SlideShare une entreprise Scribd logo
1  sur  31
Télécharger pour lire hors ligne
BIOTECHNOLOGY IN INDUSTRIAL WASTEWATER
TREATMENT
CYPRUS INTERNATIONAL UNIVERSITY
BIOTECHNOLOGY
(ENE614)

PRESENTED
BY
SHUAIBU MUSA GEZAWA
{20122215}
Contents
 Introduction
 Benefits
 Industrial Contaminants & their Impact
 Treatment Technologies
 Bioremediation Technology
 Bioremediation Principles & Mechanism
 Factors Influencing Bioremediation
 Advantages & Disadvantages of Bioremediation
 Conclusions
Industrial Wastewater Characteristics
Industrial wastewater is a type of wastewater produced by
industrial activity, such as that of factories, mills and mines.
It is characterized by its large volume, high temperature, high
concentration of biodegradable organic matter and suspended
solids, high alkalinity or acidity, and by variations of flow.
The degree of treatment varies according to the means of
disposal, which may be to a municipal sewer system, a receiving
body of water, such as a stream, an estuary, or a large body of
fresh water, or recovery for reuse.
Benefits
 Used to develop method for the treatment of
toxic compounds.
 Improving the design and operation of
biomechanical treatment system used for
degradation of toxic compounds.
 Improvement of public health, sanitation, soil
integrity and the conservation of fresh water
resources.
How to accomplish waste
Treatment
 Trickling Filter
 Rotating Biological
Contactor
 Activated Sludge
Process
 Lagoons
 Oxidation Ponds
Major Players
 Microorganisms are

used to destroy
waste materials.
 Microorganisms
include:
 Bacteria (aerobic
and anaerobic)
 Fungi
 Algae
 Actinomycetes
(filamentous
bacteria).
Overall Treatment Processes
3 stages of treatment.
Primary.
This is only a physical separation to remove solid matter.
Effluent is allowed to settle for a few hours.
Secondary.
The organic and nutrient load is decreased by microbial
activity
Up to 95% so that the effluent is of a quality
to be able to go into rivers.
Tertiary.
This is a complete treatment, but it is very expensive
and not used much.
.

Secondary Treatment
Can be divided into
1.Anaerobic
2. Aerobic treatment processes
Anaerobic
Complex series of digestive and fermentative reactions by a
mixture of bacteria. It can remove 95% BOD.
This is the choice if there is a lot of insoluble matter
cellulose, industrial waste.
Degradation is carriead out in large tanks – sludge digestors or bioreactors.
Molecular components are digested and fermented to FA, H 2, CO2.
FA then to acetate, CO2 and H2.
These are substrates for methanogenic bacteria to make methane.
Major products are methane and CO2. Used or burnt off.
Anaerobic Sludge Digester
Anaerobic sludge digestion
Anaerobic sludge digestion
Aerobic
There are several kinds of aerobic decomposition processes.
Trickling filter and activated sludge are the most common.
Trickling filter is a bed of crushed rock, ~2m thick.
Wastewater is sprayed on the top (UWI plant).
Liquid slowly passes through the rock, organic matter absorbs to
the rock and microbial growth takes place.
Complete mineralization of organic matter takes place.
Most common is activated sludge.
Wastewater is mixed and aerated in a large tank
Trickling Filter
Trickling Filter
Aeration tank, activated sludge
Biotechnology in Industrial Waste water Treatment
Aeration Tank
Bioremediation Technology
Bioremediation is the use of micro-organism metabolism to

remove pollutants. Technologies can be generally classified
as in situ or ex situ. In situ bioremediation involves treating
the contaminated material at the site, while ex situ involves
the removal of the contaminated material to be treated
elsewhere
Bioremediation Technology
 Bioreactors technologically are the most sophisticated category of
environmental bioremediation.
 Bioreactors offer a much faster means of waste biodegradation than
land treatment and more control over reaction conditions and effluent
quality than simple biofilters.
Biological Treatment Process
1. The microorganisms are used to convert the organic matter (colloidal and
dissolved) into various gases and into cell tissue.
2. The contaminant of organic substances is ingested and
digested as food along with other energy source by the cell.
GOAL: Degrade organic substances that are hazardous to living organisms and
convert the organic contaminants into inert products.

