SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
Bioethanol from microalgae?


           Miguel G. Guerrero
   Instituto de Bioquímica Vegetal y Fotosíntesis




              Universidad de Sevilla
   Consejo Superior de Investigaciones Científicas


                   Sevilla, Spain
Total EU27 biodiesel production for
2008 was over 7.7 Mton (~8,600ML)




         EEB: European Biodiesel Board
World ethanol production




    eBIO: European Bioethanol Fuel Associations
EU Ethanol production (ML)
EU MEMBER STATE   2008   2007    2006   2005   2004

Austria             89      15
Belgium             51
Czech Republic      76      33     15
Finland             50                    13      3
France             950     539    293    144    101
Germany            581     394    431    165     25
Hungary            150      30     34     35
                                                         Total imports of
Ireland             10       7
                                                        bioethanol in EU:
Italy               60      60    128      8
                                                        1900 ML in 2008
Latvia              15      18     12     12     12
Lithuania           21      20     18      8
Netherlands          9      14     15      8     14
Poland             200     155    120     64     48
Slovakia            94      30
Spain              346     348    402    303    254
Sweden              78     120    140    153     71
                                                      eBIO: European Bioethanol
UK                  75      20                            Fuel Associations
TOTAL             2855    1803   1608    913    528
Raw materials for ethanol production
        in Europe (2008)




                   eBIO: European Bioethanol Fuel Associations
Microalga



                                                        Eukaryotic microalgae and
                                                        prokaryotic cyanobacteria
                                                              are the major
                                                        representatives of oxygen-
                                                         evolving photosynthetic
                                                             microorganisms




                                                            COLLECTIVELY
                                                           REFERRED TO AS
                                                             MICROALGAE


U.S. Department of Energy Genome Programs
        http://genomics.energy.gov.
Claimed advantages of microalgae over
   crop plants for biofuel production
  • Faster growth
  • Higher productivity
  • Use saline, brackish, waste water
  • Do not compete with food/feed agriculture
  • Can have very high carbohydrate/oil content
  • Lower water consumption?
  • Lower costs of production/processing?
Ethanol yields for various crops

         CROP               PRODUCTIVITY
                          (liters per hectare)


Wheat                                      2,500

Corn                                       3,500

Sugar beet                                 6,000

Microalgae (projection)                   20,000
Products from microalgae
Biomass

Pigments (phycobiliproteins, carotenoids)

Essential fatty acids (long-chain PUFAs)

Bioactive compounds (diverse chemical nature and biological activity)

Exopolysaccharides

Major cell components (triglycerides, starch, glycogen) as feedstock for
biofuels (biodiesel, bioethanol)

Simple molecules with high energy content
   Ammonia
   Hydrogen
   Alcohols
   Fatty acids
Biofuel generation from CO2
Through photosynthesis, at the expense of sunlight energy, energy-rich
   compounds are synthesized from oxidized, low energy substrates.
    The generation of an organic fuel entails besides CO2 removal
                                                    CARBOHYDRATES
                                                       ALCOHOLS
           H2                                            LIPIDS
  -0.4 V                    Fd                      HYDROCARBONS
           H+                                       CO2
                              e

 +0.8 V         H2O    THYLAKOIDS             O2



                          LIGHT
Choosing the microalga for
producing bioethanol’s feedstock
    Factors to be considered in the selection

Growth rate (µ); productivity (P= µ·Cb)

Selective advantages: tolerance to temperature, pH, and
radiation extremes; secretion of allelopatic metabolites;
ability to fix N2

High yield in fermentable carbohydrates (starch, glycogen,
EPS?)

Easy (cheap) harvesting
Microalgae as potential source of
         carbohydrates
    Strain of Chlorella               Carbohydrates (% of dry weight)
                                            +N               -N
    C. ellipsoidea SK                            15,0                            21,0
    C. pyrenoidosa 82                            24,0                            37,3
    C. pyrenoidosa 82T                           31,8                            67,9
    C. pyrenoidosa
       TKh-7-11-05                               10,0                            44,2
    C. sp. K                                     18,4                            54,5
    C. vulgaris 157                              10,3                            44,0


       Data from Vladimirova et al (1979) & Zhukova et al (1969) in Soviet Plant Physiology
Cyanobacteria as potential source of
         carbohydrates
                (Vargas et al. 1998, J. Phycol. 34, 812)

