SlideShare une entreprise Scribd logo
1  sur  31
Télécharger pour lire hors ligne
Chapter 3-2
Power Waves and
Power-Gain Expressions
Chien-Jung Li
Department of Electronics Engineering
National Taipei University of Technology
Department of Electronic Engineering, NTUT
Maximum Power Transfer
LZ


sE
sZ
V
I


source
impedance
load
impedance
Phasor
s
s L
E
I
Z Z


• The average power dissipated in the load
   
2 2
2 2
2 2
1 1 1
2 2 2
s s L
L rms L L L
s L s L s L
E E R
P I R I R R
Z Z R R X X
 
         
• The maximum power dissipated in the load when s LX X s LR R
s LZ Z

• Maximum power transfer theorem
and
that is (conjugate matched)
• Can we link up the “conjugate matched impedances” and “reflection coefficients” ?
2/31
Department of Electronic Engineering, NTUT
Power Waves
• In this section we discuss the analysis of lumped circuits in
terms of a new set of waves, called power waves.
LZ


sE
sZ
V
I


source
impedance
load
impedance
 Since there is no transmission line, and therefore the characteristic
impedances is not defined.
oZ
d l
LZ
0
 0d
 IN d

 

0
L o
L o
Z Z
Z Z
has no meaning.
No transmission line in between
Can we define the reflection coefficient
w/o transmission lines?
 s sV E Z I
3/31
Department of Electronic Engineering, NTUT
Normalized Impedances (I)
Reference:
[1] K. Kurokawa, “Power waves and the scattering matrix.” IEEE Trans. Microwave Theory and techniques, vol. 13, pp.194-202,
Mar. 1965.
LZ


sE
sZ
V
I


s s sZ R jX 
L L LZ R jX 
• Normalize the impedances with respect to Rs
1 s
s s s
s
X
z r jx j
R
   
L L
L L L
s s
R X
z r jx j
R R
   
4/31
Department of Electronic Engineering, NTUT
Normalized Impedances (II)
1
1
s
s
z rz
z z r

  
 
 U jV  Γ-plane
U
V 1
1
z
z

 

0 
1   1 
• Recall the Smith Chart (Γ-plane)
1 s
s s s
s
X
z r jx j
R
   
L L
L L L
s s
R X
z r jx j
R R
   
 
 
   
   
L s L s L L s ss L s L s
s L s L s L L s s L s L s
r j x x r r jx r jxz r z z Z Z
z r r j x x r r jx r jx z z Z Z
 
       
     
        
z should contains the resistance and reactance of the load
(rL and xL), and the reactance of the source (xs)
• When , the reflection coefficient (maximum power delivering to
the load)
L sZ Z
 0 
5/31
Department of Electronic Engineering, NTUT
Power-waves Representation of One-port Network (I)
  
1
2
p s
s
a V Z I
R
 
 
1
2
p s
s
b V Z I
R
  Res sR Z
• Reflected power wave is equal to zero when the load impedances is
conjugately matched to the source impedance, i.e., .
pb

L sZ Z
where
LZ


sE
sZ pa
pb
V
I


s
p s L s
p s L s
s
V
Zb V Z I Z ZI
Va V Z I Z ZZ
I

  
    
 
p pa b 
• Normalized power waves
pL s
L L p
bZ Z
Z Z a


  

and
6/31
Department of Electronic Engineering, NTUT
Available Power From Source
    
1
2 2
s
p s s s
s s
E
a E Z I Z I
R R

2
2
4
s
p
s
E
a
R
  
1
2
p s
s
a V Z I
R
 s sV E Z I• For and
  
2
2 2
,
1
2 8
s
AVS p p rms
s
E
P a a
R
is the power available from the source.
• Maximum power is delivered to the load when

L sZ Z
    

2
21 1
Re Re
2 2
s
L L L
s L
E
P I Z Z
Z Z
PL attains its maximum value when , and is given by

L sZ Z ,maxL AVSP P
 
2
,max
1
8
s
L AVS
s
E
P P
R
7/31
Department of Electronic Engineering, NTUT
Impedance Mismatch
       
2 2 *1 1 1 1 1
Re
2 2 8 8 2
L p p s s s s
s s
P a b V Z I V Z I V Z I V Z I V I
R R
  
        
2 2 21 1 1
2 2 2
L p p AVS pP a b P b   
 
21
2
p AVS Lb P P
Power dissipated in the load = Available power from source – Reflected power
• When the impedances are mismatched, the power delivering to the
load is
Reflected power = Available power from source – Power dissipated in the load
8/31
Department of Electronic Engineering, NTUT
Generalized Scattering Parameter (I)
1 11 1 12 2p p p p pb S a S a 
2 21 1 22 2p p p p pb S a S a 
  1 1 1 1
1
1
2
pa V Z I
R
  2 2 2 2
2
1
2
pa V Z I
R
 
