SlideShare une entreprise Scribd logo
1  sur  27
Télécharger pour lire hors ligne
Downstream processing of algal oil Emilio Molina Grima Dpt. Chemical Engineering, University of Almería, SPAIN [email_address] Seminar on Microalgae IMDEA Energy-EOI, April 8 2010, Madrid
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Questions to take into consideration
Pretreatment of microalgae cells J.Y. Lee et al. (2009 ) Bioresour Technol. DOI10.1016/j.biotech2009.03.058 Comparison of several methods for effective lipid extraction from microalgae  Lipid content (wt %) Non-disruption Autoclaving Bead-beating Microwaves Sonication Osmotic shock 30 20 10 0 30 20 10 0 30 20 10 0 Botryococcus sp Chlorella vulgaris Scenedemus sp
Extraction of lipids Solvent Mixture (dry  Isochrysis galbana ) Cl 3 CH/MeOH/H 2 O (1:2:0.8 v/v/v) Hexane/EtOH 96% (1:2.5 v/v) Hexane/EtOH 96% (1:0.9 v/v) n-Butanol EtOH 96% EtOH 96%/H 2 O (1:1 v/v) Hexane/Isopropanol (1:1.5 v/v) Cl 3 CH/MeOH/H 2 O (1:1:0.9 v/v/v) Hexane/EtOH/ H2O  (6:1:1 v/v/v) Hexane/EtOH/ H2O  (29:4.7:1 v/v/v) Cl 3 CH Cl 3 CH Cl 3 CH Cl 3 CH Extraction (monophasic) Purification (two phases) E. Molina Grima et al. (1994)  JAOCS, 71(9), 955-959
Extraction of lipids Information on saturation curves may be found at: Walter D. Bonner  (1910). Experimental Determination of Binodal Curves, Plait Points, and tie lines, in Fifty systems, each consisting of water and two organic liquids.  J. Phys. Chem.  14, 738-789   E. Molina Grima et al.  (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass.  JAOCS, 71(9), 955-959 Optimal tie line
Extraction of lipids Yields (%) of Extracts and Raffinates ( in parentheses ) of lipids extraction  from  dry  Isochrysis galbana Cl 3 CH/MeOH/H 2 O (1:2:0.8 v/v/v) Hexane/EtOH 96% (1:2.5 v/v) Hexane/EtOH 96% (1:0.9 v/v) Butanol EtOH 96% EtOH 96%/H2O (1:1 v/v) Hexane/Isopropanol (1:1.5 v/v) 92.9 (0.9) 52.2 (27.4) 49.5 (8.3) 70.4 84.4 63.3 66.0 Solvent Mixture
Extraction of fatty acids Yields (%) of Extracts obtained by direct saponification  from dry  Isochrysis galbana Cl 3 CH/MeOH/H 2 O (1:2:0.8 v/v/v) Hexane/EtOH 96% (1:2.5 v/v) Hexane/EtoH 96% (1:0.9 v/v) Butanol EtOH 96% EtOH 96%/H 2 O (1:1 v/v) Hexane/Isopropanol (1:1.5 v/v) Solvent system + KOH  (47.5 mL solvent /g KOH) - 81.0 48.0 9.0 79.8 46.5 62.0 60ºC-1 h - 75.0 47.1 - 79.2 45.5 61.1 Room-8 h
Comparison between the extraction of Lipids and Fatty acids  I. galbana ,[object Object],[object Object],[object Object],[object Object],144 mL/g of dry biomass
Optimization of fatty acids extraction 810 g 405 g Extract (overflow) 480 g Wet biomass (100 g d.b) ethanol (1 L) KOH ethanol (0,5 L) Residue  Raffinate (underflow) Alcoholic solution Fatty acids soaps (25% water) S-L (W) S-L Fatty acids hexane hexane hexane hexane L-L L-L L-L L-L Alcoholic   phase pH6 Alcoholic solution Fatty acids soaps (25% water) water Alcoholic solution Fatty acids  (40% water) HCl Ramírez Fajardo et al., 2007
Optimization of fatty acids extraction Influence of Ethanol (96%)/wet biomass M.J. Ibañez González et al. (1998)  JAOCS  75, 1735 – 1740. Lyophilized
Optimization of fatty acids extraction S-L stage V 01 = 810 g (1 L ethanol) +21 g KOH Residue Alcoholic solution Fatty acid soaps (25% water) 2 1 V 1 +V 2  = 1336 g y A  =0.0072 V 02 = 405 g (0.5 L ethanol) L 1 X A1 X B1 X S1 Lo =480 g X A0 = 0.023 X B0 = 0.977 L 2 X A2 X B2 X S2 Wet Biomass (100 g d.b) Recovery Yield 87%
Optimization of fatty acids extraction V 0 Scale-up calculations needed (repeated contact system) L A0  + V 01  = L 1  + V 1  = M 1  X A0 ·L A0  = Y A1 ·V 1  + X A1 ·L 1 S-L stage underflow overflow x A2 L 0  X B0  = L 1  X B1   V 01 = 810 g (1 L ethanol) Residue Alcoholic solution Fatty acid soaps (25% water) 2 1 V 1 +V 2  = 1336 g y A  = 0.0072 V 02 = 405 g (0.5 L ethanol) L 1 X A1 X B1 X S1 Lo = 480 g X A0 = 0.023 X B0 = 0.977 L 2 X A2 X B2 X S1 Wet Biomass (100 g d.b) Recovery Yield 91% B L 0 A S x A0 V 1 M 1 V 2 L 1 L 2 M 2 Kg FA soaps solution Kg inert solid P= = 3 X A1 1- X B1 Y A1 = (Ideal stage)
Optimization of fatty acids extraction Δ Scale-up calculations needed (counter current systems) S-L stage A S B V 2 V 1 x A2 x A0 L n L 2 L 1 M L 0 V n+1 2 1 V 1  y A1 L 1 X A1 X B1 X S1 Lo =480 g X A0 = 0.023 X B0 =0.977 L 2 X A2 X B2 X S2 V 2  y A2 V 0  =1215 g Extract  (overflow) Raffinate (underflow)
Optimization of fatty acids extraction L-L Extraction of FA V 1  y 1 V 1  y 2 V 1  y 3 V 1  y 4 Fatty acids Extract (Hexane phase) V 0 = 0.026 L Hexane V 0 = 0.026 L Hexane V 0 = 0.026 L Hexane Alcoholic   phase Alcoholic solution Fatty acids  (40% water) L-L L-L L-L L-L V 0 = 0.026 L Hexane Lo = 1,53 kg X A0 = 903 mg/L L 1 X A1 L 2 X A2 L 3 X A3 L 4 X A4
Optimization of fatty acids extraction Fatty acids concentration Alcoholic phase C FA  (mg·L -1 ) The distribution equilibria of FA between the alcoholic phase and hexane facilitate the calculation of design, scale-up and assessment purposes L/V 930 mg L -1 0 1000 2000 3000 4000 5000 6000 0 50 100 150 200 Fatty acids concentration Hexane phase, C AH  (mg·L -1 ) Step1 Step 2 Equililbrium x 1 x 2
Optimization of fatty acids extraction Conclusions    FA recovery yield (wet biomass)    FA recovery yield (dry biomass)    Important reduction of hexane    Important reduction of alcohol (96% v/v)    Solvent/biomass 87% 96,2% 90% 84% 24 mL/g biomass