Microorganisms eat organic contaminant
Microorganisms digest and convert
waste to CO2 and H2O
Microorganisms give off CO2 and H2O
Factors Influencing Bioremediation
For bioremediation of harmful chemicals following factors
are required to be monitored in the effluent:
 Required microorganism
 Temperature
 pH level
 Dissolved oxygen concentration
 Inorganic nutrient.
These conditions allow microbes to grow and multiply—and eat more
chemicals. When conditions are not right, microbes grow too slowly or die or
they can create more harmful chemicals.
Activated Sludge
Microbial activity in activated sludge.
Slime forming bacteria like Zoogloea grow and form flocs.
Small animals and protozoa attach to these.
Process of oxidation is similar to the trickling bed.
Effluent containing flocs goes to settling tanks. Flocs settle.
Some floc material is recirculated.
Water spends 5-10 hours in sludge tank, too short for complete oxidation.
Main process is absorption of organic matter to the floc.
BOD of liq waste is reduced by ~95%.
Most BOD is in the flocs. BOD reduction then takes place
by digestion of the flocs in the sludge digestor.
Oxidation ponds or lagoons.
This is very simple treatment used in rural areas, particularly suited for tropical
areas (Portmore sewage treatment Plant).
Take up a large area, are less than 3m deep (allow light to penetrate).
There are odour problems and the process can take over a week.
Three components are essential for the functioning of the oxidation pond. They
are:




Bacteria
Algae
Sunlight
Oxidation ponds or lagoons.
 The bacteria in the pond oxidise the various organic material producing

carbondioxide, ammonia and water.

The algae grow by utilizing the inorganic material and carbon
dioxide in the presence of sunlight.

The oxygen requirement for oxidation of the organic matter by
bacteria is satisfied mainly by oxygen released by the algae. Also some
oxygen is provided by the contact with the atmosphere. Sunlight is an
important factor in the functioning of the oxidation pond
Lagoon
Comparing advantages.
Anaerobic treatment has advantages over aerobic.
 Reduction of excess sludge production up to 90%
 Production of energy in the form of methane gas
 No or very little use of chemicals
 Lower treatment costs
 High flexibility, since it can be applied to very different types of

effluents (higher and lower loading rates, mesophilic or thermophilic
conditions, more or less complex wastewaters, etc.)
 Anaerobic organisms can be preserved unfed for a long time, which
makes it possible to treat wastewaters that are generated with longer
(seasonal production) or shorter (holidays and weekends) pauses in
between .
Conclusions







Bioremediation continues to be the favored approach for processing
biological wastes.
Bioremediation utilizes microbes such as bacteria, fungi, yeast, algae, and
some plants.
Three categories of bioremediation techniques have been identified: in
situ land treatment (treatment of contaminated material on site),
biofiltration, and bioreactors.
Bioremediation is highly efficient system, if proper conditions are
maintained example pH, temperature, nutrients.
Bioremediation is cost-efficient and helps chemical and physical methods
of managing wastes and environmental pollutants.
Biotechnology in Industrial Waste water Treatment

Contenu connexe

Tendances

wastewater treatment
wastewater treatmentwastewater treatment
wastewater treatmentEzhilmathi S
 
Anaerobic treatment of industrail wastewater
Anaerobic treatment of industrail wastewaterAnaerobic treatment of industrail wastewater
Anaerobic treatment of industrail wastewaterNitin Yadav
 
Tertiary treatment
Tertiary treatmentTertiary treatment
Tertiary treatmentAzad Khan
 
Bioremediation & Waste Management
Bioremediation & Waste ManagementBioremediation & Waste Management
Bioremediation & Waste ManagementSai Ram
 
Waste water treatment processes
Waste water treatment processesWaste water treatment processes
Waste water treatment processesAshish Agarwal
 
Waste water treatment
Waste water treatment  Waste water treatment
Waste water treatment Ghassan Hadi
 
“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The Future“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The FutureAnik Banik
 
