SlideShare une entreprise Scribd logo
Université de Béchar
Laboratoire des Études Énergétiques en Zones Arides
Équipe Modélisation & Simulation des Systèmes
Université de Béchar
Laboratoire des Études Énergétiques en Zones Arides
Équipe Modélisation & Simulation des Systèmes
Cours réalisé par : Pr. TAMALI
Mohammed,
http://www.tamali.org
Université de Béchar | FacultéTechnologie
(ENERGARID Lab./Equipe SimulIA)
Cours réalisé par : Pr. TAMALI
Mohammed,
http://www.tamali.org
Université de Béchar | FacultéTechnologie
(ENERGARID Lab./Equipe SimulIA)
CHAPITRE VI :
Système d’Information
Géographique
Concepts de base & fondements.
CHAPITRE VI :
Système d’Information
Géographique
Concepts de base & fondements.
Version 4.0
Presentation
The University of Bechar was born in 1986 as the National Institutes of
Higher Education (INES), in 1992 it becomes University Center and on
January 1th 2007, it was officially declared as a university. Since then,
many research teams have seen the day. In 2011, The Laboratory for
Energetical Systems Studies Applied to Arid Zones was run by a group of
young and well motivated researchers, composed by seven research teams,
the main task was and still the solving real problems altering arid zones,
SimulIA is one of the lab teams. The workload of SimulIA concerns
modeling and simulating real systems in arid areas.
Major research areas:
Energy & Environment (Modeling & Simulation)
Application & usage of heat transfer process in arid zones
Energy usage and economy.
2D Mapping development of resources in arid zones.
the main task in the short term of SIMULIA Team, is to develop the
computer code for modeling and simulation which can be accessed online.
Website of the laboratory team: www.univ-bechar.dz/energarid/simulia
The University of Bechar was born in 1986 as the National Institutes of
Higher Education (INES), in 1992 it becomes University Center and on
January 1th 2007, it was officially declared as a university. Since then,
many research teams have seen the day. In 2011, The Laboratory for
Energetical Systems Studies Applied to Arid Zones was run by a group of
young and well motivated researchers, composed by seven research teams,
the main task was and still the solving real problems altering arid zones,
SimulIA is one of the lab teams. The workload of SimulIA concerns
modeling and simulating real systems in arid areas.
Major research areas:
Energy & Environment (Modeling & Simulation)
Application & usage of heat transfer process in arid zones
Energy usage and economy.
2D Mapping development of resources in arid zones.
the main task in the short term of SIMULIA Team, is to develop the
computer code for modeling and simulation which can be accessed online.
Website of the laboratory team: www.univ-bechar.dz/energarid/simulia
-1-1
PlanGénéralités
Théorie des systèmes & Systémique
Théorie des graphes
Concepts fondamentaux
(Modélisation graphique)
SIG, Concepts de base
Domaines d’application & Outils
Interfaces des outils logiciels GIS
Opérations communes sur outils SIG (QGIS)
Conclusions
Généralités
Théorie des systèmes & Systémique
Théorie des graphes
Concepts fondamentaux
(Modélisation graphique)
SIG, Concepts de base
Domaines d’application & Outils
Interfaces des outils logiciels GIS
Opérations communes sur outils SIG (QGIS)
Conclusions 00
la représentation graphique a été dans tous les temps un moyen rapide
pour la communication. Les symboles, un plan ou une carte cérébrale
sont le langage, par excellence, pour la mise en place de vision et
encore plus pour l’élaboration de décision.
Ce cours présente une introduction de base en termes de conception et
d’élaboration de productions cartographiques par l’utilisation des outils
d’analyse de l’espace métrique.
Les objectifs de cette intervention sont la vulgarisation des notions
fondamentales de la cartographie et ses champs d'applications ainsi
que les concepts systémiques afin de monter des applications pour des
raisons de GESTION, de MONITORING de l’espace et de son
utilisation.
Pour des valeurs de l’importance de l'information géographique détenue
(découpage politique), la nécessité des opération de géo-localisation
(applications mobiles), l’organisation SI est l’alternative par excellence,
plus encore sont les SI.G.
GénéralitésGénéralités 11
5
Equation de croissanceEquation de croissance
Théorie des systèmesThéorie des systèmes
22
La théorie des systèmes est la science de l’étude
transdisciplinaire de l’organisation abstraite des phénomènes,
indépendamment de leur substance, le type ou l’échelle
spatiale, temporelle de l’existence. Elle étudie à la fois, les
principes communs à toutes les entités complexes, et les
modèle (généralement mathématique) qui peuvent être utilisé
pour les décrire.
Dans sa plus simple expression, l’équation différentielle,
appelée équation de croissance de Ludwig Von Bertalanffy,
est selon la taille (L) par rapport au temps (t) :
L’(t) = k.(L∞
- L(t))
Où k est le taux de croissance individuel et L∞
la taille
individuelle maximum.
Selon Bertalanffy, tout est SYSTÈME par défaut.
Et tout contribue à la tenue de son environnement système
Et y est influencé.
La théorie des systèmes est la science de l’étude
transdisciplinaire de l’organisation abstraite des phénomènes,
indépendamment de leur substance, le type ou l’échelle
spatiale, temporelle de l’existence. Elle étudie à la fois, les
principes communs à toutes les entités complexes, et les
modèle (généralement mathématique) qui peuvent être utilisé
pour les décrire.
Dans sa plus simple expression, l’équation différentielle,
appelée équation de croissance de Ludwig Von Bertalanffy,
est selon la taille (L) par rapport au temps (t) :
L’(t) = k.(L∞
- L(t))
Où k est le taux de croissance individuel et L∞
la taille
individuelle maximum.
Selon Bertalanffy, tout est SYSTÈME par défaut.
Et tout contribue à la tenue de son environnement système
Et y est influencé.
Autrichien [1901-1972],
Biologie, Écologie, Médecine,
Psychologie,
Théorie générale des systèmes
Autrichien [1901-1972],
Biologie, Écologie, Médecine,
Psychologie,
Théorie générale des systèmes
6
Théorie des systèmesThéorie des systèmes
33
La géomatique (SIG) est pour sa relation avec le vivant, son
patrimoine ainsi que ses environnements intrinsèques/extrinsèques,
trop touchée par cette théorie.
L’approche systémique, comme application de la théorie
générale des systèmes, est fondée sur les principes suivants:
1. Les organisations, toutes les entités des organismes, sont
‘ouvertes’ à l’environnement et pour cela, ils doivent entretenir
des relations satisfaisantes avec ce dernier pour survivre.
2. Les systèmes ouverts sont caractérisés par un cycle continu
d’entrée, de transformation interne, de sortie et de rétroaction.
La géomatique (SIG) est pour sa relation avec le vivant, son
patrimoine ainsi que ses environnements intrinsèques/extrinsèques,
trop touchée par cette théorie.
L’approche systémique, comme application de la théorie
générale des systèmes, est fondée sur les principes suivants:
1. Les organisations, toutes les entités des organismes, sont
‘ouvertes’ à l’environnement et pour cela, ils doivent entretenir
des relations satisfaisantes avec ce dernier pour survivre.
2. Les systèmes ouverts sont caractérisés par un cycle continu
d’entrée, de transformation interne, de sortie et de rétroaction.
Prix de distinction à l’honneur
de L.v. Bertalanffy
Prix de distinction à l’honneur
de L.v. Bertalanffy
Projection dans
l’espace système
Projection dans
l’espace système
7
Théorie des systèmesThéorie des systèmes
44
La théorie des systèmes est un principe selon lequel tout est
système, ou tout peut être conceptualisé selon une logique de
système.
Ce principe est formalisé en 1968 par Ludwig Von Bertalanffy dans
General System Theory, mais les bases sont multiples, la
principale étant certainement le mouvement cybernétique.
Ces théories ont permis l'établissement de la systémique en tant
que méthode scientifique, et la base théorique associée est
aujourd'hui plutôt appelé théorie systémique.
La théorie des systèmes décrit la réalité observée et suggère
d’établir des liens logiques entre les facteurs.
Elle permet ainsi de découvrir que les causalités linéaires
simplistes ne sont pas suffisantes pour expliquer les choses et que
les corrélations établies entre les facteurs sont très nombreuses
chose qui nécessite encore plus d’attention.
La théorie des systèmes est un principe selon lequel tout est
système, ou tout peut être conceptualisé selon une logique de
système.
Ce principe est formalisé en 1968 par Ludwig Von Bertalanffy dans
General System Theory, mais les bases sont multiples, la
principale étant certainement le mouvement cybernétique.
Ces théories ont permis l'établissement de la systémique en tant
que méthode scientifique, et la base théorique associée est
aujourd'hui plutôt appelé théorie systémique.
La théorie des systèmes décrit la réalité observée et suggère
d’établir des liens logiques entre les facteurs.
Elle permet ainsi de découvrir que les causalités linéaires
simplistes ne sont pas suffisantes pour expliquer les choses et que
les corrélations établies entre les facteurs sont très nombreuses
chose qui nécessite encore plus d’attention.
8
Théorie des systèmesThéorie des systèmes
55
Caractéristiques des systèmes :
Déterminisme : existence justifiée
Observabilité : Observation des méthodes et moyens
Fonctionnel : Nécessité du rôle individuel dans l’ensemble
Quantifiabilité : Mise sous forme d’ensembles quantifiables
Mesurabilité : Mesure utilisant l’instrument et les unités
Équilibre interne : Entretien de la stabilité individuelle
Composition : Complémentarité individuelle dans un ensemble
Maintenabilité : Possibilité d’entretien
Fiabilité : Rôle prouvé dans l’ensemble
Robustesse : Tolérance aux fautes suite aux différents chargement du système
Dépendance : Entretien et collaboration
Caractéristiques des systèmes :
Déterminisme : existence justifiée
Observabilité : Observation des méthodes et moyens