Optimization of fatty acids extraction E. Molina Grima et al. (1996) Spanish patent 9602090
Direct transesterification of paste Biomass Biodiesel BIOMASS HEXANE ACETONE EPA METHANOL RESIDUE ACETYL CHLORIDE WARTER CONDENSER MIXER EVAPORATOR CROMATOGRAPHY CENTRI- FUGE FILTER SOLIDS EXTRACTOR REACTOR ULTRASONIC MIXER OPCIONAL OPTIONAL E Belarbi et al. (2000 ).  Enzyme and Microbial Technology  26 516-529 . EVAPORATOR COOLER EVAPORATOR
Paste biomass Hexane Methanol Acetyl chloride/  H 2 SO 4  (10%) Extractor Cooler FAMEs Spent biomass Centrifugation Filtration 1000 mL *500 g 50 mL 1000 mL Temperature = 100 ºC Time: 120 min 9.1 g *(500 g of paste biomass of  Phaeodactylum tricornutum  ≈ 100 g of lyofilized biomass) (9.9% of TFAs) 500 mL Extractor Condenser Direct transesterification of paste Biomass Phaeodactylum tricornutum -  Monodus subterraneus – Scenedesmus almeriensis EVAPORATOR
Direct transesterification of paste Biomass CASE STUDY Slurry reaction products (Spent biomass, water, methanol, FAMES, catalyst) Biodiesel produced  per year: 13.550 kg Calculations needed for processing the paste biomass produced per day in one Ha of tubular photobioreactors of  Scenedesmus almeriensis. Slurry reaction products (Spent biomass, water, methanol, FAMES, catalyst) V 01 = 605 kg/day Hexane Residue S-L 2 S-L 1 V 1 +V 2  = 773 kg/day y A  =0.0483 V 02 = 303 kg/day Hexane L 1 X A1 X B1 Lo =3190 Kg/day X A0 = 0.013 X B0 =0.987 L 2 X A2 X B2 Reaction L= 1375 Kg/day X A0 = 0.03 X B0 =0.997 Wet biomass 1815 kg/day methanol +  acetyl chloride or 10% H 2 SO 4 Hexane solution of methyl esters S-L 2 S-L 1 V 1  = 395,15 kg/day y A1 =0.095 L 1 X A1 X B1 L 2 X A2 X B2 V 2  y A2 V 0  =530 kg/day Lo =3190 kg/day X A0 = 0.013 X B0 =0.987 Residue Hexane solution of methyl esters Hexane
Paste Biomass Hexane Methanol Acetyl chloride   / H 2 SO 4 REACTOR Centrifugation Filtration Spent Biomass ** Biodiesel *** EPA EXTRACTOR * Biodiesel Argentated silica gel column chromatography Hexane: Acetone  (99.5: 0.5 v/v) EPA (99%): 2154 $/ Kg EPA (70%): 185 $/ Kg (Abayoumi et al., 2009) 1500 mL 500 g 50 mL 1000 mL (9.9 % of TFAs) (9.1 g) (6.9 g) (1.6 g) (76%) (18%) EXTRACTOR Cooler Direct transesterification of paste Biomass * Crude biodiesel with high content of EPA  (27.7%)  and a  92%  recovery yield with respect to the total FA contained in the biomass ** Biodiesel with low EPA content  (8.2%)  and a  76%  recovery yield with respect to the total FA contained in the biomass *** High grade EPA methylester  (96.4%).  Recovery yield  18%  with respect to the total FA contained in the biomass. Cooler EVAPORATOR
Comparison of experimental conditions and yields obtained by direct transesterification of microalgae biomass and other feedstocks  ,[object Object],[object Object],Feedstock Wet biomass 500 g Jatropha curcas  seeds 20 g Solvent to extract FAMES Catalyst  Methanol Biomass/tissue Working  conditions Yield Fresh tissues of  olive oil fruit 50-200 mg E. Belarbi et al. (2000) Siew Hoong et al.  (2010)  R. Garces and M. Mancha (1993) a G. Lapage and C.C.Roy  (1984) b   Maternal milk or adipose tissue 10 mg  Hexane Hexane Heptane Benzene or Toluene Benzene SO 4 H 2  5% wt (CH 3 COCl 5%) SO 4 H 2  15% wt SO 4 H 2  2% wt SO 4 H 2   2 v/w 7,5 v/w 25 v/w 100 v/w 2 h, 100ºC 2,5 atm 24 h, 60ºC 1-2 h, 80ºC 10 min, 80ºC >90% >99% >95% >98%
Extraction and Fractionation of microalgal Lipids Conclusions ,[object Object],[object Object],[object Object]
Multi-step process 4. Protein and carbohydrate separation from non lipidic residue Carbohydrates Proteins Precipitation 1. Protein and carbohydrate extraction from wet biomass  Biomass slurry Wet Biomass Solid-Liquid Extraction Precipitation Proteins Carbohydrates 3. Chlorophyll separation from non lipidic residue Enriched in ethanol   VACUUM BATCH DISTILLATION Filtration Chlorophylls 2. Fatty acid extraction by direct saponification  and recovery of unsaponifiable products (carotenoids) Carotenoids Spent biomass Liquid-Liquid Extraction Fatty Acids Saponification Filtration Liquid-Liquid Extraction 59,0% 91% 6,6% Chlorophyll a 10,8% Chlorophyll c 41,0 % 16,3% 15,5%
Multi-step process Carotenoids in hexane 0.33 g L-L L-L L-L 0.9 L hexane L-L L-L 0.9 L hexane 0.9 L hexane 0.9 L hexane Alcoholic   phase 0.9 L hexane S-L, solid-liquid extraction L-L , Liquid-Liquid extraction P, Precipitation S-L 1.5 L buffer S-L 1.5 L buffer 476 g Wet biomass (100 g d.b) Proteins in the pellet 17.7 g P (NH 4 ) 2 SO 4 Carbohydrates in water 1.7 g 0.3 L water S-L residue 40 g KOH 1 L  ethanol S-L 0.5 L  ethanol
Multi-step process pH 6 HCl Alcoholic Phase Fatty acids in hexane 8.0 g L-L L-L L-L 0.45 L hexane L-L 0.45 L hexane 0.45 L hexane 0.45 L hexane D, Distillation F, Filtration P, Precipitation L-L , Liquid-liquid extraction D Carbohydrates in water enriched in ethanol F P (NH4) 2 SO4 Chlorophylls in torte Chlorophylls  a 0.0753 g Chlorophylls c 0.0378 g  Proteins in pellet 6.7 g
Downstream processing of algal oil Acknowledgements Antonio Giménez Giménez Alfonso Robles Medina Maria Jose Ibáñez González Jose M. Fernandez-Sevilla Francisco Gabriel Acién Fernández Emilio Molina Grima El Hassan Belarbi