    Strain                           Carbohydrates
                                    (% of dry weight)
   ________________________________________________
     Anabaena sp. ATCC 33047              28.0 ± 2.0
     Anabaena variabilis                  22.3 ± 2.5
     Anabaenopsis sp.                     16.3 ± 1.5
     Nodularia sp. (Chucula)              16.9 ± 2.6
     Nostoc commune                       37.6 ± 2.5
     Nostoc paludosum                     26.6 ± 1.9
     Nostoc sp. (Albufera)                26.8 ± 4.0
     Nostoc sp. (Caquena)                 23.3 ± 1.7
     Nostoc sp. (Chile)                   23.3 ± 2.0
     Nostoc sp. (Chucula)                 15.7 ± 1.8
     Nostoc sp. (Llaita)                  20.2 ± 1.5
     Nostoc sp. (Loa)                     32.1 ± 1.2
Marine strain of Anabaena
                          (ATCC 33047, CA)
•    High rate of CO2 fixation into organic
     matter

•    High productivity

•    No requirement for combined N
    (N2-fixer)

•    Easy harvesting

•    Wide tolerance to:
          •   temperature (optimum 40ºC; 30-45)
          •   pH (optimum 8.5; 6.5-9.5)
          •   irradiance
          •   salt

•    Carbohydrate content: 23-34% of dry
    biomass in actively growing cultures
Simultaneous to growth and biomass increase, Anabaena
sp. ATCC 33047 releases to the medium substantial
amounts of an exopolysaccharide (EPS)




The EPS exhibits
interesting rheological
properties, and contributes
to easy harvesting of biomass


The EPS can find different
applications, including fermentation
Anabaena cultures outdoors




                 PRODUCTIVITY
 0.05–0.6 g organic matter (biomass+EPS) L-1 d-1
     equivalent to 0.1–1.0 g CO2 fixed L-1 d-1

        YIELD OF FLAT PANEL REACTOR
  0.1 (winter) to 0.35 (summer) g biomass L-1 d-1=
~35 g biomass m-2 d-1(8-11 g carbohydrates m-2 d-1)
ELECTRICITY




              POWER PLANT
              POWER PLANT            FLUE
FOSSIL FUEL
FOSSIL FUEL    (combustion)
               (combustion)
                                                   PURIFICATION
                                                   PURIFICATION    CO2-RICH GAS
                                    GASES


                                    SUNLIGHT
                                    SUNLIGHT


                  HEAT           PHOTOBIOREACTOR
                                 PHOTOBIOREACTOR
                                 (INOCULATED CULTURE)
                                 (INOCULATED CULTURE)




                                      BIOMASS
                                      BIOMASS                       DIVERSE
                              ± OTHER ORGANIC COMPOUNDS
                              ± OTHER ORGANIC COMPOUNDS           APPLICATIONS
Establishing a production process for microalgae
       as source of bioethanol’s feedstock
       Factors to be considered (and optimized)
  • Organism
    - natural isolate (production site)
    - strain from culture collection
    - carbohydrate overproducing mutant (?)

  • Culture system
    - open, closed, semi?

  • Operating conditions
   - batch, semi-continuous, continuous?
   - nutrient limitation(s)?
   - one-stage, two-stage?
A plausible (although ambitious) objective,
    considering present state of art (high
               insolation area)
• Reactors of ~50 L m-2 operating at mean volumetric
  productivity of ~0.7 g biomass L-1 day-1 (or of 140 L m-2 at
  0.25 g L-1 day-1). Productivity = 35 g biomass m-2 day-1

• For a carbohydrate content of ~30% =
  10.5 g carbohydrate m-2 day-1

• Surface extrapolation = 0.35 ton biomass (0.105 ton
  carbohydrate) ha-1 day-1

• Surface + time extrapolation (effective operation 300 days
  per annum) =105 ton biomass (31.5 ton carbohydrate) ha-1
  year-1 ~(19,000 L ethanol) ha-1 year-1
Microalgal metabolic pathways that can be leveraged for biofuel production
           Radakovits et al. (2010) Eukaryotic Cell 9: 486-501
Starch metabolism in green microalgae
Radakovits et al. (2010) Eukaryotic Cell 9:486-501
Fermentative production of bioethanol
Raw materials
• Sugar cane (Brazil)
• Corn (USA)
• Wheat, corn, sugar beet (Europe)
• Alternatives: lignocellulosic materials; microalgae

