Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Team 
17 
PET/X 
Improving outcomes, reducing costs 
Initial idea: Help oncologists pick better personalized 
therapies fo...
Larry MacDonald 
Co-­‐Founder 
(IE) 
Background: 
Biomedical 
Physics 
Paul Kinahan 
Co-­‐Founder 
(CL) 
Background: 
Engi...
Week 
1: 
Added 
a 
lot 
to 
explore 
all 
possible 
VP, 
CS, 
and 
RS
A"er 
Week 
1: 
Posi.ve 
indica.ons 
for 
key 
VP 
Hypothesis 
Experiment 
Results 
New 
technology 
requires 
trial 
Aske...
Week 
4: 
Start 
to 
rule 
out 
CS, 
VP 
based 
on 
interviews
W
eek 
4 
(VPCS): 
Thinning
!
 
	 
#
#
	
	
	


 
$%
'
	(	
(! 

(
)!'
'	*+ 
	!!
	 

	
 




 
 ,
,
!-
,) 
 .	

/,) 
 

 
	




	

 
		 
0
	(,(

'1
'
2	
 
Reimbursment 
Decision 
Maker 
Coopera:ve 
trial 
PI
Aer 
Week 
4: 
Differen.ated 
Customer 
segments 
Hypothesis 
Experiment 
(n) 
Results 
Fixed 
materials 
price 
:ers 
; 
...
Week 
10: 
Validated 
the 
product 
– 
market 
fit
Aer 
Week 
10: 
More 
Financial 
Details 
Hypothesis 
Experiment 
(n) 
Results 
ROI 
in 
5 
years 
Interviewed 
Exec. 
Dir...
PET/X 
• Sales 
• Service 
Hospital 
or 
Clinic 
using 
PET/X 
Pa:ent 
Imaging 
physician 
CMS 
Insurance 
Capital 
equipm...
Imaging 
Site 
Revenue 
Model
PET/X 
– 
Sales 
Revenue 
Model 
# 
Pa:ents/year 
Reimbursement 
CPT 
code 
7811 
Shared 
Purchase 
Fee 
for 
Service 
3yr...
Income, 
Finance 
and 
Opera:ons 
Timeline 
Ac.vity/Item 
Year 
1 
Year 
2 
Year 
3 
Scanner 
Sales 
2 
4 
8 
Price 
per 
...
Medical 
Device 
Investment 
Readiness 
Level 
Plausible 
exit 
Cash 
to 
exit 
Unit 
economics 
Validated 
Reimbursement ...
Road 
to 
first 
sale 
We 
now 
have 
• Defined 
customer 
sub-­‐segment: 
therapy 
 
imaging 
centers 
for 
invasive 
bre...
! 

#$% 
 
# 

!
 

	
 



	
 
 '()*+# 


 

 
 ,----+#
 

!
. 

 
 ),/

# 


 
 0-/
 

# 
	 


	


 
 1
#
*
# 

*
 

	
 
 	
 
2 
 

 
		 
+
3 
 .

 

 
 #
 
 
	
4
4+5 
 6	 

	7
!
 
8
!
 
  
	 
	 
		
 
 67
 
 
 9
:
# 
 
 
 6


;
*

 
	
 
 4+5
	
		
# 
 
 
*	
	
 
	