Contenu connexe

Tendances

N boc-3-pyrrolidinone
N boc-3-pyrrolidinoneN boc-3-pyrrolidinone
N boc-3-pyrrolidinonehuenumb
 
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation ReactionSynthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reactionmariam1020
 
Extraction of Pectin from Mangifera Indica Linn. Indian Mango Fruit Peel
Extraction of Pectin from Mangifera Indica Linn. Indian Mango Fruit PeelExtraction of Pectin from Mangifera Indica Linn. Indian Mango Fruit Peel
Extraction of Pectin from Mangifera Indica Linn. Indian Mango Fruit Peelijtsrd
 
Evaluación de alternativas a la extracción por solvente
Evaluación de alternativas a la extracción por solventeEvaluación de alternativas a la extracción por solvente
Evaluación de alternativas a la extracción por solventePablo Rodriguez Fonseca
 
PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD PALM KERNEL ...
PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD PALM KERNEL ...PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD PALM KERNEL ...
PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD PALM KERNEL ...SAJJAD KHUDHUR ABBAS
 
Extraction and characterization of pectin from citric waste aidic
Extraction and characterization of pectin from citric waste   aidicExtraction and characterization of pectin from citric waste   aidic
Extraction and characterization of pectin from citric waste aidicphuongchi53
 
Characterization & structure elucidation of certain classes of Sec.Metabolotes
Characterization & structure elucidation of certain classes of Sec.MetabolotesCharacterization & structure elucidation of certain classes of Sec.Metabolotes
Characterization & structure elucidation of certain classes of Sec.MetabolotesNilesh Thorat
 
Chemistry of natural_products
Chemistry of natural_productsChemistry of natural_products
Chemistry of natural_productsshveta arya
 
Comparative effect of gamma irradiation, uv c and hot water on antioxidant
Comparative effect of gamma irradiation, uv c and hot water on antioxidantComparative effect of gamma irradiation, uv c and hot water on antioxidant
Comparative effect of gamma irradiation, uv c and hot water on antioxidantDr Asif Ahmad
 
SYNTHESIS, SPECTRAL CHARACTERIZATION AND BIOACTIVITY OF NOVEL
SYNTHESIS, SPECTRAL CHARACTERIZATION AND BIOACTIVITY OF NOVELSYNTHESIS, SPECTRAL CHARACTERIZATION AND BIOACTIVITY OF NOVEL
SYNTHESIS, SPECTRAL CHARACTERIZATION AND BIOACTIVITY OF NOVELDiimiseni nekhumbe
 
Terpenoids, carotenoids, vitamins and quassinoids
Terpenoids, carotenoids, vitamins and quassinoidsTerpenoids, carotenoids, vitamins and quassinoids
Terpenoids, carotenoids, vitamins and quassinoidsSana Raza
 
Azmin mogal terpenoids 2k17
Azmin mogal terpenoids 2k17Azmin mogal terpenoids 2k17
Azmin mogal terpenoids 2k17AZMIN MOGAL
 
Anthraquinone-Napthaquione-Cyanogenetic Glycoside
Anthraquinone-Napthaquione-Cyanogenetic GlycosideAnthraquinone-Napthaquione-Cyanogenetic Glycoside
Anthraquinone-Napthaquione-Cyanogenetic GlycosideDr Priyanka Goswami
 

Tendances (20)

N boc-3-pyrrolidinone
N boc-3-pyrrolidinoneN boc-3-pyrrolidinone
N boc-3-pyrrolidinone
 
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation ReactionSynthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
 
Extraction of Pectin from Mangifera Indica Linn. Indian Mango Fruit Peel
Extraction of Pectin from Mangifera Indica Linn. Indian Mango Fruit PeelExtraction of Pectin from Mangifera Indica Linn. Indian Mango Fruit Peel
Extraction of Pectin from Mangifera Indica Linn. Indian Mango Fruit Peel
 
PROJECT REVIEW
PROJECT REVIEWPROJECT REVIEW
PROJECT REVIEW
 
Evaluación de alternativas a la extracción por solvente
Evaluación de alternativas a la extracción por solventeEvaluación de alternativas a la extracción por solvente
Evaluación de alternativas a la extracción por solvente
 
PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD PALM KERNEL ...
PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD PALM KERNEL ...PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD PALM KERNEL ...
PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD PALM KERNEL ...
 