Fonctionnel : Nécessité du rôle individuel dans l’ensemble
Quantifiabilité : Mise sous forme d’ensembles quantifiables
Mesurabilité : Mesure utilisant l’instrument et les unités
Équilibre interne : Entretien de la stabilité individuelle
Composition : Complémentarité individuelle dans un ensemble
Maintenabilité : Possibilité d’entretien
Fiabilité : Rôle prouvé dans l’ensemble
Robustesse : Tolérance aux fautes suite aux différents chargement du système
Dépendance : Entretien et collaboration
Théorie des graphesThéorie des graphes
On fait généralement remonter la naissance de la Théorie des Graphes au célèbre
problème des ponts de Königsberg (aujourd'hui Kaliningrad) qui passionnait la
bourgeoisie prussienne du XVIIIème siècle : La Ville de Königsberg, sur la Pregel,
était pourvue de 7 ponts et la question était de savoir si l'on pouvait imaginer une
promenade dans la ville qui emprunterait chacun des 7 ponts une fois et une seule
pour revenir à son point de départ.
La théorie des graphes s’est alors développée et intégrée dans diverses disciplines
telles que la chimie, la biologie, les sciences sociales et sans oublier les réseaux
d’ordinateurs et de télécommunication. Depuis le début du XXe siècle, elle constitue
une branche à part entière des mathématiques, grâce aux travaux de König, Menger,
Cayley puis de Berge et d’Erdös [1].
De manière générale, un graphe permet de représenter la structure, les connexions
d’un ensemble complexe dit ‘système’ (S) en exprimant les relations entre ses
éléments tel que les réseaux de communication, les réseaux routiers, interaction de
diverses espèces animales, circuits électriques, en programmation et le plus
intéressant son application aux sciences de l’Internet.
On fait généralement remonter la naissance de la Théorie des Graphes au célèbre
problème des ponts de Königsberg (aujourd'hui Kaliningrad) qui passionnait la
bourgeoisie prussienne du XVIIIème siècle : La Ville de Königsberg, sur la Pregel,
était pourvue de 7 ponts et la question était de savoir si l'on pouvait imaginer une
promenade dans la ville qui emprunterait chacun des 7 ponts une fois et une seule
pour revenir à son point de départ.
La théorie des graphes s’est alors développée et intégrée dans diverses disciplines
telles que la chimie, la biologie, les sciences sociales et sans oublier les réseaux
d’ordinateurs et de télécommunication. Depuis le début du XXe siècle, elle constitue
une branche à part entière des mathématiques, grâce aux travaux de König, Menger,
Cayley puis de Berge et d’Erdös [1].
De manière générale, un graphe permet de représenter la structure, les connexions
d’un ensemble complexe dit ‘système’ (S) en exprimant les relations entre ses
éléments tel que les réseaux de communication, les réseaux routiers, interaction de
diverses espèces animales, circuits électriques, en programmation et le plus
intéressant son application aux sciences de l’Internet.
66
Théorie des graphesThéorie des graphes
Les graphes constituent donc une
méthode de pensée qui permet de
modéliser une grande variété de
problèmes en se ramenant à l’étude de
sommets et d’arcs. Les derniers
travaux en théorie des graphes sont
souvent effectués par des
informaticiens, du fait de l’importance
que revêt l’aspect algorithmique.
Les graphes constituent donc une
méthode de pensée qui permet de
modéliser une grande variété de
problèmes en se ramenant à l’étude de
sommets et d’arcs. Les derniers
travaux en théorie des graphes sont
souvent effectués par des
informaticiens, du fait de l’importance
que revêt l’aspect algorithmique.
Un graphe simple noté G est un couple
formé de deux ensembles liés par une
application mathématique. L’un d’eux est
l’ensemble X={x1,x2,...,xn} dont les
éléments sont appelés ‘sommets’, l’autre
est l’ensemble A={a1,a2,...,am}, partie de
l’ensemble P2
(X) des parties à deux
éléments (couple de sommets) de X, dont
les éléments sont appelé ‘les arêtes’. On
notera cette relation G=(X,A).
Lorsque a={x,y}A, on dit que a est l’arête
de G d’extrémités x et y, ou que a joint x et
y, ou que a passe par x et y. Les sommets
x et y sont dits adjacents dans G.
Un graphe simple noté G est un couple
formé de deux ensembles liés par une
application mathématique. L’un d’eux est
l’ensemble X={x1,x2,...,xn} dont les
éléments sont appelés ‘sommets’, l’autre
est l’ensemble A={a1,a2,...,am}, partie de
l’ensemble P2
(X) des parties à deux
éléments (couple de sommets) de X, dont
les éléments sont appelé ‘les arêtes’. On
notera cette relation G=(X,A).
Lorsque a={x,y}A, on dit que a est l’arête
de G d’extrémités x et y, ou que a joint x et
y, ou que a passe par x et y. Les sommets
x et y sont dits adjacents dans G.
Un multi-graphe G = (X, A, f) est déterminé par:
• L’ensemble X des sommets
• L’ensemble A, cette fois abstrait
• L’application f : A [P2
(X)]
un multi-graphe avec boucles peut comprendre des arêtes
multiples entre deux sommets donnés ainsi que des boucles
multiples en un sommet.
Un multi-graphe G = (X, A, f) est déterminé par:
• L’ensemble X des sommets
• L’ensemble A, cette fois abstrait
• L’application f : A [P2
(X)]
un multi-graphe avec boucles peut comprendre des arêtes
multiples entre deux sommets donnés ainsi que des boucles
multiples en un sommet.
Dans le cadre général, un
graphe est dit non orienté si le ne
contient pas de sens sur les
arêtes.
Le nombre de sommets présents
dans un graphe est l'ordre du
graphe. Le degré d'un
sommet x, noté d(x) est le
nombre d'arêtes dont ce sommet
est une extrémité.
Dans le cadre général, un
graphe est dit non orienté si le ne
contient pas de sens sur les
arêtes.
Le nombre de sommets présents
dans un graphe est l'ordre du
graphe. Le degré d'un
sommet x, noté d(x) est le
nombre d'arêtes dont ce sommet
est une extrémité.
Exemple de cas où le modèle graphe est recommandéExemple de cas où le modèle graphe est recommandé
77
Théorie des graphesThéorie des graphes
Une chaîne est une liste ordonnée de
sommets telle que chaque sommet de la
liste soit adjacent au suivant. La longueur
d'une chaîne est le nombre d'arêtes qui la
composent.
La distance entre deux sommets est la
plus courte longueur des chaînes qui les
relient. Le diamètre d'un graphe est la plus
grande distance entre deux sommets.
Un graphe orienté Gn est formé de deux
ensembles: un ensemble X={x1,x2,...,xn}
dont les éléments sont appelés sommets,
et un ensemble A={a1,a2,...,an), partie du
produit cartésien X×X, dont les éléments
sont appelés arcs. On notera Gn=(X,A).
Si a=(x,y) est un arc du graphe G, x est
l’extrémité initiale de a et y l’extrémité
finale de a.
À tout graphe orienté Gn(X,A), on associe
le graphe simple G(X,B) où :
{x, y}B ≠ ((x, y)A ou (y, x)A)).
On appelle graphe complet un graphe
dont tous les sommets sont adjacents.
Un graphe dont les arêtes sont
caractérisées par une quantité est dit
valué.
Un sous-graphe d'un graphe G est un graphe G' composé de
certains sommets de G, ainsi que toutes les arêtes qui relient
ces sommets.
La matrice associée à un graphe d'ordre n dont les sommets
sont numérotés de 1 à n est une matrice symétrique, de
dimension n×n, où le terme à l'intersection de la ième
ligne et
de la jème
colonne vaut k, nombre d'arêtes reliant i et j. C’est
encore la matrice de liaison M.
Un sous-graphe d'un graphe G est un graphe G' composé de
certains sommets de G, ainsi que toutes les arêtes qui relient
ces sommets.
La matrice associée à un graphe d'ordre n dont les sommets
sont numérotés de 1 à n est une matrice symétrique, de
dimension n×n, où le terme à l'intersection de la ième
ligne et
de la jème
colonne vaut k, nombre d'arêtes reliant i et j. C’est
encore la matrice de liaison M.
Soit x un sommet d’un graphe
orienté. On note d+
(x) le nombre
d’arcs ayant x comme extrémité
initiale, et d-
(x) le nombre d’arcs
ayant x comme extrémité finale.
Ainsi, on a :
d(x)=d+
(x)+ d-
(x)
La matrice des distances du
graphe G est la matrice
D={d(i, j)=(d(xi, xj)}.
Sous-graphe G’ de G(X,A)Sous-graphe G’ de G(X,A)
Exemple graphe orientéExemple graphe orienté
Exemple graphe G(X,A)Exemple graphe G(X,A)
88
Théorie des graphesThéorie des graphes
● Le graphe discret d’ordre n, Dn,=(X, 0).
● Le graphe complet d’ordre n, Knn où X={1,2,...,n} et A = P2
(X)
● Le graphe biparti-complet Kpq où X={x1,x2,...,xp,y1,y2,...,yq} et A=f(xi, yj}/ 1≤i≤p et 1≤j≤q}.
● Le cycle Cnn où X={1,2…,n} et A={{1, 2},{2, 3},...,{n-1, n},{n, 1}}.
● Un graphe valué est un graphe orienté Gn(X,A), muni d’une fonction C appelée fonction
de coût.
● Le coût d’un chemin est la somme des coûts des arcs de ce chemin. On peut définir la
matrice des coûts du graphe, c’est la matrice C={ci,j} où : ci,j est le coût de l’arête (i, j).
● Un graphe est dit simplement connexe si pour tout couple (i, j)A, il y a toujours un
chemin de i vers j.
● Un arbre est un sous-graphe simple connexe ne possédant pas de cycle simple et
construit à base de tous les nœuds du graphe d’origine.
● La matrice d’incidence A d’un graphe orienté Gn est définie par :
● Valeur d’une chaîne: la somme des valeurs des arêtes (arcs) d’une chaîne d’un graphe
valué.
● Le graphe discret d’ordre n, Dn,=(X, 0).
● Le graphe complet d’ordre n, Knn où X={1,2,...,n} et A = P2
(X)
● Le graphe biparti-complet Kpq où X={x1,x2,...,xp,y1,y2,...,yq} et A=f(xi, yj}/ 1≤i≤p et 1≤j≤q}.
● Le cycle Cnn où X={1,2…,n} et A={{1, 2},{2, 3},...,{n-1, n},{n, 1}}.
● Un graphe valué est un graphe orienté Gn(X,A), muni d’une fonction C appelée fonction
de coût.
● Le coût d’un chemin est la somme des coûts des arcs de ce chemin. On peut définir la
matrice des coûts du graphe, c’est la matrice C={ci,j} où : ci,j est le coût de l’arête (i, j).
● Un graphe est dit simplement connexe si pour tout couple (i, j)A, il y a toujours un
chemin de i vers j.
● Un arbre est un sous-graphe simple connexe ne possédant pas de cycle simple et
construit à base de tous les nœuds du graphe d’origine.
● La matrice d’incidence A d’un graphe orienté Gn est définie par :
● Valeur d’une chaîne: la somme des valeurs des arêtes (arcs) d’une chaîne d’un graphe
valué.