Treatment of waste from pulp industry
Treatment of waste from pulp industryTreatment of waste from pulp industry
Treatment of waste from pulp industryprarthana mary
 
genetically modified organisms in the field of bio-remediation
genetically modified organisms in the field of bio-remediationgenetically modified organisms in the field of bio-remediation
genetically modified organisms in the field of bio-remediationswayam prakas nanda
 
Bioremediation of contaminated soils
Bioremediation of contaminated soilsBioremediation of contaminated soils
Bioremediation of contaminated soilsFari Rajput
 
11 microbial bioremediation
11 microbial bioremediation11 microbial bioremediation
11 microbial bioremediationMerlyn Denesia
 
Acetone and butanol fermentation
Acetone and butanol fermentationAcetone and butanol fermentation
Acetone and butanol fermentationNOUFAL NUJUM
 
Downstream processing group ppt
Downstream processing group ppt Downstream processing group ppt
Downstream processing group ppt Amit Gothe
 

Tendances (20)

wastewater treatment
wastewater treatmentwastewater treatment
wastewater treatment
 
Anaerobic treatment of industrail wastewater
Anaerobic treatment of industrail wastewaterAnaerobic treatment of industrail wastewater
Anaerobic treatment of industrail wastewater
 
Tertiary treatment
Tertiary treatmentTertiary treatment
Tertiary treatment
 
Biosorption
BiosorptionBiosorption
Biosorption
 
Bioremediation
BioremediationBioremediation
Bioremediation
 
Bioremediation
BioremediationBioremediation
Bioremediation
 
Bioremediation & Waste Management
Bioremediation & Waste ManagementBioremediation & Waste Management
Bioremediation & Waste Management
 
Waste water treatment processes
Waste water treatment processesWaste water treatment processes
Waste water treatment processes
 
Waste water treatment
Waste water treatment  Waste water treatment
Waste water treatment
 
“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The Future“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The Future
 
Treatment of waste from pulp industry
Treatment of waste from pulp industryTreatment of waste from pulp industry
Treatment of waste from pulp industry
 
genetically modified organisms in the field of bio-remediation
genetically modified organisms in the field of bio-remediationgenetically modified organisms in the field of bio-remediation
genetically modified organisms in the field of bio-remediation
 
Bioremediation of contaminated soils
Bioremediation of contaminated soilsBioremediation of contaminated soils
Bioremediation of contaminated soils
 
Bioleaching
BioleachingBioleaching
Bioleaching
 
Tannery Waste Management
Tannery Waste ManagementTannery Waste Management
Tannery Waste Management
 
11 microbial bioremediation
11 microbial bioremediation11 microbial bioremediation
11 microbial bioremediation
 
Acetone and butanol fermentation
Acetone and butanol fermentationAcetone and butanol fermentation
Acetone and butanol fermentation
 
Bioethanol Production
Bioethanol ProductionBioethanol Production
Bioethanol Production
 
Biodegradation and bioremediation of xenobiotics
Biodegradation and bioremediation of  xenobioticsBiodegradation and bioremediation of  xenobiotics
Biodegradation and bioremediation of xenobiotics
 
Downstream processing group ppt
Downstream processing group ppt Downstream processing group ppt
Downstream processing group ppt
 

En vedette

SEWAGE TREATMENT PLANT,LUCKNOW
SEWAGE TREATMENT PLANT,LUCKNOWSEWAGE TREATMENT PLANT,LUCKNOW
SEWAGE TREATMENT PLANT,LUCKNOWGLA University
 
Effluent Treatment Plant(ETP)
Effluent Treatment Plant(ETP)Effluent Treatment Plant(ETP)
Effluent Treatment Plant(ETP)Nishith Tripathi
 
VISITA DEPURADORA DE CALAHORRA
VISITA DEPURADORA DE CALAHORRAVISITA DEPURADORA DE CALAHORRA
VISITA DEPURADORA DE CALAHORRArevistacidacos
 
Sewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For WastewaterSewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For WastewaterKaleem
 
Wastewater treatment plant
Wastewater treatment plantWastewater treatment plant
Wastewater treatment plantSarfraz Azmi
 
Effluent treatment plant - design, operation and analysis of waste water trea...
Effluent treatment plant - design, operation and analysis of waste water trea...Effluent treatment plant - design, operation and analysis of waste water trea...
Effluent treatment plant - design, operation and analysis of waste water trea...Shubham Hydrosys Pvt. Ltd
 