Extraction and characterization of pectin from citric waste aidic
Extraction and characterization of pectin from citric waste   aidicExtraction and characterization of pectin from citric waste   aidic
Extraction and characterization of pectin from citric waste aidic
 
Characterization & structure elucidation of certain classes of Sec.Metabolotes
Characterization & structure elucidation of certain classes of Sec.MetabolotesCharacterization & structure elucidation of certain classes of Sec.Metabolotes
Characterization & structure elucidation of certain classes of Sec.Metabolotes
 
Isotridecyl alcohol
Isotridecyl alcoholIsotridecyl alcohol
Isotridecyl alcohol
 
Chemistry of natural_products
Chemistry of natural_productsChemistry of natural_products
Chemistry of natural_products
 
Comparative effect of gamma irradiation, uv c and hot water on antioxidant
Comparative effect of gamma irradiation, uv c and hot water on antioxidantComparative effect of gamma irradiation, uv c and hot water on antioxidant
Comparative effect of gamma irradiation, uv c and hot water on antioxidant
 
Terpenoids
Terpenoids Terpenoids
Terpenoids
 
C0410912
C0410912C0410912
C0410912
 
Citral
CitralCitral
Citral
 
SYNTHESIS, SPECTRAL CHARACTERIZATION AND BIOACTIVITY OF NOVEL
SYNTHESIS, SPECTRAL CHARACTERIZATION AND BIOACTIVITY OF NOVELSYNTHESIS, SPECTRAL CHARACTERIZATION AND BIOACTIVITY OF NOVEL
SYNTHESIS, SPECTRAL CHARACTERIZATION AND BIOACTIVITY OF NOVEL
 
Terpenoids, carotenoids, vitamins and quassinoids
Terpenoids, carotenoids, vitamins and quassinoidsTerpenoids, carotenoids, vitamins and quassinoids
Terpenoids, carotenoids, vitamins and quassinoids
 
Azmin mogal terpenoids 2k17
Azmin mogal terpenoids 2k17Azmin mogal terpenoids 2k17
Azmin mogal terpenoids 2k17
 
Citral
CitralCitral
Citral
 
Anthraquinone-Napthaquione-Cyanogenetic Glycoside
Anthraquinone-Napthaquione-Cyanogenetic GlycosideAnthraquinone-Napthaquione-Cyanogenetic Glycoside
Anthraquinone-Napthaquione-Cyanogenetic Glycoside
 
Protein analysis
Protein analysisProtein analysis
Protein analysis
 

Similaire à Procesado de aceite de algas

Isolation and Purification of Secoisolariciresinoldiglucoside oligomers (Lign...
Isolation and Purification of Secoisolariciresinoldiglucoside oligomers (Lign...Isolation and Purification of Secoisolariciresinoldiglucoside oligomers (Lign...
Isolation and Purification of Secoisolariciresinoldiglucoside oligomers (Lign...IOSR Journals
 
Organic Extraction Distillation Process With Abe Extraction
Organic Extraction Distillation Process With Abe ExtractionOrganic Extraction Distillation Process With Abe Extraction
Organic Extraction Distillation Process With Abe ExtractionSharon Price
 
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Pratap Jung Rai
 
Apostolos Vlyssidis - NTUA
Apostolos Vlyssidis - NTUAApostolos Vlyssidis - NTUA
Apostolos Vlyssidis - NTUAWWW.ERFC.GR
 
Characterizing The Fate And Transport Of Chemicals Of Emerging Concern (CEC’s...
Characterizing The Fate And Transport Of Chemicals Of Emerging Concern (CEC’s...Characterizing The Fate And Transport Of Chemicals Of Emerging Concern (CEC’s...
Characterizing The Fate And Transport Of Chemicals Of Emerging Concern (CEC’s...National Institute of Food and Agriculture
 
Evaluation of antioxidant and antiradical properties of pomegranate (punica g...
Evaluation of antioxidant and antiradical properties of pomegranate (punica g...Evaluation of antioxidant and antiradical properties of pomegranate (punica g...
Evaluation of antioxidant and antiradical properties of pomegranate (punica g...Pritam Kolge
 
Episode 4: PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD P...
Episode 4: PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD P...Episode 4: PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD P...
Episode 4: PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD P...SAJJAD KHUDHUR ABBAS
 
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...Deepa A K
 
Non Aqueous Extraction of Alberta Oilsands
Non Aqueous Extraction of Alberta OilsandsNon Aqueous Extraction of Alberta Oilsands
Non Aqueous Extraction of Alberta OilsandsKrupal Pal, Ph.D., P.Eng
 
Biofuel from Algae for future use (Lipid extraction)
Biofuel from Algae for future use (Lipid extraction)Biofuel from Algae for future use (Lipid extraction)
Biofuel from Algae for future use (Lipid extraction)Pravin clap
 
dipeptide conjugate poster gene kerstanki spring 2016 edits Evans Print
dipeptide conjugate poster gene kerstanki spring 2016 edits Evans Printdipeptide conjugate poster gene kerstanki spring 2016 edits Evans Print
dipeptide conjugate poster gene kerstanki spring 2016 edits Evans PrintGene Kerstanski
 
Poster-Next Generation Self-Healing Concrete-Infusing Bacteria into Engineere...
Poster-Next Generation Self-Healing Concrete-Infusing Bacteria into Engineere...Poster-Next Generation Self-Healing Concrete-Infusing Bacteria into Engineere...
Poster-Next Generation Self-Healing Concrete-Infusing Bacteria into Engineere...Ben Kaplan
 
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...Otago Energy Research Centre (OERC)
 