sinon0
sortante'1
'1
, inoeudledeestjarêtelsi
inoeudlesurincidenteestjarêtelsi
a ji
99
La topologie des graphes est plus désignée pour des questions de
modélisation graphique de systèmes de processus. Son intérêt est dans
sa simplicité de mise en œuvre. Le cadre pratique couvre :
● Gestion des bilans énergétique et autre
● Gestion des flux et trafics
● Gestion des échanges
● Gestion des hiérarchies
● Ordonnancement des tâches
● Planification
● Projection
● Organisation fonctionnelle
● Traitements de l’information & connaissances
● Systèmes automatiques
● Systèmes relationnels.
● … 1010
Théorie des graphesThéorie des graphes
Concepts fondamentaux SIGConcepts fondamentaux SIG
Modélisation
Pour la modélisation, le système étudié est appelé système primaire. Son
modèle (équivalent) est une représentation de la réalité et est dit système
secondaire. Par définition un modèle est une représentation simplifiée de la
réalité. Le but majeur de cette opération c’est DÉCRIRE, PRÉDIRE,
EXPLIQUER & RÉAGIR.
Modélisation
Pour la modélisation, le système étudié est appelé système primaire. Son
modèle (équivalent) est une représentation de la réalité et est dit système
secondaire. Par définition un modèle est une représentation simplifiée de la
réalité. Le but majeur de cette opération c’est DÉCRIRE, PRÉDIRE,
EXPLIQUER & RÉAGIR.
Modélisation graphique
C’est une stratégie modélisatrice des
systèmes utilisant le graphique
comme langage et outil de travail.
Modélisation graphique
C’est une stratégie modélisatrice des
systèmes utilisant le graphique
comme langage et outil de travail.
Finalité de la
modélisation
Technique : fournir des spécifications claires
pour produire, puis exploiter
Intellectuelle : fournir au métier, une utilité
dans les structures sociétales.
Finalité de la
modélisation
Technique : fournir des spécifications claires
pour produire, puis exploiter
Intellectuelle : fournir au métier, une utilité
dans les structures sociétales.
Les SIG
Jointure entre les deux entités, Les SYSTÈMES
d’INFORMATION (Collection d’informations) et la
GÉOGRAPHIE (espace localisé). C’est le moyen utilisé
pour allié efficacité et utilisabilité de la collecte et la
supervision des espaces géographiques.
Les objectifs sont généralement pour des stratégies
d’aide à la décision.
Les SIG
Jointure entre les deux entités, Les SYSTÈMES
d’INFORMATION (Collection d’informations) et la
GÉOGRAPHIE (espace localisé). C’est le moyen utilisé
pour allié efficacité et utilisabilité de la collecte et la
supervision des espaces géographiques.
Les objectifs sont généralement pour des stratégies
d’aide à la décision. 1111
Fonctionnel des SIG
Collection, de données informatives, projetée dans un espace (Modèle) géographique, structurée pour
d’éventuelles demandes d’extraction aisées de lectures adoptées, de synthèses et de consolidation utilisable
d’une manière pertinentes pour des fins d’AIDE À LA DÉCISION.
On parle plus de Collections de données GÉO-RÉFÉRENCÉES.
Les SIGs sont une des manières les plus utilisées pour la compréhension des complexités des systèmes qui nous
entourent. Ces systèmes font généralement allure de collection à gros volume de données, relatifs à un domaine
(ancien/nouveaux) sinon déduits d’une résolution résultat d’une approche thématique.
Les disciplines impliquées pour mettre au point une application SIG sont :
● Géographie : étude et analyse de processus spatiaux
● Cartographie : techniques de dessin de cartes
● Télédétection/Télémesure : espace ou aérien, à faible coût, possibilité de mises à jour, fonds et détails de carte
● Statistiques : incertitude des données, Segmentation, Prédiction
● Photogrammétrie/Géodésie : précision des mesures
● Informatique : support et périphériques de gestion/analyse, SGBD, IA., CAO., accessibilité
● Mathématiques : algorithmique géométrique, Algèbre linéaire, logique, stratégies
● Recherche Opérationnelle : techniques d'optimisation, d'affectation, coloriage, gestion des ressources
● Domaine : Informations relatives aux domaines visés par l’application SIG (Agriculture, Météorologie, Hydrologie, …)
● Histoire : trace des informations et consolidation pour l’étude prévisionnelle
● Administration : structure de gestion et les données dynamiques, politique, planification
● Et bien d’autres domaines …
Fonctionnel des SIG
Collection, de données informatives, projetée dans un espace (Modèle) géographique, structurée pour
d’éventuelles demandes d’extraction aisées de lectures adoptées, de synthèses et de consolidation utilisable
d’une manière pertinentes pour des fins d’AIDE À LA DÉCISION.
On parle plus de Collections de données GÉO-RÉFÉRENCÉES.
Les SIGs sont une des manières les plus utilisées pour la compréhension des complexités des systèmes qui nous
entourent. Ces systèmes font généralement allure de collection à gros volume de données, relatifs à un domaine
(ancien/nouveaux) sinon déduits d’une résolution résultat d’une approche thématique.
Les disciplines impliquées pour mettre au point une application SIG sont :
● Géographie : étude et analyse de processus spatiaux
● Cartographie : techniques de dessin de cartes
● Télédétection/Télémesure : espace ou aérien, à faible coût, possibilité de mises à jour, fonds et détails de carte
● Statistiques : incertitude des données, Segmentation, Prédiction
● Photogrammétrie/Géodésie : précision des mesures
● Informatique : support et périphériques de gestion/analyse, SGBD, IA., CAO., accessibilité
● Mathématiques : algorithmique géométrique, Algèbre linéaire, logique, stratégies
● Recherche Opérationnelle : techniques d'optimisation, d'affectation, coloriage, gestion des ressources
● Domaine : Informations relatives aux domaines visés par l’application SIG (Agriculture, Météorologie, Hydrologie, …)
● Histoire : trace des informations et consolidation pour l’étude prévisionnelle
● Administration : structure de gestion et les données dynamiques, politique, planification
● Et bien d’autres domaines …
1212
SIG, Concepts de baseSIG, Concepts de base
Les informations ainsi que leurs parcours anciens ou nouveau sont en liés dans un cycle de vie qui fait
que ces mêmes informations évoluent et changent de consistance, de volume et de pertinence.
Cycle
de vie
Collecte
Interaction
Réinjection
SGBD
1313
SIG, Concepts de base, la plateforme SIGSIG, Concepts de base, la plateforme SIG
SIG, Concepts de baseSIG, Concepts de base
Fonctionnalités Applicatives
Fonctionnalités Métier/Domaine
Typologies des cartes
● Topographiques : Résultat
d'observation directe
● Thématiques : Sur classe (repère) des
phénomènes qualitatifs, quantitatifs ou
administratives
○ Chorographique (surface)
○ Choroplèthe (valeurs/Intensités)
○ Courbes (différence)
○ Points : (présence)
○ Proportion
Éléments d'une carte
• Titre
• Source, date, producteur
• Orientation
• Échelle
• Légende et toponymie
• Informations particulières
SEMIOLOGIE
• Ensemble de règles permettant l'utilisation d'un système graphique
– Forme : géométrique (trait) symbolique (avion)
– Taille : variation sur la longueur, surface
– Orientation : symbolique (sens du vent, d'une rue, d'un trait)
– Couleur : ton, intensité, saturation
– Valeur : extension de la notion d'intensité couleur ou trame, dégradé)
– Grain : taille des éléments constituants la texture, trame (tiret, hachure, ...)
5As : Acquisition, Abstraction, Archivage, Affichage, Analyse
1414
Fonctionnalités Applicatives
Les 5As/6As :
Acquisition : Collecte de l’information
Abstraction : Projection mathématique
Archivage : Consolidation et stockage
Affichage : Visualisation personnalisée
Analyse : Extraction des sens
Anticipation : Prospective.
1515
SIG, Concepts de baseSIG, Concepts de base
6A
Domaines d’application & OutilsDomaines d’application & Outils
● Cadastre & parcellisation
● Logistique : aide à la navigation (GPS),
suivi de flottes.
● Travaux publics, télécoms : travaux sur
structure voirie ou sur réseaux.
● Militaire & Stratégie sécuritaire.
● Géomarketing & Géopolitique.
● Aménagement du territoire, urbanisme.
● Risques majeures : plan de prévention et
d’intervention et gestion des
crises/évènements à risque majeure.
● Agriculture & Forêts.
● Gestion des processus et des systèmes
par similitude spatiale.
● Simulations & Prédiction (IA)
OUTILS
Propriétaire
ARCGIS, MapInfo, ArcView, Geomedia,
Géoconcept, APIC et WinSTAR, SynArc
GPL & Open sources
Grass, Quantum GIS, GMT
APIs & Bibliothèques
Google Maps, OpenLayers, OpenstreetMap,
Web & Cloud
GIS Cloud, OpenLayers, OpenstreetMap,
1616
Interfaces des outils logiciels GISInterfaces des outils logiciels GIS
Application
WEB
Application
WEB
Application
bureau/serveur
STANDALONE
Application
bureau/serveur
STANDALONE
Geomedia SmartClientGeomedia SmartClient
ArcGISArcGIS
Quantum GISQuantum GIS
Web OpenlayerWeb Openlayer
MapInfoMapInfo
1717
Géo-référencement
Edition de cartes
Composition d’impression de cartes
Insertion de couches
Configuration de système de référence global
Interrogation de bases de données
Importation/Exportation de cartes/données
Publication de cartes
Filtrage de cartes/données
…
Géo-référencement
Edition de cartes
Composition d’impression de cartes
Insertion de couches
Configuration de système de référence global
Interrogation de bases de données
Importation/Exportation de cartes/données
Publication de cartes
Filtrage de cartes/données
… 1818
Opérations communes sur outils SIG (QGIS)Opérations communes sur outils SIG (QGIS)
ConclusionConclusion
De nos jours, avec l’augmentation de l’utilisation de l’ordinateur
individuel/portable, les SIGs sont devenus accessibles en version bureau
ou serveur.
Les applications SIG se réfèrent à tous les aspects de gestion et
d’utilisation de données de domaines par projection géographiques
numériques.
L’outil SIG reste jusqu’à lors, un outil préféré pour la conception des
idées et des simulations des situations selon des stratégies locales ou
globales.
1919
MERCI POUR VOTRE ATTENTION
Fin du sixième chapitre
Comme nous utilisons un traitement de texte pour écrire des documents et traiter des mots sur
un ordinateur, nous pouvons utiliser une application SIG pour traiter l’information
spatiale sur un ordinateur.
SIG est synonyme de ‘système d’information géographique’.
Références
L.-V. Bertallanfy, ‘General System Theory’, Edition MASSON, 1972.
https://www.openstreetmap.org/node/2786792894#map=15/31.6035/-2.2352&layers=QND
http://www.volle.com/travaux/modelisation2.htm
http://physiologie.envt.fr/spip/IMG/pdf/modeles_generalites.pdf
http://hal.inria.fr/docs/00/85/02/77/PDF/masyco2013_submission_3.pdf
http://www.mgm.fr/PUB/Mappemonde/M201/Caron.pdf
http://oran2.free.fr/CARTE%20D%20ALGERIE/
https://www.openstreetmap.org
http://www.statsilk.com/maps/world-stats-open-data
http://docs.qgis.org/2.2/fr/docs/gentle_gis_introduction/introducing_gis.html#overview