Waste water treatment success story
Waste water treatment success storyWaste water treatment success story
Waste water treatment success storyFrancisco Dominguez
 
sewage treatment plant
sewage treatment plantsewage treatment plant
sewage treatment plantBhavik Patel
 
Design manual-pump-station
Design manual-pump-stationDesign manual-pump-station
Design manual-pump-stationAreej Al-Azzawi
 
Project #2 - Sewer Treatment Plant - Electrical Drawings Upgrade
Project #2 - Sewer Treatment Plant - Electrical Drawings UpgradeProject #2 - Sewer Treatment Plant - Electrical Drawings Upgrade
Project #2 - Sewer Treatment Plant - Electrical Drawings UpgradeDavid List
 
MicroFAST® - Advanced Waste Water Treatment System
MicroFAST® - Advanced Waste Water Treatment SystemMicroFAST® - Advanced Waste Water Treatment System
MicroFAST® - Advanced Waste Water Treatment SystemJane Fenway
 
Delay analysis of raw water reservoir and pumping Station
Delay analysis of raw water reservoir and pumping StationDelay analysis of raw water reservoir and pumping Station
Delay analysis of raw water reservoir and pumping Stationchetlapally balakrishna
 
Use of microorganisms in wastewater treatment
Use of microorganisms in wastewater treatmentUse of microorganisms in wastewater treatment
Use of microorganisms in wastewater treatmentVAISHALI JAIN
 
Efflunt treatment plant ppt
Efflunt treatment plant pptEfflunt treatment plant ppt
Efflunt treatment plant pptRajat Thapliyal
 

En vedette (20)

SEWAGE TREATMENT PLANT,LUCKNOW
SEWAGE TREATMENT PLANT,LUCKNOWSEWAGE TREATMENT PLANT,LUCKNOW
SEWAGE TREATMENT PLANT,LUCKNOW
 
Effluent Treatment Plant(ETP)
Effluent Treatment Plant(ETP)Effluent Treatment Plant(ETP)
Effluent Treatment Plant(ETP)
 
VISITA DEPURADORA DE CALAHORRA
VISITA DEPURADORA DE CALAHORRAVISITA DEPURADORA DE CALAHORRA
VISITA DEPURADORA DE CALAHORRA
 
L 9 pumping stations
L 9 pumping stationsL 9 pumping stations
L 9 pumping stations
 
S&L Wwmps
S&L WwmpsS&L Wwmps
S&L Wwmps
 
Sewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For WastewaterSewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For Wastewater
 
Wastewater treatment plant
Wastewater treatment plantWastewater treatment plant
Wastewater treatment plant
 
Effluent treatment plant - design, operation and analysis of waste water trea...
Effluent treatment plant - design, operation and analysis of waste water trea...Effluent treatment plant - design, operation and analysis of waste water trea...
Effluent treatment plant - design, operation and analysis of waste water trea...
 
water treatment plant
water treatment plantwater treatment plant
water treatment plant
 
Waste water treatment success story
Waste water treatment success storyWaste water treatment success story
Waste water treatment success story
 
sewage treatment plant
sewage treatment plantsewage treatment plant
sewage treatment plant
 
Design manual-pump-station
Design manual-pump-stationDesign manual-pump-station
Design manual-pump-station
 
Project #2 - Sewer Treatment Plant - Electrical Drawings Upgrade
Project #2 - Sewer Treatment Plant - Electrical Drawings UpgradeProject #2 - Sewer Treatment Plant - Electrical Drawings Upgrade
Project #2 - Sewer Treatment Plant - Electrical Drawings Upgrade
 
Waste water treatment plant product catalouge 2016
Waste water treatment plant product catalouge 2016Waste water treatment plant product catalouge 2016
Waste water treatment plant product catalouge 2016
 
MicroFAST® - Advanced Waste Water Treatment System
MicroFAST® - Advanced Waste Water Treatment SystemMicroFAST® - Advanced Waste Water Treatment System
MicroFAST® - Advanced Waste Water Treatment System
 