Assessing the main opportunities used of biomass, biowaste from forestry, agr...
Assessing the main opportunities used of biomass, biowaste from forestry, agr...Assessing the main opportunities used of biomass, biowaste from forestry, agr...
Assessing the main opportunities used of biomass, biowaste from forestry, agr...Michal Jablonsky
 
Bioethanol production from fruits and vegetable wastes
Bioethanol production from fruits and vegetable wastesBioethanol production from fruits and vegetable wastes
Bioethanol production from fruits and vegetable wastesarchana janamatti
 
Biodiesel from Mahua Oil by Lipase
Biodiesel from Mahua Oil by LipaseBiodiesel from Mahua Oil by Lipase
Biodiesel from Mahua Oil by LipaseMozhi Arasu
 
Acetone - Mesitylene Al2O3 catalyst
Acetone - Mesitylene Al2O3 catalystAcetone - Mesitylene Al2O3 catalyst
Acetone - Mesitylene Al2O3 catalystKathleen Brown
 

Similaire à Procesado de aceite de algas (20)

Isolation and Purification of Secoisolariciresinoldiglucoside oligomers (Lign...
Isolation and Purification of Secoisolariciresinoldiglucoside oligomers (Lign...Isolation and Purification of Secoisolariciresinoldiglucoside oligomers (Lign...
Isolation and Purification of Secoisolariciresinoldiglucoside oligomers (Lign...
 
Organic Extraction Distillation Process With Abe Extraction
Organic Extraction Distillation Process With Abe ExtractionOrganic Extraction Distillation Process With Abe Extraction
Organic Extraction Distillation Process With Abe Extraction
 
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
 
Apostolos Vlyssidis - NTUA
Apostolos Vlyssidis - NTUAApostolos Vlyssidis - NTUA
Apostolos Vlyssidis - NTUA
 
Characterizing The Fate And Transport Of Chemicals Of Emerging Concern (CEC’s...
Characterizing The Fate And Transport Of Chemicals Of Emerging Concern (CEC’s...Characterizing The Fate And Transport Of Chemicals Of Emerging Concern (CEC’s...
Characterizing The Fate And Transport Of Chemicals Of Emerging Concern (CEC’s...
 
Evaluation of antioxidant and antiradical properties of pomegranate (punica g...
Evaluation of antioxidant and antiradical properties of pomegranate (punica g...Evaluation of antioxidant and antiradical properties of pomegranate (punica g...
Evaluation of antioxidant and antiradical properties of pomegranate (punica g...
 
Episode 4: PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD P...
Episode 4: PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD P...Episode 4: PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD P...
Episode 4: PRODUCTION OF 60, 000 MTPA OF OLEOCHEMICAL METHYL ESTER FROM RBD P...
 
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
 
Non Aqueous Extraction of Alberta Oilsands
Non Aqueous Extraction of Alberta OilsandsNon Aqueous Extraction of Alberta Oilsands
Non Aqueous Extraction of Alberta Oilsands
 
Biofuel from Algae for future use (Lipid extraction)
Biofuel from Algae for future use (Lipid extraction)Biofuel from Algae for future use (Lipid extraction)
Biofuel from Algae for future use (Lipid extraction)
 
STAR Poster
STAR PosterSTAR Poster
STAR Poster
 
dipeptide conjugate poster gene kerstanki spring 2016 edits Evans Print
dipeptide conjugate poster gene kerstanki spring 2016 edits Evans Printdipeptide conjugate poster gene kerstanki spring 2016 edits Evans Print
dipeptide conjugate poster gene kerstanki spring 2016 edits Evans Print
 
Poster-Next Generation Self-Healing Concrete-Infusing Bacteria into Engineere...
Poster-Next Generation Self-Healing Concrete-Infusing Bacteria into Engineere...Poster-Next Generation Self-Healing Concrete-Infusing Bacteria into Engineere...
Poster-Next Generation Self-Healing Concrete-Infusing Bacteria into Engineere...
 
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
 
Isolation and identification, Analysis of Phytoconstituents
Isolation and identification, Analysis of PhytoconstituentsIsolation and identification, Analysis of Phytoconstituents
Isolation and identification, Analysis of Phytoconstituents
 
Assessing the main opportunities used of biomass, biowaste from forestry, agr...
Assessing the main opportunities used of biomass, biowaste from forestry, agr...Assessing the main opportunities used of biomass, biowaste from forestry, agr...
Assessing the main opportunities used of biomass, biowaste from forestry, agr...
 
Bioethanol production from fruits and vegetable wastes
Bioethanol production from fruits and vegetable wastesBioethanol production from fruits and vegetable wastes
Bioethanol production from fruits and vegetable wastes
 
Biodiesel from Mahua Oil by Lipase
Biodiesel from Mahua Oil by LipaseBiodiesel from Mahua Oil by Lipase
Biodiesel from Mahua Oil by Lipase
 
Acetone - Mesitylene Al2O3 catalyst
Acetone - Mesitylene Al2O3 catalystAcetone - Mesitylene Al2O3 catalyst
Acetone - Mesitylene Al2O3 catalyst
 
Phytochemical Processing
Phytochemical ProcessingPhytochemical Processing
Phytochemical Processing
 

Plus de EOI Escuela de Organización Industrial

Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....EOI Escuela de Organización Industrial
 
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...EOI Escuela de Organización Industrial
 
El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...EOI Escuela de Organización Industrial
 
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...EOI Escuela de Organización Industrial
 
Ayudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalizaciónAyudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalizaciónEOI Escuela de Organización Industrial
 

Plus de EOI Escuela de Organización Industrial (20)

Establecimiento de la oficina de asesoramiento nacional.
Establecimiento de la oficina de asesoramiento nacional.Establecimiento de la oficina de asesoramiento nacional.
Establecimiento de la oficina de asesoramiento nacional.
 
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
 
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
 
El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...
 
SPEECH EEPA AWARDS_the break.pdf
SPEECH EEPA AWARDS_the break.pdfSPEECH EEPA AWARDS_the break.pdf
SPEECH EEPA AWARDS_the break.pdf
 
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...
 