Contenu connexe

Tendances

IA et éducation
IA et éducationIA et éducation
IA et éducation
François Guité
 
Présentation projet de fin d'étude
Présentation projet de fin d'étudePrésentation projet de fin d'étude
Présentation projet de fin d'étude
Donia Hammami
 
Sig chap-3-2010 2011
Sig chap-3-2010 2011Sig chap-3-2010 2011
Sig chap-3-2010 2011imendal
 
AI_course.pdf
AI_course.pdfAI_course.pdf
AI_course.pdf
MissaouiWissal
 
Le problème de voyageur de commerce: algorithme génétique
Le problème de voyageur de commerce: algorithme génétiqueLe problème de voyageur de commerce: algorithme génétique
Le problème de voyageur de commerce: algorithme génétiqueRima Lassoued
 
Introduction to Machine learning
Introduction to Machine learningIntroduction to Machine learning
Introduction to Machine learning
Quentin Ambard
 
Rapport de stage d'initiation 2015 Mahmoudi Mohamed Amine
Rapport de stage d'initiation 2015 Mahmoudi Mohamed AmineRapport de stage d'initiation 2015 Mahmoudi Mohamed Amine
Rapport de stage d'initiation 2015 Mahmoudi Mohamed Amine
Mohamed Amine Mahmoudi
 
l'animation pédagogique
l'animation pédagogiquel'animation pédagogique
l'animation pédagogique
Axel de Font-Réaulx
 
Présentation PFE
Présentation PFEPrésentation PFE
Présentation PFE
Semah Mhamdi
 
Cours de procédés topo
Cours de procédés topo Cours de procédés topo
Cours de procédés topo
GENICIMO
 
Soutenance mémoire de fin d'études
Soutenance mémoire de fin d'étudesSoutenance mémoire de fin d'études
Soutenance mémoire de fin d'études
Fabrice HAUHOUOT
 
rapport de projet de fin d'étude_PFE
rapport de projet de fin d'étude_PFErapport de projet de fin d'étude_PFE
rapport de projet de fin d'étude_PFE
Donia Hammami
 
La soutenance du mémoire
La soutenance du mémoireLa soutenance du mémoire
La soutenance du mémoire
S/Abdessemed
 
Echantillonnage
EchantillonnageEchantillonnage
Echantillonnage
André Michel Bimbai
 
Algorithmes de jeux
Algorithmes de jeuxAlgorithmes de jeux
Algorithmes de jeux
Mohamed Heny SELMI
 
Leadership et Développement Personnel
Leadership et Développement PersonnelLeadership et Développement Personnel
Leadership et Développement Personnel
wallace04
 
Rapport de Mémoire Master Recherche
Rapport de Mémoire Master RechercheRapport de Mémoire Master Recherche
Rapport de Mémoire Master Recherche
Rouâa Ben Hammouda
 
Webinar Bizagi BPM - Etude de cas client
Webinar Bizagi BPM - Etude de cas clientWebinar Bizagi BPM - Etude de cas client
Webinar Bizagi BPM - Etude de cas client
Bizagi
 

Tendances (20)

IA et éducation
IA et éducationIA et éducation
IA et éducation
 
Présentation projet de fin d'étude
Présentation projet de fin d'étudePrésentation projet de fin d'étude
Présentation projet de fin d'étude
 
Sig chap-3-2010 2011
Sig chap-3-2010 2011Sig chap-3-2010 2011
Sig chap-3-2010 2011
 
AI_course.pdf
AI_course.pdfAI_course.pdf
AI_course.pdf
 
Le problème de voyageur de commerce: algorithme génétique
Le problème de voyageur de commerce: algorithme génétiqueLe problème de voyageur de commerce: algorithme génétique
Le problème de voyageur de commerce: algorithme génétique
 
Introduction to Machine learning
Introduction to Machine learningIntroduction to Machine learning
Introduction to Machine learning
 
Rapport de stage d'initiation 2015 Mahmoudi Mohamed Amine
Rapport de stage d'initiation 2015 Mahmoudi Mohamed AmineRapport de stage d'initiation 2015 Mahmoudi Mohamed Amine
Rapport de stage d'initiation 2015 Mahmoudi Mohamed Amine
 
l'animation pédagogique
l'animation pédagogiquel'animation pédagogique
l'animation pédagogique
 
Présentation PFE
Présentation PFEPrésentation PFE
Présentation PFE
 
Cours de procédés topo
Cours de procédés topo Cours de procédés topo
Cours de procédés topo
 
Soutenance mémoire de fin d'études
Soutenance mémoire de fin d'étudesSoutenance mémoire de fin d'études
Soutenance mémoire de fin d'études
 
rapport de projet de fin d'étude_PFE
rapport de projet de fin d'étude_PFErapport de projet de fin d'étude_PFE
rapport de projet de fin d'étude_PFE
 
La soutenance du mémoire
La soutenance du mémoireLa soutenance du mémoire
La soutenance du mémoire
 
Td2 pg2-corrige
Td2 pg2-corrigeTd2 pg2-corrige
Td2 pg2-corrige
 
Echantillonnage
EchantillonnageEchantillonnage
Echantillonnage
 
Algorithmes de jeux
Algorithmes de jeuxAlgorithmes de jeux
Algorithmes de jeux
 
Leadership et Développement Personnel
Leadership et Développement PersonnelLeadership et Développement Personnel
Leadership et Développement Personnel
 
Rapport de Mémoire Master Recherche
Rapport de Mémoire Master RechercheRapport de Mémoire Master Recherche
Rapport de Mémoire Master Recherche
 
Webinar Bizagi BPM - Etude de cas client
Webinar Bizagi BPM - Etude de cas clientWebinar Bizagi BPM - Etude de cas client
Webinar Bizagi BPM - Etude de cas client
 
Présentation bi 1.0
Présentation bi 1.0Présentation bi 1.0
Présentation bi 1.0
 

Similaire à Chap VI SIG, Système d'Information Géographique, les bases

Chap XI-Optimisation.pdf
Chap XI-Optimisation.pdfChap XI-Optimisation.pdf
Chap XI-Optimisation.pdf
Mohammed TAMALI
 
Chap XVI - redaction mémoire
Chap XVI - redaction mémoireChap XVI - redaction mémoire
Chap XVI - redaction mémoire
Mohammed TAMALI
 
Chap XVI-RedactionMemoire.pdf
Chap XVI-RedactionMemoire.pdfChap XVI-RedactionMemoire.pdf
Chap XVI-RedactionMemoire.pdf
Mohammed TAMALI
 
Chap I : Cours de Modélisation & Simulation des processus
Chap I : Cours de Modélisation & Simulation des processusChap I : Cours de Modélisation & Simulation des processus
Chap I : Cours de Modélisation & Simulation des processus
Mohammed TAMALI
 
Chap XI : Outils de Simulation des modes opératoires (Plans d’expériences)
Chap XI : Outils de Simulation des modes opératoires (Plans d’expériences)Chap XI : Outils de Simulation des modes opératoires (Plans d’expériences)
Chap XI : Outils de Simulation des modes opératoires (Plans d’expériences)
Mohammed TAMALI
 
Informatique pour école de Médecine Cours : TD & TP
Informatique pour école de Médecine Cours : TD & TPInformatique pour école de Médecine Cours : TD & TP
Informatique pour école de Médecine Cours : TD & TP
Mohammed TAMALI
 
Informatique pour école de Médecine Cours : Concepts de bases
Informatique pour école de Médecine Cours : Concepts de basesInformatique pour école de Médecine Cours : Concepts de bases
Informatique pour école de Médecine Cours : Concepts de bases
Mohammed TAMALI
 
Outils GPL de Modélisation & Simulation
Outils GPL de Modélisation & SimulationOutils GPL de Modélisation & Simulation
Outils GPL de Modélisation & Simulation
Mohammed TAMALI
 
Chap II : Cours de Modélisation & Simulation des processus
Chap II : Cours de Modélisation & Simulation des processusChap II : Cours de Modélisation & Simulation des processus
Chap II : Cours de Modélisation & Simulation des processus
Mohammed TAMALI
 
Flyer2023.docx
Flyer2023.docxFlyer2023.docx
Flyer2023.docx
AlainBourdier2
 
Étudiant Algérien dans la théorie des systèmes. (Lancement d’entreprise)
Étudiant Algérien dans la théorie des systèmes. (Lancement d’entreprise)Étudiant Algérien dans la théorie des systèmes. (Lancement d’entreprise)
Étudiant Algérien dans la théorie des systèmes. (Lancement d’entreprise)
Mohammed TAMALI
 
Sociologie des réseaux sociaux, 7, EHESS/ENS/ENSAE
Sociologie des réseaux sociaux, 7, EHESS/ENS/ENSAESociologie des réseaux sociaux, 7, EHESS/ENS/ENSAE
Sociologie des réseaux sociaux, 7, EHESS/ENS/ENSAE
Paola Tubaro
 
Chap III : Cours de Modélisation & Simulation des systèmes
Chap III : Cours de Modélisation & Simulation des systèmesChap III : Cours de Modélisation & Simulation des systèmes
Chap III : Cours de Modélisation & Simulation des systèmes
Mohammed TAMALI
 
Le paradigme cybernétique et systémique, Introduction aux théories de la comm...
Le paradigme cybernétique et systémique, Introduction aux théories de la comm...Le paradigme cybernétique et systémique, Introduction aux théories de la comm...
Le paradigme cybernétique et systémique, Introduction aux théories de la comm...Amar LAKEL, PhD
 
Gravité et cosmologie
Gravité et cosmologieGravité et cosmologie
Gravité et cosmologie
Nicolae Sfetcu
 
Cinetique enzymatique
Cinetique enzymatiqueCinetique enzymatique
Cinetique enzymatique
abdesselam2015
 
Sipe12 : Pour une didactique BIO (Pédagogie & Efficaité energetique)
Sipe12 : Pour une didactique BIO (Pédagogie & Efficaité energetique)Sipe12 : Pour une didactique BIO (Pédagogie & Efficaité energetique)
Sipe12 : Pour une didactique BIO (Pédagogie & Efficaité energetique)
Mohammed TAMALI
 
Cours 3 to
Cours 3 toCours 3 to
Cours 3 to
mahmoud achrit
 
TPs-TDs : Travaux Pratiques & Dérigés (version 2014-2017) Génie Electrique/Ex...
TPs-TDs : Travaux Pratiques & Dérigés (version 2014-2017) Génie Electrique/Ex...TPs-TDs : Travaux Pratiques & Dérigés (version 2014-2017) Génie Electrique/Ex...
TPs-TDs : Travaux Pratiques & Dérigés (version 2014-2017) Génie Electrique/Ex...
Mohammed TAMALI
 