                                                        CO2 emissions



                Alcoholic fermentation (yeasts)
 C6H12O6                        2 CH3CH2OH + 2 CO2

  (16 kJ g-1)                           (30 kJ g-1)
Ethanol photoproduction from CO2
                      LIGHT
      2 CO2 + 3 H2O →         CH3CH2OH + 3 O2

  CO2 fixation            Ethanol photosynthesis




CO2
         Calvin
         cycle



           3-PGA




         PYRUVATE         ACETALDEHYDE             ETHANOL
                    PDC                   ADH
Synechocystis sp. PCC6803
(Sectionn I , Rippka et al., 1979)




                                        • Fast growth
                                        • Easy culture




Model cyanobacterium
Growth on glucose
Full genomic sequence available
(http://www.kazusa.or.jp)
Transformable (chromosome and plamid)
Homologous recombination
Strategy for obtaining Synechocystis strains able to synthesize
                           ethanol
 1. Insertion in Synechocystis genome of Zymomonas genes involved in ethanol
 synthesis through homologous recombination

                            P        pdc-adh

           Secuence homologous toSynechocystis DNA (needed for reombination)

       P   Endogenous promotor (externally inducible)

           Pyruvate decarboxylase and alcohol dehydrogenase genes

           Antibiotic-resistance cassette


 2. Analysis of proper integration in genome, and of full segregation, by Southern
 Blot

 3. Expression analysis of genes in a single RNAm under inducing conditions, by
 Northern Blot

 4. Measurement of enzyme activities in cell extracts under inducing conditions

 5. Verification of ethanol presence in outer medium

Contenu connexe

Tendances

“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The Future“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The FutureAnik Banik
 
Biohydrogen production
Biohydrogen production Biohydrogen production
Biohydrogen production MeghanaUnni
 
Green algae as a biofuel
Green algae as a biofuelGreen algae as a biofuel
Green algae as a biofuelAbhijit Biswas
 
Microbial biodiesel production
Microbial biodiesel  productionMicrobial biodiesel  production
Microbial biodiesel productionmadhujegathish
 
Microbial Enhance Oil Recovery
Microbial Enhance Oil RecoveryMicrobial Enhance Oil Recovery
Microbial Enhance Oil RecoveryMehreenSharif1
 
Biodegradation of xenobiotics
Biodegradation of xenobioticsBiodegradation of xenobiotics
Biodegradation of xenobioticsgaurav raja
 
Biodegradation of petroleum hydrocarbons
Biodegradation of petroleum hydrocarbonsBiodegradation of petroleum hydrocarbons
Biodegradation of petroleum hydrocarbonsHamza Shiekh
 
Microalgal applications for biofuel production
Microalgal applications for biofuel productionMicroalgal applications for biofuel production
Microalgal applications for biofuel productionSAIMA BARKI
 

Tendances (20)

Ethanol production
Ethanol productionEthanol production
Ethanol production
 
“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The Future“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The Future
 
Biohydrogen production
Biohydrogen production Biohydrogen production
Biohydrogen production
 
Biofuels and By-Products from Algae
Biofuels and By-Products from AlgaeBiofuels and By-Products from Algae
Biofuels and By-Products from Algae
 
Biodiesel Production from Microalgae
Biodiesel Production from MicroalgaeBiodiesel Production from Microalgae
Biodiesel Production from Microalgae
 
Biofuel production
Biofuel productionBiofuel production
Biofuel production
 
Algal biofuel
Algal biofuelAlgal biofuel
Algal biofuel
 
Single cell oil
Single cell oil Single cell oil
Single cell oil
 
Nutritional classification of microbes
Nutritional classification of microbesNutritional classification of microbes
Nutritional classification of microbes
 
Psychrophile
PsychrophilePsychrophile
Psychrophile
 
Green algae as a biofuel
Green algae as a biofuelGreen algae as a biofuel
Green algae as a biofuel
 
Petroleum microbiology
Petroleum microbiologyPetroleum microbiology
Petroleum microbiology
 
Microbial biodiesel production
Microbial biodiesel  productionMicrobial biodiesel  production
Microbial biodiesel production
 