 1 1 1 1
1
1
2
pb V Z I
R
Two-port
Network
[Sp]
2pa
2pb
1pa
1pb
Port 1 Port 2

1E
1Z
2I1I

1V


2V



2E
2Z
 1 2 2 2
2
1
2
pb V Z I
R

 
• Considering a two-port network, the generalized scattering matrix [Sp]
is found with respect to a reference impedance Re{Z1} at port 1 and
to Re{Z2} at port 2. If Z1 = Z2 = Zo, [Sp] = [S].
9/31
Department of Electronic Engineering, NTUT
Generalized Scattering Parameter (II)
2
1
11
1 0p
p
p
p a
b
S
a


Two-port
Network
[Sp]
2 0pa 
2pb
1pa
1pb
Port 1 Port 2

1E
1Z
2I1I

1V


2V

2Z
1 11 1 12 2p p p p pb S a S a 
2 21 1 22 2p p p p pb S a S a 
1 1
11
1 1
T
p
T
Z Z
S
Z Z




 2 2 2
1 1 11
1 1
1
2 2
IN p p AVS pP a b P S   
1TZ
• Can we find the power by using [S] but not [Sp] ? Sure! We will talk
about this later.
10/31
Department of Electronic Engineering, NTUT
Example
• Calculate the power waves and the power delivered to the load in the
circuit.
100 50LZ j  


10 0sE  
100 50sZ j  
V
I


   
100 50
10 5.59 26.57
100 50 100 50
L
s
L s
Z j
V E
Z Z j j

    
   
   
10
0.05 A
100 50 100 50
s
L s
E
I
Z Z j j
  
   
   
1 1 10
0.5
2 2 2 100
p s s s s
s s
a V Z I E Z I Z I
R R
      
       
1
1 1 1
10 0.05 100 50 0.05 100 50 0
2 2 2 100
p s s s s
s
b V Z I E Z I Z I j j
R R
 
            
2 21 1
0.125 W
2 2
L p pP a b   (Try ) 1
Re
2
LP VI

11/31
Department of Electronic Engineering, NTUT
Example (I)
• Calculate the generalized parameter Sp11 and Sp21 at 1 GHz in the
lossless, reciprocal, two-port network. Then calculate Sp22 and Sp12.
2 10Z  
1.59 nHL 


1E
1 50 50Z j  


1V


2V
10LZ j 
1TZ
1I 2I
1
1 1 1
1 1
0.167 0T
T
Z
V E E
Z Z
   

1
1 1
1 1
0.0118 45
T
E
I E
Z Z
    

2 1 0.118 45V E   
2 1 0.0118 45I E    
  1 1 1 1
1
1
2
pa V Z I
R
  2 2 2 2
2
1
2
pa V Z I
R
 
 1 1 1 1
1
1
2
pb V Z I
R
 
 2 2 2 2
2
1
2
pb V Z I
R
1 0.071 0pa  
1 0.061 78.69pb  
2 0pa 
2 0.037 45pb   
 For Sp11 and Sp21
12/31
Department of Electronic Engineering, NTUT
Example (II)
 
 2
1 1 1
11
1 1 10
10 10 50 50
0.85 78.69
10 10 50 50
p
p T
p
p Ta
b j jZ Z
S
a Z Z j j


  
    
   
2
2
21
1 0
0.037 45
0.525 45
0.071 0
p
p
p
p a
b
S
a

 
    

2 10Z  
1.59 nHL 


2E
1 50 50Z j  


1V


2V
10LZ j 
2TZ
1I 2I
 For Sp22 and Sp12
1 2 0.833 0V E   1 2 0.0118 45I E     2 2 0.92 5.19V E    2 2 0.0118 45I E   
1 0pa  1 0.083 45pb    2 0.158 0pa   2 0.134 11.32pb  
1
2 2 2
22
2 2 20
0.85 11.3
p
p T
p
p Ta
b Z Z
S
a Z Z



   

1
1
12
2 0
0.083 45
0.525 45
0.158 0
p
p
p
p a
b
S
a

 
    

13/31
Department of Electronic Engineering, NTUT
Power-Gain Expressions (I)
Transistor
[S]
2a
2b
1a
1b
Port 1 Port 2


sE
sZ
out
LZ
in
s L
s o
s
s o
Z Z
Z Z

 

L o
L
L o
Z Z
Z Z

 

1 11 1 12 2b S a S a 
2 21 1 22 2b S a S a 
• Consider a microwave amplifier with the source and load reflection
coefficients and measured in a Zo system:s L
• For the transistor, the input and output traveling waves measured in a
Zo system (this is very practical) :
14/31
Department of Electronic Engineering, NTUT
Power-Gain Expressions (II)


sE
sZ
s
LZ
L
Transistor
[S]
The reflection coefficients and S-parameters are separately measured
in a Zo (usually 50 Ω) system
Transistor
[S]
2a
2b
1a
1b


sE
sZ
out
LZ
in
s L
After connecting them all together
The goal is to find the input and output
power relations.
1b
1a 2a
2b
15/31
Department of Electronic Engineering, NTUT
Input Reflection Coefficient
1
1
in
b
a
 