Similaire à Chap VI SIG, Système d'Information Géographique, les bases (20)

Chap XI-Optimisation.pdf
Chap XI-Optimisation.pdfChap XI-Optimisation.pdf
Chap XI-Optimisation.pdf
 
Chap XVI - redaction mémoire
Chap XVI - redaction mémoireChap XVI - redaction mémoire
Chap XVI - redaction mémoire
 
Chap XVI-RedactionMemoire.pdf
Chap XVI-RedactionMemoire.pdfChap XVI-RedactionMemoire.pdf
Chap XVI-RedactionMemoire.pdf
 
Chap I : Cours de Modélisation & Simulation des processus
Chap I : Cours de Modélisation & Simulation des processusChap I : Cours de Modélisation & Simulation des processus
Chap I : Cours de Modélisation & Simulation des processus
 
Chap XI : Outils de Simulation des modes opératoires (Plans d’expériences)
Chap XI : Outils de Simulation des modes opératoires (Plans d’expériences)Chap XI : Outils de Simulation des modes opératoires (Plans d’expériences)
Chap XI : Outils de Simulation des modes opératoires (Plans d’expériences)
 
Informatique pour école de Médecine Cours : TD & TP
Informatique pour école de Médecine Cours : TD & TPInformatique pour école de Médecine Cours : TD & TP
Informatique pour école de Médecine Cours : TD & TP
 
Informatique pour école de Médecine Cours : Concepts de bases
Informatique pour école de Médecine Cours : Concepts de basesInformatique pour école de Médecine Cours : Concepts de bases
Informatique pour école de Médecine Cours : Concepts de bases
 
Systemic Approach Afcet
Systemic Approach AfcetSystemic Approach Afcet
Systemic Approach Afcet
 
Outils GPL de Modélisation & Simulation
Outils GPL de Modélisation & SimulationOutils GPL de Modélisation & Simulation
Outils GPL de Modélisation & Simulation
 
Chap II : Cours de Modélisation & Simulation des processus
Chap II : Cours de Modélisation & Simulation des processusChap II : Cours de Modélisation & Simulation des processus
Chap II : Cours de Modélisation & Simulation des processus
 
Flyer2023.docx
Flyer2023.docxFlyer2023.docx
Flyer2023.docx
 
Étudiant Algérien dans la théorie des systèmes. (Lancement d’entreprise)
Étudiant Algérien dans la théorie des systèmes. (Lancement d’entreprise)Étudiant Algérien dans la théorie des systèmes. (Lancement d’entreprise)
Étudiant Algérien dans la théorie des systèmes. (Lancement d’entreprise)
 
Sociologie des réseaux sociaux, 7, EHESS/ENS/ENSAE
Sociologie des réseaux sociaux, 7, EHESS/ENS/ENSAESociologie des réseaux sociaux, 7, EHESS/ENS/ENSAE
Sociologie des réseaux sociaux, 7, EHESS/ENS/ENSAE
 
Chap III : Cours de Modélisation & Simulation des systèmes
Chap III : Cours de Modélisation & Simulation des systèmesChap III : Cours de Modélisation & Simulation des systèmes
Chap III : Cours de Modélisation & Simulation des systèmes
 
Le paradigme cybernétique et systémique, Introduction aux théories de la comm...
Le paradigme cybernétique et systémique, Introduction aux théories de la comm...Le paradigme cybernétique et systémique, Introduction aux théories de la comm...
Le paradigme cybernétique et systémique, Introduction aux théories de la comm...
 
Gravité et cosmologie
Gravité et cosmologieGravité et cosmologie
Gravité et cosmologie
 
Cinetique enzymatique
Cinetique enzymatiqueCinetique enzymatique
Cinetique enzymatique
 
Sipe12 : Pour une didactique BIO (Pédagogie & Efficaité energetique)
Sipe12 : Pour une didactique BIO (Pédagogie & Efficaité energetique)Sipe12 : Pour une didactique BIO (Pédagogie & Efficaité energetique)
Sipe12 : Pour une didactique BIO (Pédagogie & Efficaité energetique)
 
Cours 3 to
Cours 3 toCours 3 to
Cours 3 to
 
TPs-TDs : Travaux Pratiques & Dérigés (version 2014-2017) Génie Electrique/Ex...
TPs-TDs : Travaux Pratiques & Dérigés (version 2014-2017) Génie Electrique/Ex...TPs-TDs : Travaux Pratiques & Dérigés (version 2014-2017) Génie Electrique/Ex...
TPs-TDs : Travaux Pratiques & Dérigés (version 2014-2017) Génie Electrique/Ex...
 

Plus de Mohammed TAMALI

Chap XIV : Calcul parallèle (Fondements & Principe d'utilisation)
Chap XIV : Calcul parallèle (Fondements & Principe d'utilisation)Chap XIV : Calcul parallèle (Fondements & Principe d'utilisation)
Chap XIV : Calcul parallèle (Fondements & Principe d'utilisation)
Mohammed TAMALI
 
Chap XIII : calcul scientifique avec python
Chap XIII : calcul scientifique avec pythonChap XIII : calcul scientifique avec python
Chap XIII : calcul scientifique avec python
Mohammed TAMALI
 
Universitaire, Intellectuel & Instruit
Universitaire, Intellectuel & InstruitUniversitaire, Intellectuel & Instruit
Universitaire, Intellectuel & Instruit
Mohammed TAMALI
 
Analyse Numérique – TP
Analyse Numérique – TP Analyse Numérique – TP
Analyse Numérique – TP
Mohammed TAMALI
 
Chap XII Analyse Numerique
Chap XII Analyse NumeriqueChap XII Analyse Numerique
Chap XII Analyse Numerique
Mohammed TAMALI
 
ÉTUDE ET DIMENTIONNEMENT D’UN SUIVEUR SOLAIRE POUR LA GÉNÉRATION D’ÉNERGIE PV
ÉTUDE ET DIMENTIONNEMENT D’UN SUIVEUR SOLAIRE POUR LA GÉNÉRATION D’ÉNERGIE PVÉTUDE ET DIMENTIONNEMENT D’UN SUIVEUR SOLAIRE POUR LA GÉNÉRATION D’ÉNERGIE PV
ÉTUDE ET DIMENTIONNEMENT D’UN SUIVEUR SOLAIRE POUR LA GÉNÉRATION D’ÉNERGIE PV
Mohammed TAMALI
 
Chap VI SIG-Travaux Pratiques
Chap VI SIG-Travaux PratiquesChap VI SIG-Travaux Pratiques
Chap VI SIG-Travaux Pratiques
Mohammed TAMALI
 
Examen Master CCV : Méthode et Plan d'Expériences
Examen Master CCV : Méthode et Plan d'ExpériencesExamen Master CCV : Méthode et Plan d'Expériences
Examen Master CCV : Méthode et Plan d'Expériences
Mohammed TAMALI
 
CV Updated 2015
CV Updated 2015CV Updated 2015
CV Updated 2015
Mohammed TAMALI
 
Chap10 : Outils de Simulation Cas des CAD 3D Concepts de base & fondements.
Chap10 : Outils de Simulation Cas des CAD 3D Concepts de base & fondements.Chap10 : Outils de Simulation Cas des CAD 3D Concepts de base & fondements.
Chap10 : Outils de Simulation Cas des CAD 3D Concepts de base & fondements.
Mohammed TAMALI
 
Je TIC au passé, présent et au futur, Journée du 23/12/2014
Je TIC au passé,  présent et au futur, Journée du 23/12/2014Je TIC au passé,  présent et au futur, Journée du 23/12/2014
Je TIC au passé, présent et au futur, Journée du 23/12/2014
Mohammed TAMALI
 
Chap9 : Systèmes non linéaires
Chap9 : Systèmes non linéairesChap9 : Systèmes non linéaires
Chap9 : Systèmes non linéaires
Mohammed TAMALI
 
CHAPITRE VIII : Systèmes linéaires Modélisation & Simulation
CHAPITRE VIII :  Systèmes linéaires Modélisation & SimulationCHAPITRE VIII :  Systèmes linéaires Modélisation & Simulation
CHAPITRE VIII : Systèmes linéaires Modélisation & Simulation
Mohammed TAMALI
 
Exercices
ExercicesExercices
Exercices
Mohammed TAMALI
 
Chap7 : Evaluation des performances, Concepts de base & fondements Modélisati...
Chap7 : Evaluation des performances, Concepts de base & fondements Modélisati...Chap7 : Evaluation des performances, Concepts de base & fondements Modélisati...
Chap7 : Evaluation des performances, Concepts de base & fondements Modélisati...
Mohammed TAMALI
 
Chap IV : Théorie des graphes
Chap IV : Théorie des graphesChap IV : Théorie des graphes
Chap IV : Théorie des graphes
Mohammed TAMALI
 
Chap V : Modélisation & Optimisation Des réseaux electriques (Concepts de bas...
Chap V : Modélisation & Optimisation Des réseaux electriques (Concepts de bas...Chap V : Modélisation & Optimisation Des réseaux electriques (Concepts de bas...
Chap V : Modélisation & Optimisation Des réseaux electriques (Concepts de bas...
Mohammed TAMALI
 
Recherche Opérationnelle - Optimisation (notions de base)
Recherche Opérationnelle - Optimisation (notions de base)Recherche Opérationnelle - Optimisation (notions de base)
Recherche Opérationnelle - Optimisation (notions de base)
Mohammed TAMALI
 
Chap VI : Les SIG, Système d'Information Géographique
Chap VI : Les SIG, Système d'Information GéographiqueChap VI : Les SIG, Système d'Information Géographique
Chap VI : Les SIG, Système d'Information Géographique
Mohammed TAMALI
 

Plus de Mohammed TAMALI (19)

Chap XIV : Calcul parallèle (Fondements & Principe d'utilisation)
Chap XIV : Calcul parallèle (Fondements & Principe d'utilisation)Chap XIV : Calcul parallèle (Fondements & Principe d'utilisation)
Chap XIV : Calcul parallèle (Fondements & Principe d'utilisation)
 
Chap XIII : calcul scientifique avec python
Chap XIII : calcul scientifique avec pythonChap XIII : calcul scientifique avec python
Chap XIII : calcul scientifique avec python
 
Universitaire, Intellectuel & Instruit
Universitaire, Intellectuel & InstruitUniversitaire, Intellectuel & Instruit
Universitaire, Intellectuel & Instruit
 
Analyse Numérique – TP
Analyse Numérique – TP Analyse Numérique – TP
Analyse Numérique – TP
 
Chap XII Analyse Numerique
Chap XII Analyse NumeriqueChap XII Analyse Numerique
Chap XII Analyse Numerique
 
ÉTUDE ET DIMENTIONNEMENT D’UN SUIVEUR SOLAIRE POUR LA GÉNÉRATION D’ÉNERGIE PV
ÉTUDE ET DIMENTIONNEMENT D’UN SUIVEUR SOLAIRE POUR LA GÉNÉRATION D’ÉNERGIE PVÉTUDE ET DIMENTIONNEMENT D’UN SUIVEUR SOLAIRE POUR LA GÉNÉRATION D’ÉNERGIE PV
ÉTUDE ET DIMENTIONNEMENT D’UN SUIVEUR SOLAIRE POUR LA GÉNÉRATION D’ÉNERGIE PV
 
Chap VI SIG-Travaux Pratiques
Chap VI SIG-Travaux PratiquesChap VI SIG-Travaux Pratiques
Chap VI SIG-Travaux Pratiques
 
Examen Master CCV : Méthode et Plan d'Expériences
Examen Master CCV : Méthode et Plan d'ExpériencesExamen Master CCV : Méthode et Plan d'Expériences
Examen Master CCV : Méthode et Plan d'Expériences
 
CV Updated 2015
CV Updated 2015CV Updated 2015
CV Updated 2015
 
Chap10 : Outils de Simulation Cas des CAD 3D Concepts de base & fondements.
Chap10 : Outils de Simulation Cas des CAD 3D Concepts de base & fondements.Chap10 : Outils de Simulation Cas des CAD 3D Concepts de base & fondements.
Chap10 : Outils de Simulation Cas des CAD 3D Concepts de base & fondements.
 