Microbial Enhance Oil Recovery
Microbial Enhance Oil RecoveryMicrobial Enhance Oil Recovery
Microbial Enhance Oil Recovery
 
Biodegradation of xenobiotics
Biodegradation of xenobioticsBiodegradation of xenobiotics
Biodegradation of xenobiotics
 
Rhizobium
RhizobiumRhizobium
Rhizobium
 
algal cultivation
algal cultivationalgal cultivation
algal cultivation
 
Biodegradation of petroleum hydrocarbons
Biodegradation of petroleum hydrocarbonsBiodegradation of petroleum hydrocarbons
Biodegradation of petroleum hydrocarbons
 
Fuel From Algae
Fuel From AlgaeFuel From Algae
Fuel From Algae
 
Microalgal applications for biofuel production
Microalgal applications for biofuel productionMicroalgal applications for biofuel production
Microalgal applications for biofuel production
 

En vedette (14)

Corn and Lignocellulosic Ethanol Production Processes
Corn and Lignocellulosic Ethanol Production ProcessesCorn and Lignocellulosic Ethanol Production Processes
Corn and Lignocellulosic Ethanol Production Processes
 
Bioethanol
BioethanolBioethanol
Bioethanol
 
Bioethanol Production
Bioethanol ProductionBioethanol Production
Bioethanol Production
 
Bioethanol from biomass waste
Bioethanol from biomass wasteBioethanol from biomass waste
Bioethanol from biomass waste
 
CICan Energy Symposium - Medicine Hat November 2015
CICan Energy Symposium - Medicine Hat November 2015CICan Energy Symposium - Medicine Hat November 2015
CICan Energy Symposium - Medicine Hat November 2015
 
Integrated 1st & 2nd Generation Bioethanol Production from Sugarcane
Integrated 1st & 2nd Generation Bioethanol Production from SugarcaneIntegrated 1st & 2nd Generation Bioethanol Production from Sugarcane
Integrated 1st & 2nd Generation Bioethanol Production from Sugarcane
 
GREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy Palicherlu
GREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy PalicherluGREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy Palicherlu
GREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy Palicherlu
 
Marine Biotechnology/Algae
Marine Biotechnology/AlgaeMarine Biotechnology/Algae
Marine Biotechnology/Algae
 
Biofuels
BiofuelsBiofuels
Biofuels
 
Ethanol Production India
Ethanol Production IndiaEthanol Production India
Ethanol Production India
 
Biofuels
Biofuels   Biofuels
Biofuels
 
Ethanol production
Ethanol productionEthanol production
Ethanol production
 
Biofuel presentation org
Biofuel presentation orgBiofuel presentation org
Biofuel presentation org
 
Biofuels Complete ppt
Biofuels Complete ppt  Biofuels Complete ppt
Biofuels Complete ppt
 

Similaire à Bioethanol from microalgae

20 Monreal Serena
20 Monreal Serena20 Monreal Serena
20 Monreal SerenaC tb
 
Christy_BioenergyFromAgriculturalWastes_USAIN_2008.ppt
Christy_BioenergyFromAgriculturalWastes_USAIN_2008.pptChristy_BioenergyFromAgriculturalWastes_USAIN_2008.ppt
Christy_BioenergyFromAgriculturalWastes_USAIN_2008.pptMadenbeto
 
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...Otago Energy Research Centre (OERC)
 
How are biofuels made?
How are biofuels made?How are biofuels made?
How are biofuels made?Abengoa
 
Production of Biodiesel from Algae
Production of Biodiesel from AlgaeProduction of Biodiesel from Algae
Production of Biodiesel from AlgaeGokul Achari
 
The future source_of_energy_chemicals[1]
The future source_of_energy_chemicals[1]The future source_of_energy_chemicals[1]
The future source_of_energy_chemicals[1]Janardhan Hl
 
Design of Algal Photo Bioreactor Using Recycled PET Bottles
Design of Algal Photo Bioreactor Using Recycled PET BottlesDesign of Algal Photo Bioreactor Using Recycled PET Bottles
Design of Algal Photo Bioreactor Using Recycled PET BottlesIRJET Journal
 
