Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Prochain SlideShare
DRYING PROCESS OF BERRY FRUIT BY VACUUM DRYING EQUIPMENT (SIMULATION PROCESS VIA COMSOL)
Suivant
Télécharger pour lire hors ligne et voir en mode plein écran

Partager

Production of 100 mt distilled monoglyceride (dmg)

Télécharger pour lire hors ligne

Description
Glycerolysis procedure is more economical - fats are cheaper and less glycerol is required.

Fats and fatty acids are insoluble in glycerol - high temperatures are required to force the reaction to proceed.

On production scale, direct esterification and interesterification can be done continuously or batchwise.

Generally, there will be input for the process and output from the process. Here we can define what are the related variables or input-output that present in this process.
Feed stream: In this process, the feed raw material is assumed already pure, so no need to purify the feed streams.
Excess reactant: fatty acid is fed as an excess reactant and is supplied in liquid form.
Recycle and purge: There are recycle stream from glycerol and fatty acid but there are no purges from the process.

Livres associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir

Production of 100 mt distilled monoglyceride (dmg)

  1. 1. SAJJAD KHUDHUR ABBAS Ceo , Founder & Head of SHacademy Chemical Engineering , Al-Muthanna University, Iraq Oil & Gas Safety and Health Professional – OSHACADEMY Trainer of Trainers (TOT) - Canadian Center of Human Development Episode 75 :PRODUCTION OF 100MT DISTILLED MONOGLYCERIDE (DMG)
  2. 2. Formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase. Monoglyceride (MG) - chemical compound a.k.a monoacylglycerol Industrial chemical and biological processes. General Information Act as emulsifiers - mix ingredients that would not otherwise blend well
  3. 3. • Glycerolysis procedure is more economical - fats are cheaper and less glycerol is required. • Fats and fatty acids are insoluble in glycerol - high temperatures are required to force the reaction to proceed. • On production scale, direct esterification and interesterification can be done continuously or batchwise.
  4. 4. COMPONENTS Appearance Formula MW (g/mol) Tb (K) Tf (K) ΔfHo 298 (kJ/mol) GLYCEROL - Clear viscous liquid - Little or no odor C3H5(OH)3 92.0900 444 472 -669.60 MONOGLYCERIDES (MONOSTEARIN) - Colorless - Odorless - Sweet-taste - Flaky powder C21H4204 358.5558 940.09 424.9 -1031.31 DIGLYCERIDES (DISTEARIN) - White to pale yellow - Wax-like solid - Mild fatty odour C39H76O5 625.0177 1336.04 454.8 -1495.40
  5. 5. Proposed Process Batch Continuous • Operating 24 hr/day • Production is continuous • Total batch time 3-5 hours • 7 batches/day production • Operating 24 hr/day • Production is continuous • 99% purity • 40 - 60% purity • 98% purity • Annual cost is higher • Annual cost is lower • Annual cost is higher • Lower maintenance cost • Higher specific manufacturing and operating cost • Higher maintenance cost