2 2La b 
2 21 1 22 2Lb S a S b   21 1
2
221 L
S a
b
S

 
Transistor
[S]
2a
2b
1a
1b


sE
sZ
out
LZ
in
s L
• After connecting the circuits together, the first step is to find the new
input coefficient , which is the result coming from and .in  S L




1 11 1 12 2b S a S a 
2 21 1 22 2b S a S a 

1 12 21
11
1 221
L
in
L
b S S
S
a S

   
 
12 21
1 11 1 12 2 11 1 1
221
L
L
L
S S
b S a S b S a a
S

    
 
a1 is your input, so the goal here is to find the reflected wave b1
1 11 1 12 2b S a S a 
a1 is your input, to find b1 = you need to find a2
to find a2 = you need to find b2

the relationship between b2 and a1
16/31
Department of Electronic Engineering, NTUT
Output Reflection Coefficient
2
2 0s
out
E
b
a 
 
1 1sa b 
1 11 1 12 2sb S b S a   12 2
1
111 s
S a
b
S

 
12 21
2 21 1 22 2 2 22 2
111
s
s
s
S S
b S b S a a S a
S

    
 
12 212
22
2 110
1
s
s
out
sE
S Sb
S
a S

   
 
Transistor
[S]
2a
2b
1a
1b


sE
sZ
out
LZ
in
s L
• After connecting the circuits together, the second step is to find the
new output coefficient , which is the result coming from and .out  S s


1 11 1 12 2b S a S a 
2 21 1 22 2b S a S a 




The same procedure as finding is applied.in
17/31
Department of Electronic Engineering, NTUT
The Available Power and Input Power (I)


sE
sZ
s
1a
1b
• After finding out the input/output refection coefficients, let’s now deal
with the power.
in
Since we have got , we can discard the circuits
connected after the source right here.
in
1 1s sV E I Z 


1V
1I
  1 1
1 1 1 1 1s s s s
o
V V
V V V E I I Z E Z
Z
 
     
        
 
1 1 1 1
1 1 1s s s s s
o o o
V V V V
V E Z V E Z Z V
Z Z Z
   
   
       
 
1 1
o s o
s
o s s o
Z Z Z
V E V
Z Z Z Z
   
   
  
• Use the normalized power waves
1 1
1 1
s o s o
s s
o s s oo o o
E Z Z ZV V
a a b
Z Z Z ZZ Z Z
 
 
      
  
where , , ands o
s
o s
E Z
a
Z Z


1
1
o
V
b
Z

 s o
s
s o
Z Z
Z Z

 

18/31
Department of Electronic Engineering, NTUT
The Available Power and Input Power (II)
1 1inb a 
1 1 1s s s s ina a b a a       1
1
s
s in
a
a 
  
 
2
2 2 2 2 2
1 1 1 2
11 1 1 1
1
2 2 2 2 1
in
in in s
s in
P a b a a
 
     
  
• The available power from source
2 2
2 2 2
2 2 22 2
1 11 1 1 1
2 2 2 11 1
in s
s s
AVS in s s s
ss s
P P a a a

 
   
   
    
  2 2
2
2
2 2
1 111
2 1 1
s in
in
in s AVS AVS s
s in s in
P a P P M
    
  
     
• Ms is known as the source mismatch factor (or mismatch loss).


sE
sZ
s
1a
1b
in


1V
1I
Pin
19/31
Department of Electronic Engineering, NTUT
The Available Power and Output Power (II)
LZ
L
out Since we have got , the circuits looking into the output
port (with source) can be simplified as a Thevenin’s
equivalent circuit.
out


thE
outZ 2a
2b


LV
LI
LZ
L
out
 2 2 2 2
2 2 2
1 1 1
1
2 2 2
L LP b a b    
• The power delivered to the load ZL
2
2
2
11
2 1
L
L th
out L
P b
 

  
• The available power from the network
2
2
1 1
2 1L out
AVN L th
out
P P b
 
 
 
  2 2
2
1 1
1
L out
L AVN AVN L
out L
P P P M
   
 
  
• ML is known as the load mismatch factor (or mismatch loss).
20/31
Department of Electronic Engineering, NTUT
Definition of the Power Gains
Transistor
[S]

sE
sZ
LZ
PAVNPAVS PLPin
Ms
interface interface
ML
• The power gain L
p
in
P
G
P

• The transducer power gain L
T p s
AVS
P
G G M
P
 
• The available power gain AVN T
A
AVS L
P G
G
P M
 
p TG G
A TG G
• When the Input and output are matched: p T AG G G 
From the amplifier input to load
From the source to load
21/31
Department of Electronic Engineering, NTUT
Power Gain
 
 
2 2
2
2 2
1
1
1
2
1
1
2
L
L
p
in
in
bP
G
P a
 
 
 