Je TIC au passé, présent et au futur, Journée du 23/12/2014
Je TIC au passé,  présent et au futur, Journée du 23/12/2014Je TIC au passé,  présent et au futur, Journée du 23/12/2014
Je TIC au passé, présent et au futur, Journée du 23/12/2014
 
Chap9 : Systèmes non linéaires
Chap9 : Systèmes non linéairesChap9 : Systèmes non linéaires
Chap9 : Systèmes non linéaires
 
CHAPITRE VIII : Systèmes linéaires Modélisation & Simulation
CHAPITRE VIII :  Systèmes linéaires Modélisation & SimulationCHAPITRE VIII :  Systèmes linéaires Modélisation & Simulation
CHAPITRE VIII : Systèmes linéaires Modélisation & Simulation
 
Exercices
ExercicesExercices
Exercices
 
Chap7 : Evaluation des performances, Concepts de base & fondements Modélisati...
Chap7 : Evaluation des performances, Concepts de base & fondements Modélisati...Chap7 : Evaluation des performances, Concepts de base & fondements Modélisati...
Chap7 : Evaluation des performances, Concepts de base & fondements Modélisati...
 
Chap IV : Théorie des graphes
Chap IV : Théorie des graphesChap IV : Théorie des graphes
Chap IV : Théorie des graphes
 
Chap V : Modélisation & Optimisation Des réseaux electriques (Concepts de bas...
Chap V : Modélisation & Optimisation Des réseaux electriques (Concepts de bas...Chap V : Modélisation & Optimisation Des réseaux electriques (Concepts de bas...
Chap V : Modélisation & Optimisation Des réseaux electriques (Concepts de bas...
 
Recherche Opérationnelle - Optimisation (notions de base)
Recherche Opérationnelle - Optimisation (notions de base)Recherche Opérationnelle - Optimisation (notions de base)
Recherche Opérationnelle - Optimisation (notions de base)
 
Chap VI : Les SIG, Système d'Information Géographique
Chap VI : Les SIG, Système d'Information GéographiqueChap VI : Les SIG, Système d'Information Géographique
Chap VI : Les SIG, Système d'Information Géographique
 

Dernier

Textes de famille concernant les guerres V2.pdf
Textes de famille concernant les guerres V2.pdfTextes de famille concernant les guerres V2.pdf
Textes de famille concernant les guerres V2.pdf
Michel Bruley
 
Bibliothèque de L'Union - Bilan de l'année 2023
Bibliothèque de L'Union - Bilan de l'année 2023Bibliothèque de L'Union - Bilan de l'année 2023
Bibliothèque de L'Union - Bilan de l'année 2023
Bibliothèque de L'Union
 
Proyecto Erasmus Jardineros y jardineras de paz
Proyecto Erasmus Jardineros y jardineras de pazProyecto Erasmus Jardineros y jardineras de paz
Proyecto Erasmus Jardineros y jardineras de paz
Morzadec Cécile
 
Dimensionnement réseau de transmission pour un réseau GSM-R - AIT KADDOUR Ghi...
Dimensionnement réseau de transmission pour un réseau GSM-R - AIT KADDOUR Ghi...Dimensionnement réseau de transmission pour un réseau GSM-R - AIT KADDOUR Ghi...
Dimensionnement réseau de transmission pour un réseau GSM-R - AIT KADDOUR Ghi...
MustaphaZhiri
 
BATIMENT 5.pptx. Fil français tourné en France
BATIMENT 5.pptx. Fil français tourné en FranceBATIMENT 5.pptx. Fil français tourné en France
BATIMENT 5.pptx. Fil français tourné en France
Txaruka
 
Presentation powerpoint sur la filiere electrotechnique
Presentation powerpoint sur la filiere electrotechniquePresentation powerpoint sur la filiere electrotechnique
Presentation powerpoint sur la filiere electrotechnique
mohammadaminejouini
 
Veille Audocdi 90 - mois de juin 2024.pdf
Veille Audocdi 90 - mois de juin 2024.pdfVeille Audocdi 90 - mois de juin 2024.pdf
Veille Audocdi 90 - mois de juin 2024.pdf
frizzole
 

Dernier (7)

Textes de famille concernant les guerres V2.pdf
Textes de famille concernant les guerres V2.pdfTextes de famille concernant les guerres V2.pdf
Textes de famille concernant les guerres V2.pdf
 
Bibliothèque de L'Union - Bilan de l'année 2023
Bibliothèque de L'Union - Bilan de l'année 2023Bibliothèque de L'Union - Bilan de l'année 2023
Bibliothèque de L'Union - Bilan de l'année 2023
 
Proyecto Erasmus Jardineros y jardineras de paz
Proyecto Erasmus Jardineros y jardineras de pazProyecto Erasmus Jardineros y jardineras de paz
Proyecto Erasmus Jardineros y jardineras de paz
 
Dimensionnement réseau de transmission pour un réseau GSM-R - AIT KADDOUR Ghi...
Dimensionnement réseau de transmission pour un réseau GSM-R - AIT KADDOUR Ghi...Dimensionnement réseau de transmission pour un réseau GSM-R - AIT KADDOUR Ghi...
Dimensionnement réseau de transmission pour un réseau GSM-R - AIT KADDOUR Ghi...
 
BATIMENT 5.pptx. Fil français tourné en France
BATIMENT 5.pptx. Fil français tourné en FranceBATIMENT 5.pptx. Fil français tourné en France
BATIMENT 5.pptx. Fil français tourné en France
 
Presentation powerpoint sur la filiere electrotechnique
Presentation powerpoint sur la filiere electrotechniquePresentation powerpoint sur la filiere electrotechnique
Presentation powerpoint sur la filiere electrotechnique
 
Veille Audocdi 90 - mois de juin 2024.pdf
Veille Audocdi 90 - mois de juin 2024.pdfVeille Audocdi 90 - mois de juin 2024.pdf
Veille Audocdi 90 - mois de juin 2024.pdf
 