  6. 6. 𝐶3 𝐻5 𝑂𝐻 3 + 𝑅𝑂𝐶𝑂𝐻 → 𝐶3 𝐻5 𝑂𝐻 2 𝑂𝐶𝑂𝑅+ 𝐻2 𝑂 𝐶3 𝐻5 𝑂𝐻 2 𝑂𝐶𝑂𝑅+ 𝑅𝑂𝐶𝑂𝐻 → 𝐶3 𝐻5 𝑂𝐻 𝑂𝐶𝑂𝑅 2 + 𝐻2 𝑂 Reaction 1 Reaction 2 Rate constant 350oF 460oF k1 0.291 1.566 k2 0.163 0.220
  7. 7. r1=k1CGCFA(1) r2=k2CMCFA(2) Base on consecutive reaction • Glycerol − 𝑑𝐶 𝐺 𝑑𝑡 = −𝑟𝐺 = 𝑘1 𝐶 𝐺 𝐶 𝐹𝐴 (3) • Fatty acid − 𝑑𝐶 𝐹𝐴 𝑑𝑡 = −𝑟𝐹𝐴 = 𝑟1 + 𝑟2 = 𝑘1 𝐶 𝐺 𝐶 𝐹𝐴 + 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴 (4) • Monoglyceride 𝑑𝐶 𝑀 𝑑𝑡 = 𝑟 𝑀 = 𝑟1 − 𝑟2 = 𝑘1 𝐶 𝐺 𝐶 𝐹𝐴 − 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴(5) • Water 𝑑𝐶 𝑊 𝑑𝑡 = 𝑟 𝑊 = 𝑟1 + 𝑟2 = 𝑘1 𝐶 𝐺 𝐶 𝐹𝐴 + 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴(6) • Diglyceride 𝑑𝐶 𝐷 𝑑𝑡 = 𝑟 𝐷 = 𝑟2 = 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴(7)
  8. 8. 𝐶 𝐺 = 𝐶 𝐺𝑜 1 − 𝑋 𝐺 (8) − 𝑑𝐶 𝐺 𝑑𝑡 = 𝑑 𝐶 𝐺𝑜 1 − 𝑋 𝐺 𝑑𝑡 = 𝐶 𝐺𝑜 𝑑𝑋 𝐺 𝑑𝑡 = 𝑘1 𝐶 𝐺𝑜 1 − 𝑋 𝐺 𝐶 𝐹𝐴 𝑑𝑋 𝐺 𝑑𝑡 = 𝑘1 1 − 𝑋 𝐺 𝐶 𝐹𝐴(9) − 𝑑𝐶 𝐹𝐴 𝑑𝑡 = 𝑘1 𝐶 𝐺𝑜 1 − 𝑋 𝐺 𝐶 𝐹𝐴 + 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴 (10) 𝑑𝐶 𝑀 𝑑𝑡 = 𝑘1 𝐶 𝐺𝑜 1 − 𝑋 𝐺 𝐶 𝐹𝐴 − 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴 (11) 𝑑𝐶 𝑊 𝑑𝑡 = 𝑘1 𝐶 𝐺𝑜 1 − 𝑋 𝐺 𝐶 𝐹𝐴 + 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴(12) 𝑑𝐶 𝐷 𝑑𝑡 = 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴(13)
  9. 9. • By applying chain rule; − 𝑑𝐶 𝐺 𝑑𝑋 𝐺 = 𝑘1 𝐶 𝐺𝑜 1−𝑋 𝐺 𝐶 𝐹𝐴 𝑘1 1−𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 (14) − 𝑑𝐶 𝐹𝐴 𝑑𝑋 𝐺 = 𝑘1 𝐶 𝐺𝑜 1−𝑋 𝐺 𝐶 𝐹𝐴+𝑘2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘1 1−𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 + 𝑘2 𝐶 𝑀 𝑘1 1−𝑋 𝐺 (15) 𝑑𝐶 𝑀 𝑑𝑋 𝐺 = 𝑘1 𝐶 𝐺𝑜 1−𝑋 𝐺 𝐶 𝐹𝐴 − 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘1 1−𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 − 𝑘2 𝐶 𝑀 𝑘1 1−𝑋 𝐺 (16) 𝑑𝐶 𝑊 𝑑𝑋 𝐺 = 𝑘1 𝐶 𝐺𝑜 1−𝑋 𝐺 𝐶 𝐹𝐴+𝑘2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘1 1−𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 + 𝑘2 𝐶 𝑀 𝑘1 1−𝑋 𝐺 (17) 𝑑𝐶 𝐷 𝑑𝑋 𝐺 = 𝑘2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘1 1−𝑋 𝐺 𝐶 𝐹𝐴 = 𝑘2 𝐶 𝑀 𝑘1 1−𝑋 𝐺 (18)
  10. 10. Generally, there will be input for the process and output from the process. Here we can define what are the related variables or input-output that present in this process. Feed stream: In this process, the feed raw material is assumed already pure, so no need to purify the feed streams. Excess reactant: fatty acid is fed as an excess reactant and is supplied in liquid form. Recycle and purge: There are recycle stream from glycerol and fatty acid but there are no purges from the process.
  11. 11. (30) G AM FA X XP F  (31 GM M W XS P P  (32  G GM M G X XS P R  1 (33  A G M E X X P F  1 (34 M M FG S P F 
  12. 12.  nj j1 N  Hrj m  Picpi i1 M  Ta Tm   0 Energy balances Simplified; Where;
