SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
There are many reasons to use an eventually-consistent database — like Riak, Voldemort, or Cassandra — including increased availability, lower latency, and fault-tolerance. However, doing so requires a mental shift in how to structure client applications, and certain types of traditional data-structures, like sets, registers, and counters can’t be resolved simply in the face of race-conditions. It is difficult to achieve “logical monotonicity” except for the most trivial data-types.
That is, until the advent of Convergent Replicated Data Types (CRDTs). CRDTs are data-structures that tolerate eventual consistency. They replace traditional data-structure implementations and all have the property that, given any number of conflicting versions of the same datum, there is a single state on which they converge (monotonicity). This talk will discuss some of the most useful CRDTs and how to apply them to solve real-world data problems.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
La famille SlideShare vient de s'agrandir. Vous avez désormais un accès illimité* aux livres, livres audio, magazines de Scribd et bien plus encore.
Annulez à tout moment.
Soyez le premier à commenter