Chap VI SIG, Système d'Information Géographique, les bases

  • 1. Université de Béchar Laboratoire des Études Énergétiques en Zones Arides Équipe Modélisation & Simulation des Systèmes Université de Béchar Laboratoire des Études Énergétiques en Zones Arides Équipe Modélisation & Simulation des Systèmes Cours réalisé par : Pr. TAMALI Mohammed, http://www.tamali.org Université de Béchar | FacultéTechnologie (ENERGARID Lab./Equipe SimulIA) Cours réalisé par : Pr. TAMALI Mohammed, http://www.tamali.org Université de Béchar | FacultéTechnologie (ENERGARID Lab./Equipe SimulIA) CHAPITRE VI : Système d’Information Géographique Concepts de base & fondements. CHAPITRE VI : Système d’Information Géographique Concepts de base & fondements. Version 4.0
  • 2. Presentation The University of Bechar was born in 1986 as the National Institutes of Higher Education (INES), in 1992 it becomes University Center and on January 1th 2007, it was officially declared as a university. Since then, many research teams have seen the day. In 2011, The Laboratory for Energetical Systems Studies Applied to Arid Zones was run by a group of young and well motivated researchers, composed by seven research teams, the main task was and still the solving real problems altering arid zones, SimulIA is one of the lab teams. The workload of SimulIA concerns modeling and simulating real systems in arid areas. Major research areas: Energy & Environment (Modeling & Simulation) Application & usage of heat transfer process in arid zones Energy usage and economy. 2D Mapping development of resources in arid zones. the main task in the short term of SIMULIA Team, is to develop the computer code for modeling and simulation which can be accessed online. Website of the laboratory team: www.univ-bechar.dz/energarid/simulia The University of Bechar was born in 1986 as the National Institutes of Higher Education (INES), in 1992 it becomes University Center and on January 1th 2007, it was officially declared as a university. Since then, many research teams have seen the day. In 2011, The Laboratory for Energetical Systems Studies Applied to Arid Zones was run by a group of young and well motivated researchers, composed by seven research teams, the main task was and still the solving real problems altering arid zones, SimulIA is one of the lab teams. The workload of SimulIA concerns modeling and simulating real systems in arid areas. Major research areas: Energy & Environment (Modeling & Simulation) Application & usage of heat transfer process in arid zones Energy usage and economy. 2D Mapping development of resources in arid zones. the main task in the short term of SIMULIA Team, is to develop the computer code for modeling and simulation which can be accessed online. Website of the laboratory team: www.univ-bechar.dz/energarid/simulia -1-1
  • 3. PlanGénéralités Théorie des systèmes & Systémique Théorie des graphes Concepts fondamentaux (Modélisation graphique) SIG, Concepts de base Domaines d’application & Outils Interfaces des outils logiciels GIS Opérations communes sur outils SIG (QGIS) Conclusions Généralités Théorie des systèmes & Systémique Théorie des graphes Concepts fondamentaux (Modélisation graphique) SIG, Concepts de base Domaines d’application & Outils Interfaces des outils logiciels GIS Opérations communes sur outils SIG (QGIS) Conclusions 00
  • 4. la représentation graphique a été dans tous les temps un moyen rapide pour la communication. Les symboles, un plan ou une carte cérébrale sont le langage, par excellence, pour la mise en place de vision et encore plus pour l’élaboration de décision. Ce cours présente une introduction de base en termes de conception et d’élaboration de productions cartographiques par l’utilisation des outils d’analyse de l’espace métrique. Les objectifs de cette intervention sont la vulgarisation des notions fondamentales de la cartographie et ses champs d'applications ainsi que les concepts systémiques afin de monter des applications pour des raisons de GESTION, de MONITORING de l’espace et de son utilisation. Pour des valeurs de l’importance de l'information géographique détenue (découpage politique), la nécessité des opération de géo-localisation (applications mobiles), l’organisation SI est l’alternative par excellence, plus encore sont les SI.G. GénéralitésGénéralités 11
  • 5. 5 Equation de croissanceEquation de croissance Théorie des systèmesThéorie des systèmes 22 La théorie des systèmes est la science de l’étude transdisciplinaire de l’organisation abstraite des phénomènes, indépendamment de leur substance, le type ou l’échelle spatiale, temporelle de l’existence. Elle étudie à la fois, les principes communs à toutes les entités complexes, et les modèle (généralement mathématique) qui peuvent être utilisé pour les décrire. Dans sa plus simple expression, l’équation différentielle, appelée équation de croissance de Ludwig Von Bertalanffy, est selon la taille (L) par rapport au temps (t) : L’(t) = k.(L∞ - L(t)) Où k est le taux de croissance individuel et L∞ la taille individuelle maximum. Selon Bertalanffy, tout est SYSTÈME par défaut. Et tout contribue à la tenue de son environnement système Et y est influencé. La théorie des systèmes est la science de l’étude transdisciplinaire de l’organisation abstraite des phénomènes, indépendamment de leur substance, le type ou l’échelle spatiale, temporelle de l’existence. Elle étudie à la fois, les principes communs à toutes les entités complexes, et les modèle (généralement mathématique) qui peuvent être utilisé pour les décrire. Dans sa plus simple expression, l’équation différentielle, appelée équation de croissance de Ludwig Von Bertalanffy, est selon la taille (L) par rapport au temps (t) : L’(t) = k.(L∞ - L(t)) Où k est le taux de croissance individuel et L∞ la taille individuelle maximum. Selon Bertalanffy, tout est SYSTÈME par défaut. Et tout contribue à la tenue de son environnement système Et y est influencé. Autrichien [1901-1972], Biologie, Écologie, Médecine, Psychologie, Théorie générale des systèmes Autrichien [1901-1972], Biologie, Écologie, Médecine, Psychologie, Théorie générale des systèmes
  • 6. 6 Théorie des systèmesThéorie des systèmes 33 La géomatique (SIG) est pour sa relation avec le vivant, son patrimoine ainsi que ses environnements intrinsèques/extrinsèques, trop touchée par cette théorie. L’approche systémique, comme application de la théorie générale des systèmes, est fondée sur les principes suivants: 1. Les organisations, toutes les entités des organismes, sont ‘ouvertes’ à l’environnement et pour cela, ils doivent entretenir des relations satisfaisantes avec ce dernier pour survivre. 2. Les systèmes ouverts sont caractérisés par un cycle continu d’entrée, de transformation interne, de sortie et de rétroaction. La géomatique (SIG) est pour sa relation avec le vivant, son patrimoine ainsi que ses environnements intrinsèques/extrinsèques, trop touchée par cette théorie. L’approche systémique, comme application de la théorie générale des systèmes, est fondée sur les principes suivants: 1. Les organisations, toutes les entités des organismes, sont ‘ouvertes’ à l’environnement et pour cela, ils doivent entretenir des relations satisfaisantes avec ce dernier pour survivre. 2. Les systèmes ouverts sont caractérisés par un cycle continu d’entrée, de transformation interne, de sortie et de rétroaction. Prix de distinction à l’honneur de L.v. Bertalanffy Prix de distinction à l’honneur de L.v. Bertalanffy Projection dans l’espace système Projection dans l’espace système
  • 7. 7 Théorie des systèmesThéorie des systèmes 44 La théorie des systèmes est un principe selon lequel tout est système, ou tout peut être conceptualisé selon une logique de système. Ce principe est formalisé en 1968 par Ludwig Von Bertalanffy dans General System Theory, mais les bases sont multiples, la principale étant certainement le mouvement cybernétique. Ces théories ont permis l'établissement de la systémique en tant que méthode scientifique, et la base théorique associée est aujourd'hui plutôt appelé théorie systémique. La théorie des systèmes décrit la réalité observée et suggère d’établir des liens logiques entre les facteurs. Elle permet ainsi de découvrir que les causalités linéaires simplistes ne sont pas suffisantes pour expliquer les choses et que les corrélations établies entre les facteurs sont très nombreuses chose qui nécessite encore plus d’attention. La théorie des systèmes est un principe selon lequel tout est système, ou tout peut être conceptualisé selon une logique de système. Ce principe est formalisé en 1968 par Ludwig Von Bertalanffy dans General System Theory, mais les bases sont multiples, la principale étant certainement le mouvement cybernétique. Ces théories ont permis l'établissement de la systémique en tant que méthode scientifique, et la base théorique associée est aujourd'hui plutôt appelé théorie systémique. La théorie des systèmes décrit la réalité observée et suggère d’établir des liens logiques entre les facteurs. Elle permet ainsi de découvrir que les causalités linéaires simplistes ne sont pas suffisantes pour expliquer les choses et que les corrélations établies entre les facteurs sont très nombreuses chose qui nécessite encore plus d’attention.
  • 8. 8 Théorie des systèmesThéorie des systèmes 55 Caractéristiques des systèmes : Déterminisme : existence justifiée Observabilité : Observation des méthodes et moyens Fonctionnel : Nécessité du rôle individuel dans l’ensemble Quantifiabilité : Mise sous forme d’ensembles quantifiables Mesurabilité : Mesure utilisant l’instrument et les unités Équilibre interne : Entretien de la stabilité individuelle Composition : Complémentarité individuelle dans un ensemble Maintenabilité : Possibilité d’entretien Fiabilité : Rôle prouvé dans l’ensemble Robustesse : Tolérance aux fautes suite aux différents chargement du système Dépendance : Entretien et collaboration Caractéristiques des systèmes : Déterminisme : existence justifiée Observabilité : Observation des méthodes et moyens Fonctionnel : Nécessité du rôle individuel dans l’ensemble Quantifiabilité : Mise sous forme d’ensembles quantifiables Mesurabilité : Mesure utilisant l’instrument et les unités Équilibre interne : Entretien de la stabilité individuelle Composition : Complémentarité individuelle dans un ensemble Maintenabilité : Possibilité d’entretien Fiabilité : Rôle prouvé dans l’ensemble Robustesse : Tolérance aux fautes suite aux différents chargement du système Dépendance : Entretien et collaboration
  • 9. Théorie des graphesThéorie des graphes On fait généralement remonter la naissance de la Théorie des Graphes au célèbre problème des ponts de Königsberg (aujourd'hui Kaliningrad) qui passionnait la bourgeoisie prussienne du XVIIIème siècle : La Ville de Königsberg, sur la Pregel, était pourvue de 7 ponts et la question était de savoir si l'on pouvait imaginer une promenade dans la ville qui emprunterait chacun des 7 ponts une fois et une seule pour revenir à son point de départ. La théorie des graphes s’est alors développée et intégrée dans diverses disciplines telles que la chimie, la biologie, les sciences sociales et sans oublier les réseaux d’ordinateurs et de télécommunication. Depuis le début du XXe siècle, elle constitue une branche à part entière des mathématiques, grâce aux travaux de König, Menger, Cayley puis de Berge et d’Erdös [1]. De manière générale, un graphe permet de représenter la structure, les connexions d’un ensemble complexe dit ‘système’ (S) en exprimant les relations entre ses éléments tel que les réseaux de communication, les réseaux routiers, interaction de diverses espèces animales, circuits électriques, en programmation et le plus intéressant son application aux sciences de l’Internet. On fait généralement remonter la naissance de la Théorie des Graphes au célèbre problème des ponts de Königsberg (aujourd'hui Kaliningrad) qui passionnait la bourgeoisie prussienne du XVIIIème siècle : La Ville de Königsberg, sur la Pregel, était pourvue de 7 ponts et la question était de savoir si l'on pouvait imaginer une promenade dans la ville qui emprunterait chacun des 7 ponts une fois et une seule pour revenir à son point de départ. La théorie des graphes s’est alors développée et intégrée dans diverses disciplines telles que la chimie, la biologie, les sciences sociales et sans oublier les réseaux d’ordinateurs et de télécommunication. Depuis le début du XXe siècle, elle constitue une branche à part entière des mathématiques, grâce aux travaux de König, Menger, Cayley puis de Berge et d’Erdös [1]. De manière générale, un graphe permet de représenter la structure, les connexions d’un ensemble complexe dit ‘système’ (S) en exprimant les relations entre ses éléments tel que les réseaux de communication, les réseaux routiers, interaction de diverses espèces animales, circuits électriques, en programmation et le plus intéressant son application aux sciences de l’Internet. 66