  13. 13. • Where from the process,
  14. 14. • 𝑇𝑎 = 𝑇 𝑚 − 𝑗−1 𝑁 𝑛 𝑗∆𝐻 𝑟𝑗 𝑚 𝑖−1 𝑀 𝑃 𝑖 𝑐 𝑝𝑖 𝑗=1 𝑁 𝑛𝑗∆𝐻𝑟𝑗 𝑚 = 𝐹𝐹𝐺 𝑆 𝑀 𝑋 𝐺 ∆𝐻𝑟1 ° + 𝐹𝐹𝐺 𝑆 𝑀 𝑋 𝐺∆𝐻𝑟2 ° + 𝐹𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝑀 + 𝐹𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝐷 + 𝐹𝐹𝐺 𝑋 𝐺 𝑐 𝑝 𝑊 −𝐹𝐹𝐺 1 − 𝑋 𝐺 𝑐 𝑝 𝐺 − 𝐹𝐹𝐺 1 − 𝑋 𝐺 𝑐 𝑝 𝐹𝐴 𝑇 𝑚 − 25
  15. 15. 𝑖=1 𝑀 𝑃𝑖 𝑐 𝑝𝑖 = 𝐹𝐹𝐺 1 − 𝑋 𝐺 𝑐 𝑝𝐺 + 𝐹𝐹𝐺 1
  16. 16. XG Ta(K) 0.1 25.04766 0.2 26.71848 0.3 30.5613 0.4 38.46259 0.5 53.72134 0.6 82.52075 0.7 136.2711 0.8 230.746 0.9 367.7698 1 504.2849
  17. 17. • Isothermal heat load can be obtained from 𝑄 = 𝑗=1 𝑁 𝑛𝑗∆𝐻𝑟𝑗 𝑚 + 𝑖=1 𝑀 𝑃𝑖 𝑐 𝑝𝑖 𝑇 𝑚 − 25 𝑄 = 𝑃 𝑀 𝑆 𝑀 𝑋 𝐺 𝑆 𝑀 𝑋 𝐺 ∆𝐻𝑟1 ° + 𝑆 𝑀 𝑋 𝐺∆𝐻𝑟2 ° + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝑀 + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝐷 + 𝑋 𝐺 𝑐 𝑝 𝑊 − 1 − 𝑋 𝐺 𝑐 𝑝 𝐺 − 1 − 𝑋 𝐺 𝑐 𝑝 𝐹𝐴 𝑇 𝑚 − 25
  18. 18. • Operation conditions: • Reactor Temperature = 255°C • Pressure, PT = 1.063 bar • R = 8.3144 kJ.K/kmole 𝐶3 𝐻5 𝑂𝐻 3 + 𝑅𝑂𝐶𝑂𝐻 → 𝐶3 𝐻5 𝑂𝐻 2 𝑂𝐶𝑂𝑅 + 𝐻2 𝑂 molkJHo r /2.1171  𝐶3 𝐻5 𝑂𝐻 2 𝑂𝐶𝑂𝑅 + 𝑅𝑂𝐶𝑂𝐻 → 𝐶3 𝐻5 𝑂𝐻 𝑂𝐶𝑂𝑅 2 + 𝐻2 𝑂 molkJHo r /77.212 
  19. 19. For CSTR; 21 rr XF V GG    M GM M GM M GG S XS P XS P XF V   1 M G P XF V 2 G 
  20. 20. • The annual reactor cost;
  21. 21. • Determination of Minimum Number of Stages • Minimum and Actual Reflux Ratio 𝑁 𝑚𝑖𝑛 = 𝑙𝑜𝑔 𝑑 𝐿𝐾 𝑑 𝐻𝐾 𝑏 𝐻𝐾 𝑏 𝐿𝐾 𝑙𝑜𝑔𝛼 𝑚 𝑅 𝑚𝑖𝑛 = 𝑙𝑜𝑔 𝑥 𝐿𝐻𝑑 𝑑 𝑋𝐻𝐾𝑑 − 𝛼 𝐿𝐾,𝐻𝐾 𝑋 𝐻𝐾𝑑 𝑋 𝐿𝐾 𝛼 𝐿𝐾,𝐻𝐾 −1
  22. 22. • Theoretical and Actual Number of Stages – The theoretical number of stages, N is calculated by using Gilliland correlation: • Calculated column diameter D = 4.9388 m • Column Height = 17.0688 m 𝑵 − 𝑵 𝑴𝑰𝑵 𝑵 + 𝟏 = 𝟏 − 𝒆𝒙𝒑 𝟏 + 𝟓𝟒. 𝟒𝒙 𝟏 + 𝟏𝟏𝟕. 𝟐𝒙 𝒙 − 𝟏 𝒙
  23. 23. Calculation for Distillation Column Component Feed Distillate Bottom Molar flow Mol fraction Molar flow Mol fraction Molar flow Mol fraction Distearin 13.8064 0.1648 0.0166 0.0009 13.7898 0.2092 Glycerin 20.1735 0.2408 17.8092 0.9973 2.3643 0.0359 Monostearin 36.1002 0.4309 0.0051 0.0003 36.0952 0.5476 Fatty Acid 13.6934 0.1635 0.0260 0.0015 13.6674 0.2073 Total 83.7736 1.0000 17.8568 1.0000 65.9167 1.0000
  24. 24. Fenske ( Nmin) Parameter/Component Glycerol (LK) Monostearin (HK) Distillate Flow Rate, di 17.81 0.01 Bottom Flow Rate,bi 2.36 36.10 (αlk,hk)N 3.190282151 (αlk,hk)1 1.979918231 Nmin 14
  25. 25. Gilliland correlation Calculated column diameter D = 4.9388 m Column Height = 17.0688 m Rmin 1.75 Reflux Ratio, R 2.1 X 0.1129 Y 0.48275 N 28
  26. 26. • Where; A = capacity or size parameter of the equipment K1, K2, K3 = values used in the correlation 𝑙𝑜𝑔10 𝐶 𝑝 𝑜 = 𝐾1 + 𝐾2 𝑙𝑜𝑔10 𝐴 + 𝐾3[𝑙𝑜𝑔10 𝐴 ]2
  27. 27. EP4 = EP3 - 𝐶 𝑝 𝑜 (distillation column)