IRJET- Biogas Production from Municipal Solid Waste:- A Review
IRJET- Biogas Production from Municipal Solid Waste:- A ReviewIRJET- Biogas Production from Municipal Solid Waste:- A Review
IRJET- Biogas Production from Municipal Solid Waste:- A ReviewIRJET Journal
 
BIOINWASTE Topic 1
BIOINWASTE Topic 1BIOINWASTE Topic 1
BIOINWASTE Topic 1bioinwaste
 
Lignin isolation from coconut coir, characterization and depolymerization usi...
Lignin isolation from coconut coir, characterization and depolymerization usi...Lignin isolation from coconut coir, characterization and depolymerization usi...
Lignin isolation from coconut coir, characterization and depolymerization usi...Richa Chaudhary
 

Similaire à Bioethanol from microalgae (20)

20 Monreal Serena
20 Monreal Serena20 Monreal Serena
20 Monreal Serena
 
PYROLYSIS
PYROLYSISPYROLYSIS
PYROLYSIS
 
Christy_BioenergyFromAgriculturalWastes_USAIN_2008.ppt
Christy_BioenergyFromAgriculturalWastes_USAIN_2008.pptChristy_BioenergyFromAgriculturalWastes_USAIN_2008.ppt
Christy_BioenergyFromAgriculturalWastes_USAIN_2008.ppt
 
novel bac lipase 3btech
novel bac lipase 3btechnovel bac lipase 3btech
novel bac lipase 3btech
 
Biogas notes
Biogas notesBiogas notes
Biogas notes
 
Samantha Fuller, M Power World
Samantha Fuller, M Power WorldSamantha Fuller, M Power World
Samantha Fuller, M Power World
 
Insights on Sustainability: Unica´s Vision
Insights on Sustainability: Unica´s VisionInsights on Sustainability: Unica´s Vision
Insights on Sustainability: Unica´s Vision
 
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
 
Robert Lovitt
Robert LovittRobert Lovitt
Robert Lovitt
 
How are biofuels made?
How are biofuels made?How are biofuels made?
How are biofuels made?
 
Production of Biodiesel from Algae
Production of Biodiesel from AlgaeProduction of Biodiesel from Algae
Production of Biodiesel from Algae
 
The future source_of_energy_chemicals[1]
The future source_of_energy_chemicals[1]The future source_of_energy_chemicals[1]
The future source_of_energy_chemicals[1]
 
Design of Algal Photo Bioreactor Using Recycled PET Bottles
Design of Algal Photo Bioreactor Using Recycled PET BottlesDesign of Algal Photo Bioreactor Using Recycled PET Bottles
Design of Algal Photo Bioreactor Using Recycled PET Bottles
 
Session 5.1 Potential use of Cassava Wastes to Produce Energy: Outcomes of a ...
Session 5.1 Potential use of Cassava Wastes to Produce Energy: Outcomes of a ...Session 5.1 Potential use of Cassava Wastes to Produce Energy: Outcomes of a ...
Session 5.1 Potential use of Cassava Wastes to Produce Energy: Outcomes of a ...
 
IRJET- Biogas Production from Municipal Solid Waste:- A Review
IRJET- Biogas Production from Municipal Solid Waste:- A ReviewIRJET- Biogas Production from Municipal Solid Waste:- A Review
IRJET- Biogas Production from Municipal Solid Waste:- A Review
 
190 jyoti
190 jyoti190 jyoti
190 jyoti
 
BIOINWASTE Topic 1
BIOINWASTE Topic 1BIOINWASTE Topic 1
BIOINWASTE Topic 1
 
Nutrient supply, below ground processes and elevated CO2 change the nutrition...
Nutrient supply, below ground processes and elevated CO2 change the nutrition...Nutrient supply, below ground processes and elevated CO2 change the nutrition...
Nutrient supply, below ground processes and elevated CO2 change the nutrition...
 
Lignin isolation from coconut coir, characterization and depolymerization usi...
Lignin isolation from coconut coir, characterization and depolymerization usi...Lignin isolation from coconut coir, characterization and depolymerization usi...
Lignin isolation from coconut coir, characterization and depolymerization usi...
 