21 1
2
221 L
S a
b
S

 
2
2
212 2
22
11
1 1
L
p
in L
G S
S
 

   
• The Power Gain Gp
where
Transistor
[S]

sE
sZ
LZ
PAVNPAVS PLPin
Ms
interface interface
ML
22/31
Department of Electronic Engineering, NTUT
Transducer Power Gain
• The Transducer Power Gain GT
L L in in
T p p s
AVS in AVS AVS
P P P P
G G G M
P P P P
   
2 2 2 2
2 2
21 212 2 2 2
22 11
1 1 1 1
1 1 1 1
s L s L
T
s in L s out L
G S S
S S
       
 
         
  2 2
2
1 1
1
s in
s
s in
M
   

  
where
Transistor
[S]

sE
sZ
LZ
PAVNPAVS PLPin
Ms
interface interface
ML
23/31
Department of Electronic Engineering, NTUT
Available Power Gain
• The Available Power Gain GA
AVN L AVN AVN T
A T
AVS AVS L L L
P P P P G
G G
P P P P M
   
2
2
212 2
11
1 1
1 1
s
A
s out
G S
S
 

   
Transistor
[S]

sE
sZ
LZ
PAVNPAVS PLPin
Ms
interface interface
ML
  2 2
2
1 1
1
L out
L
out L
M
   

  
where
24/31
Department of Electronic Engineering, NTUT
Two-port Network Matrices
• Several ways that are commonly used to represent the
two-port network:
Impedance matrix : z-parameter
Admittance matrix : y-parameter
Hybrid matrix : h-parameter
ABCD matrix : ABCD parameters
Scattering matrix : S-parameter
• These matrices describe the relationship between the
input/output voltages and currents except the scattering
matrix which describes the relationship between the
input/output traveling waves (or power waves).
25/31
Department of Electronic Engineering, NTUT
Two-port Network Representation
 z-parameter
 y-parameter
 h-parameter
 ABCD parameters
1 11 12 1
2 21 22 2
v z z i
v z z i
     
     
     
1 11 1 12 2v z i z i 
2 21 1 22 2v z i z i 
1 11 12 1
2 21 22 2
i y y v
i y y v
     
     
     
1 11 12 1
2 21 22 2
v h h i
i h h v
     
     
     
1 2
1 2
v vA B
i iC D
    
         
Two-port
network


1v
1i 2i


2v
Port 1 Port 2
26/31
Department of Electronic Engineering, NTUT
Conversion Between the Network Parameter
• This table is provided at page 62 in the textbook.
27/31
Department of Electronic Engineering, NTUT
Series Connection
• Series Connection: use z-parameter
1 11 1 11 11 12 12
2 22 2 21 21 22 22
a b a b a b
a b a b a b
v iv v z z z z
v iv v z z z z
        
       
        
28/31
Department of Electronic Engineering, NTUT
Shunt Connection
• Shunt Connection: use y-parameter
1 11 1 11 11 12 12
2 22 2 21 21 22 22
a b a b a b
a b a b a b
i vi i y y y y
i vi i y y y y
        
       
        
29/31
Department of Electronic Engineering, NTUT
Cascade Circuits
• Cascade Circuits : use ABCD parameters (chain)
1 1 2 2
1 1 2 2
a a ba a a a b b
a a ba a a a b b
v v v vA B A B A B
i i i iC D C D C D
           
             
             
30/31
Department of Electronic Engineering, NTUT
Summary
• The power delivered to the load can be calculated by using three
methods:
(1) Real power dissipated at load ( )
(2) Power waves (generalized [Sp], linked with reflections)
(3) Traveling waves ([S], it’s practical and useful in amplifier design)
 Re 2L L LP V I

• Available power from source (maximum average power the source can
provide when matched) :
  
2
2 2
,
1
2 8
s
AVS p p rms
s
E
P a a
R
2 2 21 1 1
2 2 2
L p p AVS pP a b P b   
• When mismatch occurs:
Power wave
Power wave
L p inP G P L T AVSP G P
• Power gains (defined with traveling waves, circuitries are separately
measured in a Zo system) :
31/31

Contenu connexe

Tendances

RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power AmplifierSimen Li
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介Simen Li
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisSimen Li
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計Simen Li
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] LinearitySimen Li
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierSimen Li
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitorGur Kan
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計Simen Li
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論Simen Li
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計Simen Li
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. SystemsSimen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
High efficiency power amplifiers
High efficiency power amplifiersHigh efficiency power amplifiers
High efficiency power amplifiersAbhishek Kadam
 

Tendances (20)

RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
High efficiency power amplifiers
High efficiency power amplifiersHigh efficiency power amplifiers
High efficiency power amplifiers
 

En vedette

Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路Simen Li
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路Simen Li
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路Simen Li
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析Simen Li
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件Simen Li
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理Simen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 

En vedette (12)

Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Similaire à RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions

Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16BinodKumarSahu5
 
lecture33.pptx
lecture33.pptxlecture33.pptx
lecture33.pptxnage8
 
Power divider, combiner and coupler.ppt
Power divider, combiner and coupler.pptPower divider, combiner and coupler.ppt
Power divider, combiner and coupler.pptDeqAhmed2
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...kiran93845
 
