ∃xP(x) [t : D, f(t) : P(t)] g(f, t) : C ? : C in the term ‘?’ the variable f gets abstracted from, and this enforces a kind of generality to f, even if this is not brought to the ‘logical’ level. Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 38. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Equality in Martin-L¨of’s Intensional Type Theory A type a : A b : A Idint A (a, b) type Idint -formation a : A r(a) : Idint A (a, a) Idint -introduction a = b : A r(a) : Idint A (a, b) Idint -introduction a : A b : A c : Idint A (a, b) [x:A] d(x):C(x,x,r(x)) [x:A,y:A,z:Idint A (x,y)] C(x,y,z) type J(c, d) : C(a, b, c) Idint -elimination a : A [x : A] d(x) : C(x, x, r(x)) [x : A, y : A, z : Idint A (x, y)] C(x, y, z) type J(r(a), d(x)) = d(a/x) : C(a, a, r(a)) Idint -equality Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 39. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Equality in Martin-L¨of’s Extensional Type Theory A type a : A b : A Idext A (a, b) type Idext -formation a = b : A r : Idext A (a, b) Idext -introduction c : Idext A (a, b) a = b : A Idext -elimination c : Idext A (a, b) c = r : Idext A (a, b) Idext -equality Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 40. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations The missing entity Considering the lessons learned from Type Theory, the judgement of the form: a = b : A which says that a and b are equal elements from domain D, let us add a function symbol: a =s b : A where one is to read: a is equal to b because of ‘s’ (‘s’ being the rewrite reason); ‘s’ is a term denoting a sequence of equality identifiers (β, η, ξ, etc.), i.e. a composition of rewrites. In other words, ‘s’ is the computational path from a to b. (This formal entity is missing in both of Martin-L¨of’s formulations of Identity Types.) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 41. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Propositional Equality Id-introduction a =s b : A s(a, b) : IdA(a, b) Id-elimination m : IdA(a, b) [a =g b : A] h(g) : C REWR(m, ´g.h(g)) : C Id-reduction a =s b : A s(a, b) : IdA(a, b) Id-intr [a =g b : A] h(g) : C REWR(s(a, b), ´g.h(g)) : C Id-elim β [a =s b : A] h(s/g) : C Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 42. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Propositional Equality: A Simple Example of a Proof By way of example, let us prove ΠxA ΠyA (IdA(x, y) → IdA(y, x)) [p : IdA(x, y)] [x =t y : A] y =σ(t) x : A (σ(t))(y, x) : IdA(y, x) REWR(p,´t(σ(t))(y, x)) : IdA(y, x) λp.REWR(p,´t(σ(t))(y, x)) : IdA(x, y) → IdA(y, x) λy.λp.REWR(p,´t(σ(t))(y, x)) : ΠyA(IdA(x, y) → IdA(y, x)) λx.λy.λp.REWR(p,´t(σ(t))(y, x)) : ΠxAΠyA(IdA(x, y) → IdA(y, x)) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 43. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Propositional Equality: A Weak Version of Function Extensionality With the formulation of propositional equality that we have just defined, we can actually prove a weakened version of function extensionality, namely A → ΠfA→B ΠgA→B (ΠxA .IdB(AP(f, x), AP(g, x)) → IdA→B(f, g)) which asserts that, if the domain A is nonempty, then in case f and g agree on all points they must be considered to be propositionally equal elements of type A → B. Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 44. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Propositional Equality: The Groupoid Laws With the formulation of propositional equality that we have just defined, we can also prove that all elements of an identity type obey the groupoid laws, namely 1 Associativity 2 Existence of an identity element 3 Existence of inverses Also, the groupoid operation, i.e. composition of paths/sequences, is actually, partial, meaning that not all elements will be connected via a path. (The groupoid interpretation refutes the Uniqueness of Identity Proofs) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 45. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Propositional Equality: The Uniqueness of Identity Proofs “We will call UIP (Uniqueness of Identity Proofs) the following property. If a1, a2 are objects of type A then for any proofs p and q of the proposition “a1 equals a2” there is another proof establishing equality of p and q. (...) Notice that in traditional logical formalism a principle like UIP cannot even be sensibly expressed as proofs cannot be referred to by terms of the object language and thus are not within the scope of propositional equality.” (Hofmann & Streicher 1996) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 46. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Normal form for the rewrite reasons Strategy: Analyse possibilities of redundancy Construct a rewriting system Prove termination and confluence Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 47. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Normal form for the rewrite reasons Definition (equation) An equation in our LNDEQ is of the form: s =r t : A where s and t are terms, r is the identifier for the rewrite reason, and A is the type (formula). Definition (system of equations) A system of equations S is a set of equations: {s1 =r1 t1 : A1, . . . , sn =rn tn : An} where ri is the rewrite reason identifier for the ith equation in S. Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 48. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Normal form for the rewrite reasons Definition (rewrite reason) Given a system of equations S and an equation s =r t : A, if S s =r t : A, i.e. there is a deduction/computation of the equation starting from the equations in S, then the rewrite reason r is built up from: (i) the constants for rewrite reasons: { ρ, σ, τ, β, η, ν, ξ, µ }; (ii) the ri’s; using the substitution operations: (iii) subL; (iv) subR; and the operations for building new rewrite reasons: (v) σ, τ, ξ, µ. Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 49. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Normal form for the rewrite reasons Definition (general rules of equality) The general rules for equality (reflexivity, symmetry and transitivity) are defined as follows: x : A x =ρ x : A (reflexivity) x =t y : A y =σ(t) x : A (symmetry) x =t y : A y =u z : A x =τ(t,u) z : A (transitivity) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 50. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Normal form for the rewrite reasons Definition (subterm substitution) The rule of “subterm substitution” is split into two rules: x =r C[y] : A y =s u : A x =subL(r,s) C[u] : A x =r w : A C[w] =s u : A C[x] =subR(r,s) u : A where C[x] is the context in which the subterm x appears Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 51. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Reductions Definition (reductions involving ρ and σ) x =ρ x : A x =σ(ρ) x : A sr x =ρ x : A x =r y : A y =σ(r) x : A x =σ(σ(r)) y : A ss x =r y : A Associated rewritings: σ(ρ) sr ρ σ(σ(r)) ss r Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 52. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Reductions Definition (reductions involving τ) x=r y:D y=σ(r)x:D x=τ(r,σ(r))x:D tr x =ρ x : D y=σ(r)x:D x=r y:D y=τ(σ(r),r)y:D tsr y =ρ y : D u=r v:D v=ρv:D u=τ(r,ρ)v:D rrr u =r v : D u=ρu:D u=r v:D u=τ(ρ,r)v:D lrr u =r v : D Associated equations: τ(r, σ(r)) tr ρ, τ(σ(r), r) tsr ρ, τ(r, ρ) rrr r, τ(ρ, r) lrr r. Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 53. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Reductions Definition βrewr -×-reduction x =r y : A z : B x, z =ξ1(r) y, z : A × B × -intr FST( x, z ) =µ1(ξ1(r)) FST( y, z ) : A × -elim mx2l1 x =r y : A Associated rewriting: µ1(ξ1(r)) mx2l1 r Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 54. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Reductions Definition βrewr -×-reduction x =r x : A y =s z : B x, y =ξ∧(r,s) x , z : A × B × -intr FST( x, y ) =µ1(ξ∧(r,s)) FST( x , z ) : A × -elim mx2l2 x =r x : A Associated rewriting: µ1(ξ∧(r, s)) mx2l2 r Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies
  • 55. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Reductions Working papers: 1 Propositional equality, identity types, and direct computational paths Ruy J.G.B. de Queiroz, Anjolina G. de Oliveira http://arxiv.org/abs/1107.1901 [v1] Sun, 10 Jul 2011 21:28:26 GMT (33kb) [v2] Thu, 1 Mar 2012 13:27:15 GMT (34kb) [v3] Mon, 5 Aug 2013 20:26:40 GMT (37kb) 2 Sequences of Rewrites: A Categorical Interpretation Arthur F. Ramos, Ruy J.G.B. de Queiroz, Anjolina G. de Oliveira http://arxiv.org/abs/1412.2105 [v1] Fri, 5 Dec 2014 19:25:32 GMT (49kb,D) (Short version: Feb 2015, submitted to WoLLIC 2015) Ruy de Queiroz (joint work with Anjolina de Oliveira) Centro de Inform´atica Universidade Federal de Pernambuco (UFPE) Recife, Brazil Propositional Equality, Identity Types and Homotopies