  28. 28. Stream Type Tsupply (K) Ttarget (K) Total Heat Capacity Flowrate, FCp (KW/K) Enthalpy Change, ∆H (KW) H1 Hot 498.15 373.15 8.76 -1094.50 H2 Hot 498.15 328.15 2.37 -402.86 C1 Cold 298.15 328.15 0.834 25.011 C2 Cold 328.15 393.15 5.494 357.124 Total Q available = 2898.458 KW Total Q that must be absorbed = 2898.458 KW
  29. 29. Stream Type Tsupply(K) Ttarget(K) TsS TsT ∆T ∆H FCp (KW/K) H1 Hot 498.15 373.15 493.15 368.15 -125 -1094.495 8.756 H2 Hot 498.15 328.15 493.15 323.15 -170 -402.863 2.370 C1 Cold 298.15 328.15 298.15 328.15 30 25.011 0.834 C2 Cold 328.15 393.15 328.15 393.15 65 357.124 5.494 Shifted temperature for the hot and cold stream in Pinch Technology
  30. 30. Temperature (K) Enthalpy, ∆H (KW) 493.15 393.15 563.15 368.15 140.79 Hot Cold 328.15 Utility -158.33 Utility 323.15 7.68 298.15 -20.84 Supply = 179.17 Reject = 711.62 Difference = -532.45 Heat transfer to and from utilities for each temperature interval
  31. 31. Streams Manual Calculation (kg/hr) Simulation (kg/hr) Error Percentage (%) 1 21487.9794 21487.9790 0.00 2 21487.9794 21487.979 0.00 3 25862.1917 25918.1794 0.22 4 25862.1917 25918.1794 0.22 5 25862.1917 25918.1794 0.22 6 25862.1917 25918.1794 0.22 7 25862.1917 25918.1794 0.22 8 25862.1917 25918.1794 0.22 9 1583.3995 1657.9077 4.71 10 1583.3995 1657.9077 4.71 11 15.834 17.8594 12.79 12 1567.5655 1640.0483 4.62
  32. 32. Streams Manual Calculation (kg/hr) Simulation (kg/hr) Error Percentage (%) 13 2806.6468 2790.4650 0.58 14 4374.2123 4430.5131 1.29 15 4374.2123 4430.5131 1.29 16 24278.7922 24260.2717 0.08 17 12882.6244 12938.7256 0.44 18 11396.1678 11321.5461 0.65 19 11396.1678 11321.5461 0.65 20 12882.6244 12938.7256 0.44 21 12882.6244 12938.7256 0.44 22 630.4375 630.035 0.06 23 886.8017 756.042 14.75 24 12626.2602 12812.7186 1.48
  33. 33. THANK YOU
  34. 34. Thanks for Watching Please follow me / SAJJAD KHUDHUR ABBAS
  • DeependraKumarYadav3

    Mar. 26, 2019
  • sajjad_al-amery

    Oct. 12, 2016

Description Glycerolysis procedure is more economical - fats are cheaper and less glycerol is required. Fats and fatty acids are insoluble in glycerol - high temperatures are required to force the reaction to proceed. On production scale, direct esterification and interesterification can be done continuously or batchwise. Generally, there will be input for the process and output from the process. Here we can define what are the related variables or input-output that present in this process. Feed stream: In this process, the feed raw material is assumed already pure, so no need to purify the feed streams. Excess reactant: fatty acid is fed as an excess reactant and is supplied in liquid form. Recycle and purge: There are recycle stream from glycerol and fatty acid but there are no purges from the process.

Vues

Nombre de vues

928

Sur Slideshare

0

À partir des intégrations

0

Nombre d'intégrations

3

Actions

Téléchargements

30

Partages

0

Commentaires

0

Mentions J'aime

2

×