Notes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxNotes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxashokranjitha2006
 
Adobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdfAdobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdfkt5830207
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxElisée Ndjabu
 
EPE352 DC-DC converter.ppt
EPE352 DC-DC converter.pptEPE352 DC-DC converter.ppt
EPE352 DC-DC converter.pptssuser4c4e76
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering fulllieulieuw
 
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.316 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3MahoneyKadir
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionBaaselMedhat
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxdivakarrvl
 
Impedance Matching by YEASIN NEWAJ
Impedance Matching by YEASIN NEWAJ Impedance Matching by YEASIN NEWAJ
Impedance Matching by YEASIN NEWAJ YeasinNewaj
 

Similaire à RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions (20)

Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16
 
lecture33.pptx
lecture33.pptxlecture33.pptx
lecture33.pptx
 
Power divider, combiner and coupler.ppt
Power divider, combiner and coupler.pptPower divider, combiner and coupler.ppt
Power divider, combiner and coupler.ppt
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
 
Notes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxNotes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptx
 
Adobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdfAdobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdf
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
 
EPE352 DC-DC converter.ppt
EPE352 DC-DC converter.pptEPE352 DC-DC converter.ppt
EPE352 DC-DC converter.ppt
 
Lab sheet
Lab sheetLab sheet
Lab sheet
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
 
Unit 1
Unit 1Unit 1
Unit 1
 
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.316 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Lecture 6
Lecture 6Lecture 6
Lecture 6
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
Impedance Matching by YEASIN NEWAJ
Impedance Matching by YEASIN NEWAJ Impedance Matching by YEASIN NEWAJ
Impedance Matching by YEASIN NEWAJ
 
Presentation1
Presentation1Presentation1
Presentation1
 

Plus de Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬Simen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversSimen Li
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 

Plus de Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 

Dernier

Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliStructural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliNimot Muili
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical trainingGladiatorsKasper
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organizationchnrketan
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
tourism-management-srs_compress-software-engineering.pdf
tourism-management-srs_compress-software-engineering.pdftourism-management-srs_compress-software-engineering.pdf
tourism-management-srs_compress-software-engineering.pdfchess188chess188
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
Theory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfTheory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfShreyas Pandit
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...shreenathji26
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfManish Kumar
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
ADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studyADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studydhruvamdhruvil123
 
AntColonyOptimizationManetNetworkAODV.pptx
AntColonyOptimizationManetNetworkAODV.pptxAntColonyOptimizationManetNetworkAODV.pptx
AntColonyOptimizationManetNetworkAODV.pptxLina Kadam
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTSneha Padhiar
 
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...gerogepatton
 

Dernier (20)

Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliStructural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organization
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
tourism-management-srs_compress-software-engineering.pdf
tourism-management-srs_compress-software-engineering.pdftourism-management-srs_compress-software-engineering.pdf
tourism-management-srs_compress-software-engineering.pdf
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
Theory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfTheory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdf
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
ADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studyADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain study
 
AntColonyOptimizationManetNetworkAODV.pptx
AntColonyOptimizationManetNetworkAODV.pptxAntColonyOptimizationManetNetworkAODV.pptx
AntColonyOptimizationManetNetworkAODV.pptx
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
 