What has been done and what can be done
What has been done and what can be doneWhat has been done and what can be done
What has been done and what can be done
 

Plus de EOI Escuela de Organización Industrial

Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....EOI Escuela de Organización Industrial
 
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...EOI Escuela de Organización Industrial
 
El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...EOI Escuela de Organización Industrial
 
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...EOI Escuela de Organización Industrial
 
Ayudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalizaciónAyudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalizaciónEOI Escuela de Organización Industrial
 

Plus de EOI Escuela de Organización Industrial (20)

Establecimiento de la oficina de asesoramiento nacional.
Establecimiento de la oficina de asesoramiento nacional.Establecimiento de la oficina de asesoramiento nacional.
Establecimiento de la oficina de asesoramiento nacional.
 
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
 
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
 
El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...
 
SPEECH EEPA AWARDS_the break.pdf
SPEECH EEPA AWARDS_the break.pdfSPEECH EEPA AWARDS_the break.pdf
SPEECH EEPA AWARDS_the break.pdf
 
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...
 
Generación D
Generación DGeneración D
Generación D
 
Centro de Competencias para la formación digital agroalimentaria
Centro de Competencias para la formación digital agroalimentariaCentro de Competencias para la formación digital agroalimentaria
Centro de Competencias para la formación digital agroalimentaria
 
Ayudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalizaciónAyudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalización
 
Paquete de Digitalización
Paquete de DigitalizaciónPaquete de Digitalización
Paquete de Digitalización
 
Plan de Recuperación, Transformación y Resiliencia
Plan de Recuperación, Transformación y ResilienciaPlan de Recuperación, Transformación y Resiliencia
Plan de Recuperación, Transformación y Resiliencia
 
Programa Kit Digital PKD enero 2022
Programa Kit Digital PKD enero 2022Programa Kit Digital PKD enero 2022
Programa Kit Digital PKD enero 2022
 
La gestión de la diversidad en las empresas españolas (2009)
La gestión de la diversidad en las empresas españolas (2009)La gestión de la diversidad en las empresas españolas (2009)
La gestión de la diversidad en las empresas españolas (2009)
 
Tecnología para alimentar el mundo por Alberto Oikawa
Tecnología para alimentar el mundo por Alberto  OikawaTecnología para alimentar el mundo por Alberto  Oikawa
Tecnología para alimentar el mundo por Alberto Oikawa
 
Globalización post covid-19 por Stefano Pilotto
Globalización post covid-19 por Stefano PilottoGlobalización post covid-19 por Stefano Pilotto
Globalización post covid-19 por Stefano Pilotto
 
Marketing del día después por José María Corella
Marketing del día después por José María CorellaMarketing del día después por José María Corella
Marketing del día después por José María Corella
 
Carrera Internacional por Begoña Lanzazuri
Carrera Internacional por Begoña LanzazuriCarrera Internacional por Begoña Lanzazuri
Carrera Internacional por Begoña Lanzazuri
 
Organizarse mejor en tiempos de teletrabajo por Consuelo Verdú
Organizarse mejor en tiempos de teletrabajo por Consuelo VerdúOrganizarse mejor en tiempos de teletrabajo por Consuelo Verdú
Organizarse mejor en tiempos de teletrabajo por Consuelo Verdú
 
Metodologia OKR para lograr el éxito por Javier Martín
Metodologia OKR para lograr el éxito por Javier MartínMetodologia OKR para lograr el éxito por Javier Martín
Metodologia OKR para lograr el éxito por Javier Martín
 
¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero
¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero
¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero
 