Delay analysis of raw water reservoir and pumping Station
Delay analysis of raw water reservoir and pumping StationDelay analysis of raw water reservoir and pumping Station
Delay analysis of raw water reservoir and pumping Station
 
Use of microorganisms in wastewater treatment
Use of microorganisms in wastewater treatmentUse of microorganisms in wastewater treatment
Use of microorganisms in wastewater treatment
 
ETP- Effluent Treatment Plant
ETP- Effluent Treatment PlantETP- Effluent Treatment Plant
ETP- Effluent Treatment Plant
 
Efflunt treatment plant ppt
Efflunt treatment plant pptEfflunt treatment plant ppt
Efflunt treatment plant ppt
 
Sewage treatment plant
Sewage treatment plantSewage treatment plant
Sewage treatment plant
 

Similaire à Biotechnology in Industrial Waste water Treatment

BIOTECHNOLOGICAL APPROACHES TOWARDS WATER WASTE MANAGEMENT
BIOTECHNOLOGICAL APPROACHES TOWARDS WATER       WASTE MANAGEMENT BIOTECHNOLOGICAL APPROACHES TOWARDS WATER       WASTE MANAGEMENT
BIOTECHNOLOGICAL APPROACHES TOWARDS WATER WASTE MANAGEMENT saadmughal1271
 
bioremediation for hazardous wastes
 bioremediation for hazardous wastes bioremediation for hazardous wastes
bioremediation for hazardous wastesarvind kumar
 
Use of biotechnology in the treatment of municipal wastes and hazardousindust...
Use of biotechnology in the treatment of municipal wastes and hazardousindust...Use of biotechnology in the treatment of municipal wastes and hazardousindust...
Use of biotechnology in the treatment of municipal wastes and hazardousindust...Sijo A
 
bioremediation for hazardous wastes
bioremediation for hazardous wastesbioremediation for hazardous wastes
bioremediation for hazardous wastesArvind Kumar
 
Biomethanation and energy recovery- bioscrubbers and biofilters
Biomethanation and energy recovery- bioscrubbers and biofiltersBiomethanation and energy recovery- bioscrubbers and biofilters
Biomethanation and energy recovery- bioscrubbers and biofiltersInstitute of Chemical Technology
 
Role of microorganisms in Biodegradation of Organic Waste
Role of microorganisms in Biodegradation of Organic WasteRole of microorganisms in Biodegradation of Organic Waste
Role of microorganisms in Biodegradation of Organic Wasterasikapatil26
 
Bioremidiation
 Bioremidiation Bioremidiation
Bioremidiationsush_p
 
Microbiological studies on the wastewater treatment and agricultural fertil...
Microbiological studies on the wastewater treatment and   agricultural fertil...Microbiological studies on the wastewater treatment and   agricultural fertil...
Microbiological studies on the wastewater treatment and agricultural fertil...Mohamed Younes
 
Bioremediation of wastewater by microorganisms
Bioremediation of wastewater by microorganismsBioremediation of wastewater by microorganisms
Bioremediation of wastewater by microorganismsadetunjiEwa
 
Bioremediation of wastewater by microorganisms
Bioremediation of wastewater by microorganismsBioremediation of wastewater by microorganisms
Bioremediation of wastewater by microorganismsadetunjiEwa
 
Completed Final Year Project
Completed Final Year ProjectCompleted Final Year Project
Completed Final Year ProjectAilbhe Gullane
 
Bioremediation its types
Bioremediation  its typesBioremediation  its types
Bioremediation its typesRAHUL MISHRA
 
Waste water treatment
Waste water treatmentWaste water treatment
Waste water treatmentgulfamraza
 
Microbial Technologies For Biowaste.pptx
Microbial Technologies For Biowaste.pptxMicrobial Technologies For Biowaste.pptx
Microbial Technologies For Biowaste.pptxSoumyaSephalika6
 
Waste Water Treatment
Waste Water TreatmentWaste Water Treatment
Waste Water TreatmentGulfam Raza
 

Similaire à Biotechnology in Industrial Waste water Treatment (20)