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
 

RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions

  • 1. Chapter 3-2 Power Waves and Power-Gain Expressions Chien-Jung Li Department of Electronics Engineering National Taipei University of Technology
  • 2. Department of Electronic Engineering, NTUT Maximum Power Transfer LZ   sE sZ V I   source impedance load impedance Phasor s s L E I Z Z   • The average power dissipated in the load     2 2 2 2 2 2 1 1 1 2 2 2 s s L L rms L L L s L s L s L E E R P I R I R R Z Z R R X X             • The maximum power dissipated in the load when s LX X s LR R s LZ Z  • Maximum power transfer theorem and that is (conjugate matched) • Can we link up the “conjugate matched impedances” and “reflection coefficients” ? 2/31
  • 3. Department of Electronic Engineering, NTUT Power Waves • In this section we discuss the analysis of lumped circuits in terms of a new set of waves, called power waves. LZ   sE sZ V I   source impedance load impedance  Since there is no transmission line, and therefore the characteristic impedances is not defined. oZ d l LZ 0  0d  IN d     0 L o L o Z Z Z Z has no meaning. No transmission line in between Can we define the reflection coefficient w/o transmission lines?  s sV E Z I 3/31
  • 4. Department of Electronic Engineering, NTUT Normalized Impedances (I) Reference: [1] K. Kurokawa, “Power waves and the scattering matrix.” IEEE Trans. Microwave Theory and techniques, vol. 13, pp.194-202, Mar. 1965. LZ   sE sZ V I   s s sZ R jX  L L LZ R jX  • Normalize the impedances with respect to Rs 1 s s s s s X z r jx j R     L L L L L s s R X z r jx j R R     4/31
  • 5. Department of Electronic Engineering, NTUT Normalized Impedances (II) 1 1 s s z rz z z r        U jV  Γ-plane U V 1 1 z z     0  1   1  • Recall the Smith Chart (Γ-plane) 1 s s s s s X z r jx j R     L L L L L s s R X z r jx j R R                 L s L s L L s ss L s L s s L s L s L L s s L s L s r j x x r r jx r jxz r z z Z Z z r r j x x r r jx r jx z z Z Z                          z should contains the resistance and reactance of the load (rL and xL), and the reactance of the source (xs) • When , the reflection coefficient (maximum power delivering to the load) L sZ Z  0  5/31
  • 6. Department of Electronic Engineering, NTUT Power-waves Representation of One-port Network (I)    1 2 p s s a V Z I R     1 2 p s s b V Z I R   Res sR Z • Reflected power wave is equal to zero when the load impedances is conjugately matched to the source impedance, i.e., . pb  L sZ Z where LZ   sE sZ pa pb V I   s p s L s p s L s s V Zb V Z I Z ZI Va V Z I Z ZZ I            p pa b  • Normalized power waves pL s L L p bZ Z Z Z a       and 6/31
  • 7. Department of Electronic Engineering, NTUT Available Power From Source      1 2 2 s p s s s s s E a E Z I Z I R R  2 2 4 s p s E a R    1 2 p s s a V Z I R  s sV E Z I• For and    2 2 2 , 1 2 8 s AVS p p rms s E P a a R is the power available from the source. • Maximum power is delivered to the load when  L sZ Z       2 21 1 Re Re 2 2 s L L L s L E P I Z Z Z Z PL attains its maximum value when , and is given by  L sZ Z ,maxL AVSP P   2 ,max 1 8 s L AVS s E P P R 7/31
  • 8. Department of Electronic Engineering, NTUT Impedance Mismatch         2 2 *1 1 1 1 1 Re 2 2 8 8 2 L p p s s s s s s P a b V Z I V Z I V Z I V Z I V I R R             2 2 21 1 1 2 2 2 L p p AVS pP a b P b      21 2 p AVS Lb P P Power dissipated in the load = Available power from source – Reflected power • When the impedances are mismatched, the power delivering to the load is Reflected power = Available power from source – Power dissipated in the load 8/31
  • 9. Department of Electronic Engineering, NTUT Generalized Scattering Parameter (I) 1 11 1 12 2p p p p pb S a S a  2 21 1 22 2p p p p pb S a S a    1 1 1 1 1 1 2 pa V Z I R   2 2 2 2 2 1 2 pa V Z I R    1 1 1 1 1 1 2 pb V Z I R Two-port Network [Sp] 2pa 2pb 1pa 1pb Port 1 Port 2  1E 1Z 2I1I  1V   2V    2E 2Z  1 2 2 2 2 1 2 pb V Z I R    • Considering a two-port network, the generalized scattering matrix [Sp] is found with respect to a reference impedance Re{Z1} at port 1 and to Re{Z2} at port 2. If Z1 = Z2 = Zo, [Sp] = [S]. 9/31
  • 10. Department of Electronic Engineering, NTUT Generalized Scattering Parameter (II) 2 1 11 1 0p p p p a b S a   Two-port Network [Sp] 2 0pa  2pb 1pa 1pb Port 1 Port 2  1E 1Z 2I1I  1V   2V  2Z 1 11 1 12 2p p p p pb S a S a  2 21 1 22 2p p p p pb S a S a  1 1 11 1 1 T p T Z Z S Z Z      2 2 2 1 1 11 1 1 1 2 2 IN p p AVS pP a b P S    1TZ • Can we find the power by using [S] but not [Sp] ? Sure! We will talk about this later. 10/31