Bioethanol from microalgae

  • 1. Bioethanol from microalgae? Miguel G. Guerrero Instituto de Bioquímica Vegetal y Fotosíntesis Universidad de Sevilla Consejo Superior de Investigaciones Científicas Sevilla, Spain
  • 2.
  • 3. Total EU27 biodiesel production for 2008 was over 7.7 Mton (~8,600ML) EEB: European Biodiesel Board
  • 4. World ethanol production eBIO: European Bioethanol Fuel Associations
  • 5. EU Ethanol production (ML) EU MEMBER STATE 2008 2007 2006 2005 2004 Austria 89 15 Belgium 51 Czech Republic 76 33 15 Finland 50 13 3 France 950 539 293 144 101 Germany 581 394 431 165 25 Hungary 150 30 34 35 Total imports of Ireland 10 7 bioethanol in EU: Italy 60 60 128 8 1900 ML in 2008 Latvia 15 18 12 12 12 Lithuania 21 20 18 8 Netherlands 9 14 15 8 14 Poland 200 155 120 64 48 Slovakia 94 30 Spain 346 348 402 303 254 Sweden 78 120 140 153 71 eBIO: European Bioethanol UK 75 20 Fuel Associations TOTAL 2855 1803 1608 913 528
  • 6. Raw materials for ethanol production in Europe (2008) eBIO: European Bioethanol Fuel Associations
  • 7. Microalga Eukaryotic microalgae and prokaryotic cyanobacteria are the major representatives of oxygen- evolving photosynthetic microorganisms COLLECTIVELY REFERRED TO AS MICROALGAE U.S. Department of Energy Genome Programs http://genomics.energy.gov.
  • 8. Claimed advantages of microalgae over crop plants for biofuel production • Faster growth • Higher productivity • Use saline, brackish, waste water • Do not compete with food/feed agriculture • Can have very high carbohydrate/oil content • Lower water consumption? • Lower costs of production/processing?
  • 9. Ethanol yields for various crops CROP PRODUCTIVITY (liters per hectare) Wheat 2,500 Corn 3,500 Sugar beet 6,000 Microalgae (projection) 20,000
  • 10. Products from microalgae Biomass Pigments (phycobiliproteins, carotenoids) Essential fatty acids (long-chain PUFAs) Bioactive compounds (diverse chemical nature and biological activity) Exopolysaccharides Major cell components (triglycerides, starch, glycogen) as feedstock for biofuels (biodiesel, bioethanol) Simple molecules with high energy content Ammonia Hydrogen Alcohols Fatty acids
  • 11. Biofuel generation from CO2 Through photosynthesis, at the expense of sunlight energy, energy-rich compounds are synthesized from oxidized, low energy substrates. The generation of an organic fuel entails besides CO2 removal CARBOHYDRATES ALCOHOLS H2 LIPIDS -0.4 V Fd HYDROCARBONS H+ CO2 e +0.8 V H2O THYLAKOIDS O2 LIGHT
  • 12. Choosing the microalga for producing bioethanol’s feedstock Factors to be considered in the selection Growth rate (µ); productivity (P= µ·Cb) Selective advantages: tolerance to temperature, pH, and radiation extremes; secretion of allelopatic metabolites; ability to fix N2 High yield in fermentable carbohydrates (starch, glycogen, EPS?) Easy (cheap) harvesting
  • 13. Microalgae as potential source of carbohydrates Strain of Chlorella Carbohydrates (% of dry weight) +N -N C. ellipsoidea SK 15,0 21,0 C. pyrenoidosa 82 24,0 37,3 C. pyrenoidosa 82T 31,8 67,9 C. pyrenoidosa TKh-7-11-05 10,0 44,2 C. sp. K 18,4 54,5 C. vulgaris 157 10,3 44,0 Data from Vladimirova et al (1979) & Zhukova et al (1969) in Soviet Plant Physiology
  • 14. Cyanobacteria as potential source of carbohydrates (Vargas et al. 1998, J. Phycol. 34, 812) Strain Carbohydrates (% of dry weight) ________________________________________________ Anabaena sp. ATCC 33047 28.0 ± 2.0 Anabaena variabilis 22.3 ± 2.5 Anabaenopsis sp. 16.3 ± 1.5 Nodularia sp. (Chucula) 16.9 ± 2.6 Nostoc commune 37.6 ± 2.5 Nostoc paludosum 26.6 ± 1.9 Nostoc sp. (Albufera) 26.8 ± 4.0 Nostoc sp. (Caquena) 23.3 ± 1.7 Nostoc sp. (Chile) 23.3 ± 2.0 Nostoc sp. (Chucula) 15.7 ± 1.8 Nostoc sp. (Llaita) 20.2 ± 1.5 Nostoc sp. (Loa) 32.1 ± 1.2