 
 =	*
;
Prochain SlideShare
Chargement dans…5
×

Petx I-Corps@NIH 121014

8 815 vues

Publié le

Publié dans : Formation
  • Soyez le premier à commenter

Petx I-Corps@NIH 121014

  1. Team 17 PET/X Improving outcomes, reducing costs Initial idea: Help oncologists pick better personalized therapies for breast-cancer patients $10B TAM $1.2B SAM $600M Target Pa:ent B Tx Failed ✗ Pa:ent A ✓ Tx Worked Before 1 dose Tx AAer Total interviews: 106
  2. Larry MacDonald Co-­‐Founder (IE) Background: Biomedical Physics Paul Kinahan Co-­‐Founder (CL) Background: Engineering Physics Team 17 William Hunter Principal Inves:gator (PI) Background: Nuclear & Semiconductor Physics PET/X Improving outcomes, reducing costs
  3. Week 1: Added a lot to explore all possible VP, CS, and RS
  4. A"er Week 1: Posi.ve indica.ons for key VP Hypothesis Experiment Results New technology requires trial Asked developers of previous data (mul:ple) projects A magic image can change an industry more quickly (but opposing views on this) Results from current clinical PET/CT scanners provide low-­‐ fidelity MVP data Asked medical imaging clinical experts Affirmed Insurance companies have small research programs Asked ques:on to a healthcare economist Some insurance companies have huge research programs/budgets No role for PET/X in diagnosis Asked mul:ple clinicians Strong support for use in diagnosis (opposing views) 90% of new BC pa:ents are candidates Asked medical imaging clinical experts only 35% for sure, could go up to 75% Payers and providers are separate customers Serendipitous ques:on to a healthcare economist Combined payer/providers would be good first adopters No reimbursement limit (on numbers of scans) Asked na:onal medical imaging clinical experts Affirmed
  5. Week 4: Start to rule out CS, VP based on interviews
  6. W
  7. eek 4 (VPCS): Thinning
  8. ! #
  9. # $%
  10. ' ( (! (
  11. )!' ' *+ !! ,
  12. , !- ,) . /,) 0 (,( '1 ' 2 Reimbursment Decision Maker Coopera:ve trial PI
  13. Aer Week 4: Differen.ated Customer segments Hypothesis Experiment (n) Results Fixed materials price :ers ; materials subject to tariffs Interview materials vendor (2) Found vendor with lower and (claimed) controlled price Billing: Reimbursement is feasible Interviewed billing expert (2) Probably yes, but there are Medicare requirements for scanners Radiologist/iCRO: PETX useful for clinical trials? Interviewed radiologist CTO (1) Could be (s:ll gegng mixed results) Interest in pre-­‐surgery staging Interviewed surgeon (2) Confirmed interest; also affirmed poten:al for assessment Easy integra:on into clinical workflow Interviewed clinical manager (2) PETX similar to other add-­‐on procedures Guidance for balancing resources between spinout and univ. Interviewed experienced spin-­‐out entrepreneur (2) Address customers’ obstacles to adop:ng PETX; Confirmed important nego:a:ons with univ.
  14. Week 10: Validated the product – market fit