  • 11. Department of Electronic Engineering, NTUT Example • Calculate the power waves and the power delivered to the load in the circuit. 100 50LZ j     10 0sE   100 50sZ j   V I       100 50 10 5.59 26.57 100 50 100 50 L s L s Z j V E Z Z j j               10 0.05 A 100 50 100 50 s L s E I Z Z j j            1 1 10 0.5 2 2 2 100 p s s s s s s a V Z I E Z I Z I R R                1 1 1 1 10 0.05 100 50 0.05 100 50 0 2 2 2 100 p s s s s s b V Z I E Z I Z I j j R R                2 21 1 0.125 W 2 2 L p pP a b   (Try ) 1 Re 2 LP VI  11/31
  • 12. Department of Electronic Engineering, NTUT Example (I) • Calculate the generalized parameter Sp11 and Sp21 at 1 GHz in the lossless, reciprocal, two-port network. Then calculate Sp22 and Sp12. 2 10Z   1.59 nHL    1E 1 50 50Z j     1V   2V 10LZ j  1TZ 1I 2I 1 1 1 1 1 1 0.167 0T T Z V E E Z Z      1 1 1 1 1 0.0118 45 T E I E Z Z       2 1 0.118 45V E    2 1 0.0118 45I E       1 1 1 1 1 1 2 pa V Z I R   2 2 2 2 2 1 2 pa V Z I R    1 1 1 1 1 1 2 pb V Z I R    2 2 2 2 2 1 2 pb V Z I R 1 0.071 0pa   1 0.061 78.69pb   2 0pa  2 0.037 45pb     For Sp11 and Sp21 12/31
  • 13. Department of Electronic Engineering, NTUT Example (II)    2 1 1 1 11 1 1 10 10 10 50 50 0.85 78.69 10 10 50 50 p p T p p Ta b j jZ Z S a Z Z j j               2 2 21 1 0 0.037 45 0.525 45 0.071 0 p p p p a b S a          2 10Z   1.59 nHL    2E 1 50 50Z j     1V   2V 10LZ j  2TZ 1I 2I  For Sp22 and Sp12 1 2 0.833 0V E   1 2 0.0118 45I E     2 2 0.92 5.19V E    2 2 0.0118 45I E    1 0pa  1 0.083 45pb    2 0.158 0pa   2 0.134 11.32pb   1 2 2 2 22 2 2 20 0.85 11.3 p p T p p Ta b Z Z S a Z Z         1 1 12 2 0 0.083 45 0.525 45 0.158 0 p p p p a b S a          13/31
  • 14. Department of Electronic Engineering, NTUT Power-Gain Expressions (I) Transistor [S] 2a 2b 1a 1b Port 1 Port 2   sE sZ out LZ in s L s o s s o Z Z Z Z     L o L L o Z Z Z Z     1 11 1 12 2b S a S a  2 21 1 22 2b S a S a  • Consider a microwave amplifier with the source and load reflection coefficients and measured in a Zo system:s L • For the transistor, the input and output traveling waves measured in a Zo system (this is very practical) : 14/31
  • 15. Department of Electronic Engineering, NTUT Power-Gain Expressions (II)   sE sZ s LZ L Transistor [S] The reflection coefficients and S-parameters are separately measured in a Zo (usually 50 Ω) system Transistor [S] 2a 2b 1a 1b   sE sZ out LZ in s L After connecting them all together The goal is to find the input and output power relations. 1b 1a 2a 2b 15/31
  • 16. Department of Electronic Engineering, NTUT Input Reflection Coefficient 1 1 in b a   2 2La b  2 21 1 22 2Lb S a S b   21 1 2 221 L S a b S    Transistor [S] 2a 2b 1a 1b   sE sZ out LZ in s L • After connecting the circuits together, the first step is to find the new input coefficient , which is the result coming from and .in  S L     1 11 1 12 2b S a S a  2 21 1 22 2b S a S a   1 12 21 11 1 221 L in L b S S S a S        12 21 1 11 1 12 2 11 1 1 221 L L L S S b S a S b S a a S         a1 is your input, so the goal here is to find the reflected wave b1 1 11 1 12 2b S a S a  a1 is your input, to find b1 = you need to find a2 to find a2 = you need to find b2  the relationship between b2 and a1 16/31
  • 17. Department of Electronic Engineering, NTUT Output Reflection Coefficient 2 2 0s out E b a    1 1sa b  1 11 1 12 2sb S b S a   12 2 1 111 s S a b S    12 21 2 21 1 22 2 2 22 2 111 s s s S S b S b S a a S a S         12 212 22 2 110 1 s s out sE S Sb S a S        Transistor [S] 2a 2b 1a 1b   sE sZ out LZ in s L • After connecting the circuits together, the second step is to find the new output coefficient , which is the result coming from and .out  S s   1 11 1 12 2b S a S a  2 21 1 22 2b S a S a      The same procedure as finding is applied.in 17/31
  • 18. Department of Electronic Engineering, NTUT The Available Power and Input Power (I)   sE sZ s 1a 1b • After finding out the input/output refection coefficients, let’s now deal with the power. in Since we have got , we can discard the circuits connected after the source right here. in 1 1s sV E I Z    1V 1I   1 1 1 1 1 1 1s s s s o V V V V V E I I Z E Z Z                    1 1 1 1 1 1 1s s s s s o o o V V V V V E Z V E Z Z V Z Z Z                   1 1 o s o s o s s o Z Z Z V E V Z Z Z Z            • Use the normalized power waves 1 1 1 1 s o s o s s o s s oo o o E Z Z ZV V a a b Z Z Z ZZ Z Z               where , , ands o s o s E Z a Z Z   1 1 o V b Z   s o s s o Z Z Z Z     18/31
  • 19. Department of Electronic Engineering, NTUT The Available Power and Input Power (II) 1 1inb a  1 1 1s s s s ina a b a a       1 1 s s in a a       2 2 2 2 2 2 1 1 1 2 11 1 1 1 1 2 2 2 2 1 in in in s s in P a b a a            • The available power from source 2 2 2 2 2 2 2 22 2 1 11 1 1 1 2 2 2 11 1 in s s s AVS in s s s ss s P P a a a                   2 2 2 2 2 2 1 111 2 1 1 s in in in s AVS AVS s s in s in P a P P M               • Ms is known as the source mismatch factor (or mismatch loss).   sE sZ s 1a 1b in   1V 1I Pin 19/31