BIOTECHNOLOGICAL APPROACHES TOWARDS WATER WASTE MANAGEMENT
BIOTECHNOLOGICAL APPROACHES TOWARDS WATER       WASTE MANAGEMENT BIOTECHNOLOGICAL APPROACHES TOWARDS WATER       WASTE MANAGEMENT
BIOTECHNOLOGICAL APPROACHES TOWARDS WATER WASTE MANAGEMENT
 
bioremediation for hazardous wastes
 bioremediation for hazardous wastes bioremediation for hazardous wastes
bioremediation for hazardous wastes
 
Use of biotechnology in the treatment of municipal wastes and hazardousindust...
Use of biotechnology in the treatment of municipal wastes and hazardousindust...Use of biotechnology in the treatment of municipal wastes and hazardousindust...
Use of biotechnology in the treatment of municipal wastes and hazardousindust...
 
bioremediation for hazardous wastes
bioremediation for hazardous wastesbioremediation for hazardous wastes
bioremediation for hazardous wastes
 
Biomethanation and energy recovery- bioscrubbers and biofilters
Biomethanation and energy recovery- bioscrubbers and biofiltersBiomethanation and energy recovery- bioscrubbers and biofilters
Biomethanation and energy recovery- bioscrubbers and biofilters
 
Role of microorganisms in Biodegradation of Organic Waste
Role of microorganisms in Biodegradation of Organic WasteRole of microorganisms in Biodegradation of Organic Waste
Role of microorganisms in Biodegradation of Organic Waste
 
Bioremidiation
 Bioremidiation Bioremidiation
Bioremidiation
 
Benefits of bioaugmentation
Benefits of bioaugmentationBenefits of bioaugmentation
Benefits of bioaugmentation
 
bio2
bio2bio2
bio2
 
Microbiological studies on the wastewater treatment and agricultural fertil...
Microbiological studies on the wastewater treatment and   agricultural fertil...Microbiological studies on the wastewater treatment and   agricultural fertil...
Microbiological studies on the wastewater treatment and agricultural fertil...
 
Effluent treatment
Effluent treatmentEffluent treatment
Effluent treatment
 
Bioremediation of wastewater by microorganisms
Bioremediation of wastewater by microorganismsBioremediation of wastewater by microorganisms
Bioremediation of wastewater by microorganisms
 
Bioremediation of wastewater by microorganisms
Bioremediation of wastewater by microorganismsBioremediation of wastewater by microorganisms
Bioremediation of wastewater by microorganisms
 
Feasibility
FeasibilityFeasibility
Feasibility
 
Completed Final Year Project
Completed Final Year ProjectCompleted Final Year Project
Completed Final Year Project
 
Bioremediation its types
Bioremediation  its typesBioremediation  its types
Bioremediation its types
 
Waste water treatment
Waste water treatmentWaste water treatment
Waste water treatment
 
Microbial Technologies For Biowaste.pptx
Microbial Technologies For Biowaste.pptxMicrobial Technologies For Biowaste.pptx
Microbial Technologies For Biowaste.pptx
 
Waste Water Treatment
Waste Water TreatmentWaste Water Treatment
Waste Water Treatment
 
Wastewater LIMBAH
Wastewater LIMBAHWastewater LIMBAH
Wastewater LIMBAH
 

Dernier

Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Adtran
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostMatt Ray
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024SkyPlanner
 
Building AI-Driven Apps Using Semantic Kernel.pptx
Building AI-Driven Apps Using Semantic Kernel.pptxBuilding AI-Driven Apps Using Semantic Kernel.pptx
Building AI-Driven Apps Using Semantic Kernel.pptxUdaiappa Ramachandran
 
Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )Brian Pichman
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintMahmoud Rabie
 
Computer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsComputer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsSeth Reyes
 
Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Commit University
 
NIST Cybersecurity Framework (CSF) 2.0 Workshop
NIST Cybersecurity Framework (CSF) 2.0 WorkshopNIST Cybersecurity Framework (CSF) 2.0 Workshop
NIST Cybersecurity Framework (CSF) 2.0 WorkshopBachir Benyammi
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationIES VE
 
VoIP Service and Marketing using Odoo and Asterisk PBX
VoIP Service and Marketing using Odoo and Asterisk PBXVoIP Service and Marketing using Odoo and Asterisk PBX
VoIP Service and Marketing using Odoo and Asterisk PBXTarek Kalaji
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1DianaGray10
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfJamie (Taka) Wang
 
Comparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioComparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioChristian Posta
 
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDEADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDELiveplex
 
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...Aggregage
 
COMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online CollaborationCOMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online Collaborationbruanjhuli
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URLRuncy Oommen
 

Dernier (20)

Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024
 
Building AI-Driven Apps Using Semantic Kernel.pptx
Building AI-Driven Apps Using Semantic Kernel.pptxBuilding AI-Driven Apps Using Semantic Kernel.pptx
Building AI-Driven Apps Using Semantic Kernel.pptx
 
20230104 - machine vision
20230104 - machine vision20230104 - machine vision
20230104 - machine vision
 
Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership Blueprint
 
Computer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsComputer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and Hazards
 
Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)
 
NIST Cybersecurity Framework (CSF) 2.0 Workshop
NIST Cybersecurity Framework (CSF) 2.0 WorkshopNIST Cybersecurity Framework (CSF) 2.0 Workshop
NIST Cybersecurity Framework (CSF) 2.0 Workshop
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
 
20150722 - AGV
20150722 - AGV20150722 - AGV
20150722 - AGV
 
VoIP Service and Marketing using Odoo and Asterisk PBX
VoIP Service and Marketing using Odoo and Asterisk PBXVoIP Service and Marketing using Odoo and Asterisk PBX
VoIP Service and Marketing using Odoo and Asterisk PBX
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
 
Comparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioComparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and Istio
 
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDEADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
 
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
 
COMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online CollaborationCOMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online Collaboration
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URL
 