  • 15. Marine strain of Anabaena (ATCC 33047, CA) • High rate of CO2 fixation into organic matter • High productivity • No requirement for combined N (N2-fixer) • Easy harvesting • Wide tolerance to: • temperature (optimum 40ºC; 30-45) • pH (optimum 8.5; 6.5-9.5) • irradiance • salt • Carbohydrate content: 23-34% of dry biomass in actively growing cultures
  • 16. Simultaneous to growth and biomass increase, Anabaena sp. ATCC 33047 releases to the medium substantial amounts of an exopolysaccharide (EPS) The EPS exhibits interesting rheological properties, and contributes to easy harvesting of biomass The EPS can find different applications, including fermentation
  • 17. Anabaena cultures outdoors PRODUCTIVITY 0.05–0.6 g organic matter (biomass+EPS) L-1 d-1 equivalent to 0.1–1.0 g CO2 fixed L-1 d-1 YIELD OF FLAT PANEL REACTOR 0.1 (winter) to 0.35 (summer) g biomass L-1 d-1= ~35 g biomass m-2 d-1(8-11 g carbohydrates m-2 d-1)
  • 18. ELECTRICITY POWER PLANT POWER PLANT FLUE FOSSIL FUEL FOSSIL FUEL (combustion) (combustion) PURIFICATION PURIFICATION CO2-RICH GAS GASES SUNLIGHT SUNLIGHT HEAT PHOTOBIOREACTOR PHOTOBIOREACTOR (INOCULATED CULTURE) (INOCULATED CULTURE) BIOMASS BIOMASS DIVERSE ± OTHER ORGANIC COMPOUNDS ± OTHER ORGANIC COMPOUNDS APPLICATIONS
  • 19. Establishing a production process for microalgae as source of bioethanol’s feedstock Factors to be considered (and optimized) • Organism - natural isolate (production site) - strain from culture collection - carbohydrate overproducing mutant (?) • Culture system - open, closed, semi? • Operating conditions - batch, semi-continuous, continuous? - nutrient limitation(s)? - one-stage, two-stage?
  • 20. A plausible (although ambitious) objective, considering present state of art (high insolation area) • Reactors of ~50 L m-2 operating at mean volumetric productivity of ~0.7 g biomass L-1 day-1 (or of 140 L m-2 at 0.25 g L-1 day-1). Productivity = 35 g biomass m-2 day-1 • For a carbohydrate content of ~30% = 10.5 g carbohydrate m-2 day-1 • Surface extrapolation = 0.35 ton biomass (0.105 ton carbohydrate) ha-1 day-1 • Surface + time extrapolation (effective operation 300 days per annum) =105 ton biomass (31.5 ton carbohydrate) ha-1 year-1 ~(19,000 L ethanol) ha-1 year-1
  • 21. Microalgal metabolic pathways that can be leveraged for biofuel production Radakovits et al. (2010) Eukaryotic Cell 9: 486-501
  • 22. Starch metabolism in green microalgae Radakovits et al. (2010) Eukaryotic Cell 9:486-501
  • 23. Fermentative production of bioethanol Raw materials • Sugar cane (Brazil) • Corn (USA) • Wheat, corn, sugar beet (Europe) • Alternatives: lignocellulosic materials; microalgae CO2 emissions Alcoholic fermentation (yeasts) C6H12O6 2 CH3CH2OH + 2 CO2 (16 kJ g-1) (30 kJ g-1)
  • 24. Ethanol photoproduction from CO2 LIGHT 2 CO2 + 3 H2O → CH3CH2OH + 3 O2 CO2 fixation Ethanol photosynthesis CO2 Calvin cycle 3-PGA PYRUVATE ACETALDEHYDE ETHANOL PDC ADH
  • 25. Synechocystis sp. PCC6803 (Sectionn I , Rippka et al., 1979) • Fast growth • Easy culture Model cyanobacterium Growth on glucose Full genomic sequence available (http://www.kazusa.or.jp) Transformable (chromosome and plamid) Homologous recombination
  • 26. Strategy for obtaining Synechocystis strains able to synthesize ethanol 1. Insertion in Synechocystis genome of Zymomonas genes involved in ethanol synthesis through homologous recombination P pdc-adh Secuence homologous toSynechocystis DNA (needed for reombination) P Endogenous promotor (externally inducible) Pyruvate decarboxylase and alcohol dehydrogenase genes Antibiotic-resistance cassette 2. Analysis of proper integration in genome, and of full segregation, by Southern Blot 3. Expression analysis of genes in a single RNAm under inducing conditions, by Northern Blot 4. Measurement of enzyme activities in cell extracts under inducing conditions 5. Verification of ethanol presence in outer medium