  15. Aer Week 10: More Financial Details Hypothesis Experiment (n) Results ROI in 5 years Interviewed Exec. Directors of Radiology (3) For mid-­‐range capital expenses ROI expected in ~3 years, but varies by Org size Must have ROI Price Interviewed Exec. Directors of Radiology (2) Not all capital equip has to show a profit if it brings in revenue in subsequent/other services. Technical sales staff could assist with supported RD Interviewed Principal Engineer (1) Tech. sales staff (2) Must keep separate so that cost of clinical studies are not subtracted from system cost by Medicare. Margins on sales of capital equipment is lower than small device margins Interviewed Tech. sales reps (2 lrg 2 small companies) (4) Hard to get concrete numbers, but confirmed it was typically less than 65%. Purchase decision based solely on net clinic reimbursement. Interviewed Exec Dir Rad (1) Apending Physicians (4) Breast Cancer is an emo:onally charged topic. Huge pa:ent advocacy pressure can drive purchase decision even at net loss.
  16. PET/X • Sales • Service Hospital or Clinic using PET/X Pa:ent Imaging physician CMS Insurance Capital equipment decision influencers Breast cancer advocacy groups Larger Medical Imaging company Capital equipment Decision makers Imaging Technologist Referring Oncologist NCCN other guidelines Finances opera:ons revenue stream purchase decision influence or control FDA Crux of the issue: Purchase
  17. Imaging Site Revenue Model
  18. PET/X – Sales Revenue Model # Pa:ents/year Reimbursement CPT code 7811 Shared Purchase Fee for Service 3yr Clinic Purchase ROI No 4yr ROI No 5yr ROI Yes Yes Unlikely to buy # Scan Opera:on Cost No Yes Direct sell price Cost of Goods Personnel Sales RD Profit GA Training Amor:zed Cost :me Cost of Goods Sales RD Profit GA Personnel Training Sales RD GA Training Profit Cost of Goods Personnel Profit
  19. Income, Finance and Opera:ons Timeline Ac.vity/Item Year 1 Year 2 Year 3 Scanner Sales 2 4 8 Price per scanner $650K $650K $650K Service Income 0 20% of prior sales 20% of prior sales Total Revenues $1.30M $2.86M $5.98M Cost of Goods / scanner $195K $203K $211K Personnel / scanner $235K $183K $143K Sales / scanner $50K $40K $30K Training / scanner $50K $40K $35K RD 0 5% of Y1 revenue 5% of Y2 revenue GA $200K $220K $242K Total Expenses $1.26M $2.23M $3.89M Net $40K $633K $2.09M Cumula.ve Net $40K $673K $2.76M
  20. Medical Device Investment Readiness Level Plausible exit Cash to exit Unit economics Validated Reimbursement Regulatory Intellectual Property Aprac:ve solu:on ID of MVP Compelling clinical need + large mkt Effec:ve team? 3.5 4.5 IRL 7 IRL 6 Oct 10 Dec 10 discovered data
  21. Road to first sale We now have • Defined customer sub-­‐segment: therapy imaging centers for invasive breast cancer • Ini:al marke:ng informa:on financial models • Validated preferred exit (licensing) • Submiped a Phase II using materials from I-­‐Corps on valida:on of product-­‐market fit and financial models Next we will • Complete MVP • Partner with luminary sites • Collect disseminate quality data
  22. ! #$% # ! '()*+# ,----+# ! . ),/ # 0-/ # 1 #
  23. *
  24. # * 2 + 3 . # 4
  25. 4+5 6 7 ! 8 ! 67 9
  26. :
  27. # 6 ;
  28. * 4+5 # * = *
  29. ;
  30. 4+5 $ *# ! *
  31. Week 1
  32. !
  33. #$ !% ' ! # ! ' ( ) #
  34. ! *
  35. + ,-./0! $ 122220! # .13 ! 423 !$ 5-12) 0! ,622% 7 !
  36. / $
  37. ! / '8 0 5 ! +
  38. '+09 1-2) : ; # ( # :;
  39. =
  40. ! :
  41. '+09 ! ? / @$ /