Biotechnology in Industrial Waste water Treatment

  • 1. BIOTECHNOLOGY IN INDUSTRIAL WASTEWATER TREATMENT CYPRUS INTERNATIONAL UNIVERSITY BIOTECHNOLOGY (ENE614) PRESENTED BY SHUAIBU MUSA GEZAWA {20122215}
  • 2. Contents  Introduction  Benefits  Industrial Contaminants & their Impact  Treatment Technologies  Bioremediation Technology  Bioremediation Principles & Mechanism  Factors Influencing Bioremediation  Advantages & Disadvantages of Bioremediation  Conclusions
  • 3. Industrial Wastewater Characteristics Industrial wastewater is a type of wastewater produced by industrial activity, such as that of factories, mills and mines. It is characterized by its large volume, high temperature, high concentration of biodegradable organic matter and suspended solids, high alkalinity or acidity, and by variations of flow. The degree of treatment varies according to the means of disposal, which may be to a municipal sewer system, a receiving body of water, such as a stream, an estuary, or a large body of fresh water, or recovery for reuse.
  • 4. Benefits  Used to develop method for the treatment of toxic compounds.  Improving the design and operation of biomechanical treatment system used for degradation of toxic compounds.  Improvement of public health, sanitation, soil integrity and the conservation of fresh water resources.
  • 5. How to accomplish waste Treatment  Trickling Filter  Rotating Biological Contactor  Activated Sludge Process  Lagoons  Oxidation Ponds
  • 6. Major Players  Microorganisms are used to destroy waste materials.  Microorganisms include:  Bacteria (aerobic and anaerobic)  Fungi  Algae  Actinomycetes (filamentous bacteria).
  • 8. 3 stages of treatment. Primary. This is only a physical separation to remove solid matter. Effluent is allowed to settle for a few hours. Secondary. The organic and nutrient load is decreased by microbial activity Up to 95% so that the effluent is of a quality to be able to go into rivers. Tertiary. This is a complete treatment, but it is very expensive and not used much.
  • 9. . Secondary Treatment Can be divided into 1.Anaerobic 2. Aerobic treatment processes
  • 10. Anaerobic Complex series of digestive and fermentative reactions by a mixture of bacteria. It can remove 95% BOD. This is the choice if there is a lot of insoluble matter cellulose, industrial waste. Degradation is carriead out in large tanks – sludge digestors or bioreactors. Molecular components are digested and fermented to FA, H 2, CO2. FA then to acetate, CO2 and H2. These are substrates for methanogenic bacteria to make methane. Major products are methane and CO2. Used or burnt off.
  • 14. Aerobic There are several kinds of aerobic decomposition processes. Trickling filter and activated sludge are the most common. Trickling filter is a bed of crushed rock, ~2m thick. Wastewater is sprayed on the top (UWI plant). Liquid slowly passes through the rock, organic matter absorbs to the rock and microbial growth takes place. Complete mineralization of organic matter takes place. Most common is activated sludge. Wastewater is mixed and aerated in a large tank
  • 20. Bioremediation Technology Bioremediation is the use of micro-organism metabolism to remove pollutants. Technologies can be generally classified as in situ or ex situ. In situ bioremediation involves treating the contaminated material at the site, while ex situ involves the removal of the contaminated material to be treated elsewhere
  • 21. Bioremediation Technology  Bioreactors technologically are the most sophisticated category of environmental bioremediation.  Bioreactors offer a much faster means of waste biodegradation than land treatment and more control over reaction conditions and effluent quality than simple biofilters.
  • 22. Biological Treatment Process 1. The microorganisms are used to convert the organic matter (colloidal and dissolved) into various gases and into cell tissue. 2. The contaminant of organic substances is ingested and digested as food along with other energy source by the cell. GOAL: Degrade organic substances that are hazardous to living organisms and convert the organic contaminants into inert products. Microorganisms eat organic contaminant Microorganisms digest and convert waste to CO2 and H2O Microorganisms give off CO2 and H2O
  • 23. Factors Influencing Bioremediation For bioremediation of harmful chemicals following factors are required to be monitored in the effluent:  Required microorganism  Temperature  pH level  Dissolved oxygen concentration  Inorganic nutrient. These conditions allow microbes to grow and multiply—and eat more chemicals. When conditions are not right, microbes grow too slowly or die or they can create more harmful chemicals.
  • 25. Microbial activity in activated sludge. Slime forming bacteria like Zoogloea grow and form flocs. Small animals and protozoa attach to these. Process of oxidation is similar to the trickling bed. Effluent containing flocs goes to settling tanks. Flocs settle. Some floc material is recirculated. Water spends 5-10 hours in sludge tank, too short for complete oxidation. Main process is absorption of organic matter to the floc. BOD of liq waste is reduced by ~95%. Most BOD is in the flocs. BOD reduction then takes place by digestion of the flocs in the sludge digestor.
  • 26. Oxidation ponds or lagoons. This is very simple treatment used in rural areas, particularly suited for tropical areas (Portmore sewage treatment Plant). Take up a large area, are less than 3m deep (allow light to penetrate). There are odour problems and the process can take over a week. Three components are essential for the functioning of the oxidation pond. They are:    Bacteria Algae Sunlight
  • 27. Oxidation ponds or lagoons.  The bacteria in the pond oxidise the various organic material producing carbondioxide, ammonia and water.  The algae grow by utilizing the inorganic material and carbon dioxide in the presence of sunlight.  The oxygen requirement for oxidation of the organic matter by bacteria is satisfied mainly by oxygen released by the algae. Also some oxygen is provided by the contact with the atmosphere. Sunlight is an important factor in the functioning of the oxidation pond
  • 29. Comparing advantages. Anaerobic treatment has advantages over aerobic.  Reduction of excess sludge production up to 90%  Production of energy in the form of methane gas  No or very little use of chemicals  Lower treatment costs  High flexibility, since it can be applied to very different types of effluents (higher and lower loading rates, mesophilic or thermophilic conditions, more or less complex wastewaters, etc.)  Anaerobic organisms can be preserved unfed for a long time, which makes it possible to treat wastewaters that are generated with longer (seasonal production) or shorter (holidays and weekends) pauses in between .
  • 30. Conclusions      Bioremediation continues to be the favored approach for processing biological wastes. Bioremediation utilizes microbes such as bacteria, fungi, yeast, algae, and some plants. Three categories of bioremediation techniques have been identified: in situ land treatment (treatment of contaminated material on site), biofiltration, and bioreactors. Bioremediation is highly efficient system, if proper conditions are maintained example pH, temperature, nutrients. Bioremediation is cost-efficient and helps chemical and physical methods of managing wastes and environmental pollutants.