  • 20. Department of Electronic Engineering, NTUT The Available Power and Output Power (II) LZ L out Since we have got , the circuits looking into the output port (with source) can be simplified as a Thevenin’s equivalent circuit. out   thE outZ 2a 2b   LV LI LZ L out  2 2 2 2 2 2 2 1 1 1 1 2 2 2 L LP b a b     • The power delivered to the load ZL 2 2 2 11 2 1 L L th out L P b       • The available power from the network 2 2 1 1 2 1L out AVN L th out P P b         2 2 2 1 1 1 L out L AVN AVN L out L P P P M          • ML is known as the load mismatch factor (or mismatch loss). 20/31
  • 21. Department of Electronic Engineering, NTUT Definition of the Power Gains Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML • The power gain L p in P G P  • The transducer power gain L T p s AVS P G G M P   • The available power gain AVN T A AVS L P G G P M   p TG G A TG G • When the Input and output are matched: p T AG G G  From the amplifier input to load From the source to load 21/31
  • 22. Department of Electronic Engineering, NTUT Power Gain     2 2 2 2 2 1 1 1 2 1 1 2 L L p in in bP G P a       21 1 2 221 L S a b S    2 2 212 2 22 11 1 1 L p in L G S S        • The Power Gain Gp where Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML 22/31
  • 23. Department of Electronic Engineering, NTUT Transducer Power Gain • The Transducer Power Gain GT L L in in T p p s AVS in AVS AVS P P P P G G G M P P P P     2 2 2 2 2 2 21 212 2 2 2 22 11 1 1 1 1 1 1 1 1 s L s L T s in L s out L G S S S S                       2 2 2 1 1 1 s in s s in M         where Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML 23/31
  • 24. Department of Electronic Engineering, NTUT Available Power Gain • The Available Power Gain GA AVN L AVN AVN T A T AVS AVS L L L P P P P G G G P P P P M     2 2 212 2 11 1 1 1 1 s A s out G S S        Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML   2 2 2 1 1 1 L out L out L M         where 24/31
  • 25. Department of Electronic Engineering, NTUT Two-port Network Matrices • Several ways that are commonly used to represent the two-port network: Impedance matrix : z-parameter Admittance matrix : y-parameter Hybrid matrix : h-parameter ABCD matrix : ABCD parameters Scattering matrix : S-parameter • These matrices describe the relationship between the input/output voltages and currents except the scattering matrix which describes the relationship between the input/output traveling waves (or power waves). 25/31
  • 26. Department of Electronic Engineering, NTUT Two-port Network Representation  z-parameter  y-parameter  h-parameter  ABCD parameters 1 11 12 1 2 21 22 2 v z z i v z z i                   1 11 1 12 2v z i z i  2 21 1 22 2v z i z i  1 11 12 1 2 21 22 2 i y y v i y y v                   1 11 12 1 2 21 22 2 v h h i i h h v                   1 2 1 2 v vA B i iC D                Two-port network   1v 1i 2i   2v Port 1 Port 2 26/31
  • 27. Department of Electronic Engineering, NTUT Conversion Between the Network Parameter • This table is provided at page 62 in the textbook. 27/31
  • 28. Department of Electronic Engineering, NTUT Series Connection • Series Connection: use z-parameter 1 11 1 11 11 12 12 2 22 2 21 21 22 22 a b a b a b a b a b a b v iv v z z z z v iv v z z z z                           28/31
  • 29. Department of Electronic Engineering, NTUT Shunt Connection • Shunt Connection: use y-parameter 1 11 1 11 11 12 12 2 22 2 21 21 22 22 a b a b a b a b a b a b i vi i y y y y i vi i y y y y                           29/31
  • 30. Department of Electronic Engineering, NTUT Cascade Circuits • Cascade Circuits : use ABCD parameters (chain) 1 1 2 2 1 1 2 2 a a ba a a a b b a a ba a a a b b v v v vA B A B A B i i i iC D C D C D                                         30/31
  • 31. Department of Electronic Engineering, NTUT Summary • The power delivered to the load can be calculated by using three methods: (1) Real power dissipated at load ( ) (2) Power waves (generalized [Sp], linked with reflections) (3) Traveling waves ([S], it’s practical and useful in amplifier design)  Re 2L L LP V I  • Available power from source (maximum average power the source can provide when matched) :    2 2 2 , 1 2 8 s AVS p p rms s E P a a R 2 2 21 1 1 2 2 2 L p p AVS pP a b P b    • When mismatch occurs: Power wave Power wave L p inP G P L T AVSP G P • Power gains (defined with traveling waves, circuitries are separately measured in a Zo system) : 31/31