Generación D
Generación DGeneración D
Generación D
 
Centro de Competencias para la formación digital agroalimentaria
Centro de Competencias para la formación digital agroalimentariaCentro de Competencias para la formación digital agroalimentaria
Centro de Competencias para la formación digital agroalimentaria
 
Ayudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalizaciónAyudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalización
 
Paquete de Digitalización
Paquete de DigitalizaciónPaquete de Digitalización
Paquete de Digitalización
 
Plan de Recuperación, Transformación y Resiliencia
Plan de Recuperación, Transformación y ResilienciaPlan de Recuperación, Transformación y Resiliencia
Plan de Recuperación, Transformación y Resiliencia
 
Programa Kit Digital PKD enero 2022
Programa Kit Digital PKD enero 2022Programa Kit Digital PKD enero 2022
Programa Kit Digital PKD enero 2022
 
La gestión de la diversidad en las empresas españolas (2009)
La gestión de la diversidad en las empresas españolas (2009)La gestión de la diversidad en las empresas españolas (2009)
La gestión de la diversidad en las empresas españolas (2009)
 
Tecnología para alimentar el mundo por Alberto Oikawa
Tecnología para alimentar el mundo por Alberto  OikawaTecnología para alimentar el mundo por Alberto  Oikawa
Tecnología para alimentar el mundo por Alberto Oikawa
 
Globalización post covid-19 por Stefano Pilotto
Globalización post covid-19 por Stefano PilottoGlobalización post covid-19 por Stefano Pilotto
Globalización post covid-19 por Stefano Pilotto
 
Marketing del día después por José María Corella
Marketing del día después por José María CorellaMarketing del día después por José María Corella
Marketing del día después por José María Corella
 
Carrera Internacional por Begoña Lanzazuri
Carrera Internacional por Begoña LanzazuriCarrera Internacional por Begoña Lanzazuri
Carrera Internacional por Begoña Lanzazuri
 
Organizarse mejor en tiempos de teletrabajo por Consuelo Verdú
Organizarse mejor en tiempos de teletrabajo por Consuelo VerdúOrganizarse mejor en tiempos de teletrabajo por Consuelo Verdú
Organizarse mejor en tiempos de teletrabajo por Consuelo Verdú
 
Metodologia OKR para lograr el éxito por Javier Martín
Metodologia OKR para lograr el éxito por Javier MartínMetodologia OKR para lograr el éxito por Javier Martín
Metodologia OKR para lograr el éxito por Javier Martín
 
¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero
¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero
¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero
 