  42. '+09 % /! # $ /
  43. Week 2
  44. ! !
  45. #
  46. $ % ! !' ( ) $ ( ( $ * +
  47. ( ,
  48. - .
  49. (
  50. % /01%2( ' 344442( # 135 ( 645 (' 7034+ 2( # /844 9 (
  51. % '
  52. ( % $: 2 7 # ( -
  53. $-2; ' ( )'%( $- 304+ . %
  54. $- = * = ! = ?
  55. ! @
  56. ( = A
  57. $-2; ( % .' %
  58. A
  59. $-2; %( ' %
  60. Week 3
  61. ! ! # $
  62. #
  63. % ! !'( $ ) % $ ' ## $ % * + '
  64. $ ,
  65. - .
  66. $ #
  67. # # /012$ ( # 344442$ ' 135 $ 6034+ 2$ 745 $( # # /844 9# $
  68. (
  69. $ %: 2 6 $ -
  70. %-2; '( $ )($ %- 304+ .
  71. # %- =# ' * ' = ! = # ?
  72. ! @
  73. $ = A
  74. %-2; # $ .(
  75. A
  76. %-2; # $ # # ' # (
  77. # Week 4
  78. ! ! # $
  79. % ! !'( $ ) % $ ' ## $ % * + '
  80. $ ,
  81. - .
  82. $ #
  83. # # /012$ ( # 344442$ ' 135 $ 6034+ 2$ /744 - $( * 8# $
  84. (
  85. $ %9 2 6 $
  86. %-2: ;'( $ )($ %- 304+ .
  87. # %- # = ' * ' ! = # $ )8.
  88. ! ?
  89. $ @
  90. %-2: # $ ; .(
  91. @
  92. %-2: # $ # # ' # (
  93. # Week 5
  94. ! ! # $
  95. % ! !'( $ ) % $ ' ## $ % * + '
  96. $ ,
  97. - .
  98. $ #
  99. # # /012$ ( # 344442$ ' 135 $ 6034+ 2$ /744 - $( * 8# $
  100. (
  101. $ %9 2 6 $
  102. %-2: ;'( $ )($ %- 304+ .
  103. # %- # = ' * ' ! = # $ )8.
  104. ! ?
  105. $ @
  106. %-2: # $ ; .(
  107. @
  108. %-2: # $ # # ' # (
  109. # Week 6
  110. ! ! # $
  111. % ! !'( $ ) % $ ' ## $ % * + '
  112. $ ,
  113. - .
  114. $ #
  115. # # /012$ ( # 344442$ ' 135 $ 6034+ 2$ /744 - $( * 8# $
  116. (
  117. $
  118. # %9 2 6 $
  119. %-2: ;'( $ )($ %- 304+ .
  120. # %- # = ' * ' ! = # $ )8.
  121. ! ?
  122. $ @
  123. %-2: # $ ; .(
  124. @
  125. %-2: # $ # # ' # (
  126. # Week 7
  127. ! ! # $
  128. % ! !'( $ ) % $ ' ## $ % * + '
  129. $ ,
  130. - .
  131. $ #
  132. # # /012$ ( # 344442$ ' 135 $ 6034+ 2$ /744 - $( * 8# $
  133. (
  134. $
  135. # %9 2 6 $
  136. %-2: ;'( $ )($ %- 304+ .
  137. # %- # = ' * ' ! = # $ )8.
  138. ! ?
  139. $ @
  140. %-2: # $ ; .(
  141. @
  142. %-2: # $ # # ' # (
  143. # Week 8
  144. ! ! # $
  145. % ! !'( $ ) % $ ' ## $ % * + '
  146. $ ,
  147. - .
  148. $ #
  149. # # /012$ ( # 344442$ ' 135 $ 6034+ 2$ /744 - $( * 8# $
  150. (
  151. $
  152. # %9 2 6 $
  153. %-2: ;'( $ )($ %- 304+ .
  154. # %- # = ' * ' ! = # $ )8.
  155. ! ?
  156. $ @
  157. %-2: # $ ; .(
  158. @
  159. %-2: # $ # # ' # (
  160. # Week 9
  161. ! ! # $
  162. % ! !'( $ ) % $ ' ## $ % * + '
  163. $ ,
  164. - .
  165. $ #
  166. # # /012$ ( # 344442$ ' 135 $ 6034+ 2$ /744 - $( * 8# $
  167. (
  168. $
  169. # %9 2 6 $
  170. %-2: ;'( $ )($ %- 304+ .
  171. # %- # = ' * ' ! = # $ )8.
  172. ! ?
  173. $ @
  174. %-2: # $ ; .(
  175. @
  176. %-2: # $ # # ' # (
  177. # Week 10
  178. Week 10 Drilling down on details
  179. Customer types Interviewed Type (subtype) n Medical Oncologist 6 Surgeons 3 Imaging Physicians 23 Nuc Med Imaging 12 Mammo Imaging 4 Diagnos;c Imaging 3 Rheumatology 2 Technologists 6 mammo 4 nuc med 2 Pharma 4 RD 2 Exec 2 Type (subtype) n Radiology / Hospital 5 business execu:ves Regulatory 5 Reimbursement/coding 1 IP Lawyer 1 Health Economist 1 Imaging Scien:st 7 Sta:s:cian 1 Clinical Physicist 10 Imaging industry 33 Sales/marke;ng 9 rd, CTO 9 execu;ves 12 compe;ng 3

×