Procesado de aceite de algas

  • 1. Downstream processing of algal oil Emilio Molina Grima Dpt. Chemical Engineering, University of Almería, SPAIN [email_address] Seminar on Microalgae IMDEA Energy-EOI, April 8 2010, Madrid
  • 2.
  • 3. Pretreatment of microalgae cells J.Y. Lee et al. (2009 ) Bioresour Technol. DOI10.1016/j.biotech2009.03.058 Comparison of several methods for effective lipid extraction from microalgae Lipid content (wt %) Non-disruption Autoclaving Bead-beating Microwaves Sonication Osmotic shock 30 20 10 0 30 20 10 0 30 20 10 0 Botryococcus sp Chlorella vulgaris Scenedemus sp
  • 4. Extraction of lipids Solvent Mixture (dry Isochrysis galbana ) Cl 3 CH/MeOH/H 2 O (1:2:0.8 v/v/v) Hexane/EtOH 96% (1:2.5 v/v) Hexane/EtOH 96% (1:0.9 v/v) n-Butanol EtOH 96% EtOH 96%/H 2 O (1:1 v/v) Hexane/Isopropanol (1:1.5 v/v) Cl 3 CH/MeOH/H 2 O (1:1:0.9 v/v/v) Hexane/EtOH/ H2O (6:1:1 v/v/v) Hexane/EtOH/ H2O (29:4.7:1 v/v/v) Cl 3 CH Cl 3 CH Cl 3 CH Cl 3 CH Extraction (monophasic) Purification (two phases) E. Molina Grima et al. (1994) JAOCS, 71(9), 955-959
  • 5. Extraction of lipids Information on saturation curves may be found at: Walter D. Bonner (1910). Experimental Determination of Binodal Curves, Plait Points, and tie lines, in Fifty systems, each consisting of water and two organic liquids. J. Phys. Chem. 14, 738-789 E. Molina Grima et al. (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. JAOCS, 71(9), 955-959 Optimal tie line
  • 6. Extraction of lipids Yields (%) of Extracts and Raffinates ( in parentheses ) of lipids extraction from dry Isochrysis galbana Cl 3 CH/MeOH/H 2 O (1:2:0.8 v/v/v) Hexane/EtOH 96% (1:2.5 v/v) Hexane/EtOH 96% (1:0.9 v/v) Butanol EtOH 96% EtOH 96%/H2O (1:1 v/v) Hexane/Isopropanol (1:1.5 v/v) 92.9 (0.9) 52.2 (27.4) 49.5 (8.3) 70.4 84.4 63.3 66.0 Solvent Mixture
  • 7. Extraction of fatty acids Yields (%) of Extracts obtained by direct saponification from dry Isochrysis galbana Cl 3 CH/MeOH/H 2 O (1:2:0.8 v/v/v) Hexane/EtOH 96% (1:2.5 v/v) Hexane/EtoH 96% (1:0.9 v/v) Butanol EtOH 96% EtOH 96%/H 2 O (1:1 v/v) Hexane/Isopropanol (1:1.5 v/v) Solvent system + KOH (47.5 mL solvent /g KOH) - 81.0 48.0 9.0 79.8 46.5 62.0 60ºC-1 h - 75.0 47.1 - 79.2 45.5 61.1 Room-8 h
  • 8.
  • 9. Optimization of fatty acids extraction 810 g 405 g Extract (overflow) 480 g Wet biomass (100 g d.b) ethanol (1 L) KOH ethanol (0,5 L) Residue Raffinate (underflow) Alcoholic solution Fatty acids soaps (25% water) S-L (W) S-L Fatty acids hexane hexane hexane hexane L-L L-L L-L L-L Alcoholic phase pH6 Alcoholic solution Fatty acids soaps (25% water) water Alcoholic solution Fatty acids (40% water) HCl Ramírez Fajardo et al., 2007
  • 10. Optimization of fatty acids extraction Influence of Ethanol (96%)/wet biomass M.J. Ibañez González et al. (1998) JAOCS 75, 1735 – 1740. Lyophilized
  • 11. Optimization of fatty acids extraction S-L stage V 01 = 810 g (1 L ethanol) +21 g KOH Residue Alcoholic solution Fatty acid soaps (25% water) 2 1 V 1 +V 2 = 1336 g y A =0.0072 V 02 = 405 g (0.5 L ethanol) L 1 X A1 X B1 X S1 Lo =480 g X A0 = 0.023 X B0 = 0.977 L 2 X A2 X B2 X S2 Wet Biomass (100 g d.b) Recovery Yield 87%
  • 12. Optimization of fatty acids extraction V 0 Scale-up calculations needed (repeated contact system) L A0 + V 01 = L 1 + V 1 = M 1 X A0 ·L A0 = Y A1 ·V 1 + X A1 ·L 1 S-L stage underflow overflow x A2 L 0 X B0 = L 1 X B1 V 01 = 810 g (1 L ethanol) Residue Alcoholic solution Fatty acid soaps (25% water) 2 1 V 1 +V 2 = 1336 g y A = 0.0072 V 02 = 405 g (0.5 L ethanol) L 1 X A1 X B1 X S1 Lo = 480 g X A0 = 0.023 X B0 = 0.977 L 2 X A2 X B2 X S1 Wet Biomass (100 g d.b) Recovery Yield 91% B L 0 A S x A0 V 1 M 1 V 2 L 1 L 2 M 2 Kg FA soaps solution Kg inert solid P= = 3 X A1 1- X B1 Y A1 = (Ideal stage)
  • 13. Optimization of fatty acids extraction Δ Scale-up calculations needed (counter current systems) S-L stage A S B V 2 V 1 x A2 x A0 L n L 2 L 1 M L 0 V n+1 2 1 V 1 y A1 L 1 X A1 X B1 X S1 Lo =480 g X A0 = 0.023 X B0 =0.977 L 2 X A2 X B2 X S2 V 2 y A2 V 0 =1215 g Extract (overflow) Raffinate (underflow)
  • 14. Optimization of fatty acids extraction L-L Extraction of FA V 1 y 1 V 1 y 2 V 1 y 3 V 1 y 4 Fatty acids Extract (Hexane phase) V 0 = 0.026 L Hexane V 0 = 0.026 L Hexane V 0 = 0.026 L Hexane Alcoholic phase Alcoholic solution Fatty acids (40% water) L-L L-L L-L L-L V 0 = 0.026 L Hexane Lo = 1,53 kg X A0 = 903 mg/L L 1 X A1 L 2 X A2 L 3 X A3 L 4 X A4
  • 15. Optimization of fatty acids extraction Fatty acids concentration Alcoholic phase C FA (mg·L -1 ) The distribution equilibria of FA between the alcoholic phase and hexane facilitate the calculation of design, scale-up and assessment purposes L/V 930 mg L -1 0 1000 2000 3000 4000 5000 6000 0 50 100 150 200 Fatty acids concentration Hexane phase, C AH (mg·L -1 ) Step1 Step 2 Equililbrium x 1 x 2
  • 16. Optimization of fatty acids extraction Conclusions  FA recovery yield (wet biomass)  FA recovery yield (dry biomass)  Important reduction of hexane  Important reduction of alcohol (96% v/v)  Solvent/biomass 87% 96,2% 90% 84% 24 mL/g biomass
  • 17. Optimization of fatty acids extraction E. Molina Grima et al. (1996) Spanish patent 9602090
  • 18. Direct transesterification of paste Biomass Biodiesel BIOMASS HEXANE ACETONE EPA METHANOL RESIDUE ACETYL CHLORIDE WARTER CONDENSER MIXER EVAPORATOR CROMATOGRAPHY CENTRI- FUGE FILTER SOLIDS EXTRACTOR REACTOR ULTRASONIC MIXER OPCIONAL OPTIONAL E Belarbi et al. (2000 ). Enzyme and Microbial Technology 26 516-529 . EVAPORATOR COOLER EVAPORATOR
  • 19. Paste biomass Hexane Methanol Acetyl chloride/ H 2 SO 4 (10%) Extractor Cooler FAMEs Spent biomass Centrifugation Filtration 1000 mL *500 g 50 mL 1000 mL Temperature = 100 ºC Time: 120 min 9.1 g *(500 g of paste biomass of Phaeodactylum tricornutum ≈ 100 g of lyofilized biomass) (9.9% of TFAs) 500 mL Extractor Condenser Direct transesterification of paste Biomass Phaeodactylum tricornutum - Monodus subterraneus – Scenedesmus almeriensis EVAPORATOR
  • 20. Direct transesterification of paste Biomass CASE STUDY Slurry reaction products (Spent biomass, water, methanol, FAMES, catalyst) Biodiesel produced per year: 13.550 kg Calculations needed for processing the paste biomass produced per day in one Ha of tubular photobioreactors of Scenedesmus almeriensis. Slurry reaction products (Spent biomass, water, methanol, FAMES, catalyst) V 01 = 605 kg/day Hexane Residue S-L 2 S-L 1 V 1 +V 2 = 773 kg/day y A =0.0483 V 02 = 303 kg/day Hexane L 1 X A1 X B1 Lo =3190 Kg/day X A0 = 0.013 X B0 =0.987 L 2 X A2 X B2 Reaction L= 1375 Kg/day X A0 = 0.03 X B0 =0.997 Wet biomass 1815 kg/day methanol + acetyl chloride or 10% H 2 SO 4 Hexane solution of methyl esters S-L 2 S-L 1 V 1 = 395,15 kg/day y A1 =0.095 L 1 X A1 X B1 L 2 X A2 X B2 V 2 y A2 V 0 =530 kg/day Lo =3190 kg/day X A0 = 0.013 X B0 =0.987 Residue Hexane solution of methyl esters Hexane
  • 21. Paste Biomass Hexane Methanol Acetyl chloride / H 2 SO 4 REACTOR Centrifugation Filtration Spent Biomass ** Biodiesel *** EPA EXTRACTOR * Biodiesel Argentated silica gel column chromatography Hexane: Acetone (99.5: 0.5 v/v) EPA (99%): 2154 $/ Kg EPA (70%): 185 $/ Kg (Abayoumi et al., 2009) 1500 mL 500 g 50 mL 1000 mL (9.9 % of TFAs) (9.1 g) (6.9 g) (1.6 g) (76%) (18%) EXTRACTOR Cooler Direct transesterification of paste Biomass * Crude biodiesel with high content of EPA (27.7%) and a 92% recovery yield with respect to the total FA contained in the biomass ** Biodiesel with low EPA content (8.2%) and a 76% recovery yield with respect to the total FA contained in the biomass *** High grade EPA methylester (96.4%). Recovery yield 18% with respect to the total FA contained in the biomass. Cooler EVAPORATOR
  • 22.
  • 23.
  • 24. Multi-step process 4. Protein and carbohydrate separation from non lipidic residue Carbohydrates Proteins Precipitation 1. Protein and carbohydrate extraction from wet biomass Biomass slurry Wet Biomass Solid-Liquid Extraction Precipitation Proteins Carbohydrates 3. Chlorophyll separation from non lipidic residue Enriched in ethanol VACUUM BATCH DISTILLATION Filtration Chlorophylls 2. Fatty acid extraction by direct saponification and recovery of unsaponifiable products (carotenoids) Carotenoids Spent biomass Liquid-Liquid Extraction Fatty Acids Saponification Filtration Liquid-Liquid Extraction 59,0% 91% 6,6% Chlorophyll a 10,8% Chlorophyll c 41,0 % 16,3% 15,5%
  • 25. Multi-step process Carotenoids in hexane 0.33 g L-L L-L L-L 0.9 L hexane L-L L-L 0.9 L hexane 0.9 L hexane 0.9 L hexane Alcoholic phase 0.9 L hexane S-L, solid-liquid extraction L-L , Liquid-Liquid extraction P, Precipitation S-L 1.5 L buffer S-L 1.5 L buffer 476 g Wet biomass (100 g d.b) Proteins in the pellet 17.7 g P (NH 4 ) 2 SO 4 Carbohydrates in water 1.7 g 0.3 L water S-L residue 40 g KOH 1 L ethanol S-L 0.5 L ethanol
  • 26. Multi-step process pH 6 HCl Alcoholic Phase Fatty acids in hexane 8.0 g L-L L-L L-L 0.45 L hexane L-L 0.45 L hexane 0.45 L hexane 0.45 L hexane D, Distillation F, Filtration P, Precipitation L-L , Liquid-liquid extraction D Carbohydrates in water enriched in ethanol F P (NH4) 2 SO4 Chlorophylls in torte Chlorophylls a 0.0753 g Chlorophylls c 0.0378 g Proteins in pellet 6.7 g
  • 27. Downstream processing of algal oil Acknowledgements Antonio Giménez Giménez Alfonso Robles Medina Maria Jose Ibáñez González Jose M. Fernandez-Sevilla Francisco Gabriel Acién Fernández Emilio Molina Grima El Hassan Belarbi

Notes de l'éditeur

  1. In this slide, you can see a block diagram for the direct saponification of wet biomass, the amount of biomass and the concentration of saponifiable lipids, the amount of ethanol used in the saponification reaction, as well as the amount of ethanol used in washing the slurry after the reaction. Since the experimental recovery yield was 87%, the concentration of fatty acid in the overflow leaving the S-L stage was 0.0072 g of fatty acids per gram of alcoholic solution, equivalent to a 903 mg/L.
  2. If these two stages would have been two ideal stages , (i.e. the concentration of fatty acids in the overflow leaving each stage is in equilibrium with the concentration of the fatty acid solution retained within the slurry), the yield would have been 91%. B y using basic Chemical Engineering principles , such as the overall mass balance in each stage, the fatty acid balance, the inert solid balance, and also with the data that give us the amount of soap fatty acids retained by the slurry per amount of inert solid (line of retention), we can calculate stage by step , all the unknown flows and concentrations. It is more practical and easy to handle if the calculations were done by using a ternary diagram in which each vertices represent the 100% of fatty acid, solvent or inert (plus the accompanying water).This line represent the variation of the fatty acid solution retained by the slurry. Since you know the amount of wet biomass and its fatty acid content, as well as the amount of solvent used in each step, it is easy to fix in the ternary diagram this point, that at the same time represent the point corresponding to the amount of underflow plus overflow leaving the stage. The underflow must be allocated in the retention line ; and the overflo w must be on the hypotenuse of the triangle. Therefore by tracing a line connecting the inert and this point (ideal stage concept), on the retention line is determined the concentration of the underflow leaving the firs stage and, in the hypotenuse, we can find the concentration of fatty acids in the overflow leaving the first stage too. Once known these variables we can connect this underflow with the vertices corresponding to the solvent and determine M2, and then L2,and V2, and so on, until we achieve a point in the retention time, or in the hypotenuse, that determine a recovery yield equal or superior that the target. The number of these lines determines the number of stages needed. The calculations using the plot are easy and more intuitive. For solving problems of the type “what will happen if we change this target, or this amount etc. )
  3. The process has also been developed at lab scale using 500 g of paste biomass. It needs an initial S-L extraction of the soluble proteins and carbohydrates in a buffer solution, the protein are later precipitated from the water solution, recovering the carbohydrates in the liquid phase. The biomass slurry is then subjected to a direct saponification of the algal oil in another S-L extraction unit . Once adding water, the caroteonids are recovered in a repeated extraction process.