  • 10. Théorie des graphesThéorie des graphes Les graphes constituent donc une méthode de pensée qui permet de modéliser une grande variété de problèmes en se ramenant à l’étude de sommets et d’arcs. Les derniers travaux en théorie des graphes sont souvent effectués par des informaticiens, du fait de l’importance que revêt l’aspect algorithmique. Les graphes constituent donc une méthode de pensée qui permet de modéliser une grande variété de problèmes en se ramenant à l’étude de sommets et d’arcs. Les derniers travaux en théorie des graphes sont souvent effectués par des informaticiens, du fait de l’importance que revêt l’aspect algorithmique. Un graphe simple noté G est un couple formé de deux ensembles liés par une application mathématique. L’un d’eux est l’ensemble X={x1,x2,...,xn} dont les éléments sont appelés ‘sommets’, l’autre est l’ensemble A={a1,a2,...,am}, partie de l’ensemble P2 (X) des parties à deux éléments (couple de sommets) de X, dont les éléments sont appelé ‘les arêtes’. On notera cette relation G=(X,A). Lorsque a={x,y}A, on dit que a est l’arête de G d’extrémités x et y, ou que a joint x et y, ou que a passe par x et y. Les sommets x et y sont dits adjacents dans G. Un graphe simple noté G est un couple formé de deux ensembles liés par une application mathématique. L’un d’eux est l’ensemble X={x1,x2,...,xn} dont les éléments sont appelés ‘sommets’, l’autre est l’ensemble A={a1,a2,...,am}, partie de l’ensemble P2 (X) des parties à deux éléments (couple de sommets) de X, dont les éléments sont appelé ‘les arêtes’. On notera cette relation G=(X,A). Lorsque a={x,y}A, on dit que a est l’arête de G d’extrémités x et y, ou que a joint x et y, ou que a passe par x et y. Les sommets x et y sont dits adjacents dans G. Un multi-graphe G = (X, A, f) est déterminé par: • L’ensemble X des sommets • L’ensemble A, cette fois abstrait • L’application f : A [P2 (X)] un multi-graphe avec boucles peut comprendre des arêtes multiples entre deux sommets donnés ainsi que des boucles multiples en un sommet. Un multi-graphe G = (X, A, f) est déterminé par: • L’ensemble X des sommets • L’ensemble A, cette fois abstrait • L’application f : A [P2 (X)] un multi-graphe avec boucles peut comprendre des arêtes multiples entre deux sommets donnés ainsi que des boucles multiples en un sommet. Dans le cadre général, un graphe est dit non orienté si le ne contient pas de sens sur les arêtes. Le nombre de sommets présents dans un graphe est l'ordre du graphe. Le degré d'un sommet x, noté d(x) est le nombre d'arêtes dont ce sommet est une extrémité. Dans le cadre général, un graphe est dit non orienté si le ne contient pas de sens sur les arêtes. Le nombre de sommets présents dans un graphe est l'ordre du graphe. Le degré d'un sommet x, noté d(x) est le nombre d'arêtes dont ce sommet est une extrémité. Exemple de cas où le modèle graphe est recommandéExemple de cas où le modèle graphe est recommandé 77
  • 11. Théorie des graphesThéorie des graphes Une chaîne est une liste ordonnée de sommets telle que chaque sommet de la liste soit adjacent au suivant. La longueur d'une chaîne est le nombre d'arêtes qui la composent. La distance entre deux sommets est la plus courte longueur des chaînes qui les relient. Le diamètre d'un graphe est la plus grande distance entre deux sommets. Un graphe orienté Gn est formé de deux ensembles: un ensemble X={x1,x2,...,xn} dont les éléments sont appelés sommets, et un ensemble A={a1,a2,...,an), partie du produit cartésien X×X, dont les éléments sont appelés arcs. On notera Gn=(X,A). Si a=(x,y) est un arc du graphe G, x est l’extrémité initiale de a et y l’extrémité finale de a. À tout graphe orienté Gn(X,A), on associe le graphe simple G(X,B) où : {x, y}B ≠ ((x, y)A ou (y, x)A)). On appelle graphe complet un graphe dont tous les sommets sont adjacents. Un graphe dont les arêtes sont caractérisées par une quantité est dit valué. Un sous-graphe d'un graphe G est un graphe G' composé de certains sommets de G, ainsi que toutes les arêtes qui relient ces sommets. La matrice associée à un graphe d'ordre n dont les sommets sont numérotés de 1 à n est une matrice symétrique, de dimension n×n, où le terme à l'intersection de la ième ligne et de la jème colonne vaut k, nombre d'arêtes reliant i et j. C’est encore la matrice de liaison M. Un sous-graphe d'un graphe G est un graphe G' composé de certains sommets de G, ainsi que toutes les arêtes qui relient ces sommets. La matrice associée à un graphe d'ordre n dont les sommets sont numérotés de 1 à n est une matrice symétrique, de dimension n×n, où le terme à l'intersection de la ième ligne et de la jème colonne vaut k, nombre d'arêtes reliant i et j. C’est encore la matrice de liaison M. Soit x un sommet d’un graphe orienté. On note d+ (x) le nombre d’arcs ayant x comme extrémité initiale, et d- (x) le nombre d’arcs ayant x comme extrémité finale. Ainsi, on a : d(x)=d+ (x)+ d- (x) La matrice des distances du graphe G est la matrice D={d(i, j)=(d(xi, xj)}. Sous-graphe G’ de G(X,A)Sous-graphe G’ de G(X,A) Exemple graphe orientéExemple graphe orienté Exemple graphe G(X,A)Exemple graphe G(X,A) 88
  • 12. Théorie des graphesThéorie des graphes ● Le graphe discret d’ordre n, Dn,=(X, 0). ● Le graphe complet d’ordre n, Knn où X={1,2,...,n} et A = P2 (X) ● Le graphe biparti-complet Kpq où X={x1,x2,...,xp,y1,y2,...,yq} et A=f(xi, yj}/ 1≤i≤p et 1≤j≤q}. ● Le cycle Cnn où X={1,2…,n} et A={{1, 2},{2, 3},...,{n-1, n},{n, 1}}. ● Un graphe valué est un graphe orienté Gn(X,A), muni d’une fonction C appelée fonction de coût. ● Le coût d’un chemin est la somme des coûts des arcs de ce chemin. On peut définir la matrice des coûts du graphe, c’est la matrice C={ci,j} où : ci,j est le coût de l’arête (i, j). ● Un graphe est dit simplement connexe si pour tout couple (i, j)A, il y a toujours un chemin de i vers j. ● Un arbre est un sous-graphe simple connexe ne possédant pas de cycle simple et construit à base de tous les nœuds du graphe d’origine. ● La matrice d’incidence A d’un graphe orienté Gn est définie par : ● Valeur d’une chaîne: la somme des valeurs des arêtes (arcs) d’une chaîne d’un graphe valué. ● Le graphe discret d’ordre n, Dn,=(X, 0). ● Le graphe complet d’ordre n, Knn où X={1,2,...,n} et A = P2 (X) ● Le graphe biparti-complet Kpq où X={x1,x2,...,xp,y1,y2,...,yq} et A=f(xi, yj}/ 1≤i≤p et 1≤j≤q}. ● Le cycle Cnn où X={1,2…,n} et A={{1, 2},{2, 3},...,{n-1, n},{n, 1}}. ● Un graphe valué est un graphe orienté Gn(X,A), muni d’une fonction C appelée fonction de coût. ● Le coût d’un chemin est la somme des coûts des arcs de ce chemin. On peut définir la matrice des coûts du graphe, c’est la matrice C={ci,j} où : ci,j est le coût de l’arête (i, j). ● Un graphe est dit simplement connexe si pour tout couple (i, j)A, il y a toujours un chemin de i vers j. ● Un arbre est un sous-graphe simple connexe ne possédant pas de cycle simple et construit à base de tous les nœuds du graphe d’origine. ● La matrice d’incidence A d’un graphe orienté Gn est définie par : ● Valeur d’une chaîne: la somme des valeurs des arêtes (arcs) d’une chaîne d’un graphe valué.       sinon0 sortante'1 '1 , inoeudledeestjarêtelsi inoeudlesurincidenteestjarêtelsi a ji 99
  • 13. La topologie des graphes est plus désignée pour des questions de modélisation graphique de systèmes de processus. Son intérêt est dans sa simplicité de mise en œuvre. Le cadre pratique couvre : ● Gestion des bilans énergétique et autre ● Gestion des flux et trafics ● Gestion des échanges ● Gestion des hiérarchies ● Ordonnancement des tâches ● Planification ● Projection ● Organisation fonctionnelle ● Traitements de l’information & connaissances ● Systèmes automatiques ● Systèmes relationnels. ● … 1010 Théorie des graphesThéorie des graphes
  • 14. Concepts fondamentaux SIGConcepts fondamentaux SIG Modélisation Pour la modélisation, le système étudié est appelé système primaire. Son modèle (équivalent) est une représentation de la réalité et est dit système secondaire. Par définition un modèle est une représentation simplifiée de la réalité. Le but majeur de cette opération c’est DÉCRIRE, PRÉDIRE, EXPLIQUER & RÉAGIR. Modélisation Pour la modélisation, le système étudié est appelé système primaire. Son modèle (équivalent) est une représentation de la réalité et est dit système secondaire. Par définition un modèle est une représentation simplifiée de la réalité. Le but majeur de cette opération c’est DÉCRIRE, PRÉDIRE, EXPLIQUER & RÉAGIR. Modélisation graphique C’est une stratégie modélisatrice des systèmes utilisant le graphique comme langage et outil de travail. Modélisation graphique C’est une stratégie modélisatrice des systèmes utilisant le graphique comme langage et outil de travail. Finalité de la modélisation Technique : fournir des spécifications claires pour produire, puis exploiter Intellectuelle : fournir au métier, une utilité dans les structures sociétales. Finalité de la modélisation Technique : fournir des spécifications claires pour produire, puis exploiter Intellectuelle : fournir au métier, une utilité dans les structures sociétales. Les SIG Jointure entre les deux entités, Les SYSTÈMES d’INFORMATION (Collection d’informations) et la GÉOGRAPHIE (espace localisé). C’est le moyen utilisé pour allié efficacité et utilisabilité de la collecte et la supervision des espaces géographiques. Les objectifs sont généralement pour des stratégies d’aide à la décision. Les SIG Jointure entre les deux entités, Les SYSTÈMES d’INFORMATION (Collection d’informations) et la GÉOGRAPHIE (espace localisé). C’est le moyen utilisé pour allié efficacité et utilisabilité de la collecte et la supervision des espaces géographiques. Les objectifs sont généralement pour des stratégies d’aide à la décision. 1111
  • 15. Fonctionnel des SIG Collection, de données informatives, projetée dans un espace (Modèle) géographique, structurée pour d’éventuelles demandes d’extraction aisées de lectures adoptées, de synthèses et de consolidation utilisable d’une manière pertinentes pour des fins d’AIDE À LA DÉCISION. On parle plus de Collections de données GÉO-RÉFÉRENCÉES. Les SIGs sont une des manières les plus utilisées pour la compréhension des complexités des systèmes qui nous entourent. Ces systèmes font généralement allure de collection à gros volume de données, relatifs à un domaine (ancien/nouveaux) sinon déduits d’une résolution résultat d’une approche thématique. Les disciplines impliquées pour mettre au point une application SIG sont : ● Géographie : étude et analyse de processus spatiaux ● Cartographie : techniques de dessin de cartes ● Télédétection/Télémesure : espace ou aérien, à faible coût, possibilité de mises à jour, fonds et détails de carte ● Statistiques : incertitude des données, Segmentation, Prédiction ● Photogrammétrie/Géodésie : précision des mesures ● Informatique : support et périphériques de gestion/analyse, SGBD, IA., CAO., accessibilité ● Mathématiques : algorithmique géométrique, Algèbre linéaire, logique, stratégies ● Recherche Opérationnelle : techniques d'optimisation, d'affectation, coloriage, gestion des ressources ● Domaine : Informations relatives aux domaines visés par l’application SIG (Agriculture, Météorologie, Hydrologie, …) ● Histoire : trace des informations et consolidation pour l’étude prévisionnelle ● Administration : structure de gestion et les données dynamiques, politique, planification ● Et bien d’autres domaines … Fonctionnel des SIG Collection, de données informatives, projetée dans un espace (Modèle) géographique, structurée pour d’éventuelles demandes d’extraction aisées de lectures adoptées, de synthèses et de consolidation utilisable d’une manière pertinentes pour des fins d’AIDE À LA DÉCISION. On parle plus de Collections de données GÉO-RÉFÉRENCÉES. Les SIGs sont une des manières les plus utilisées pour la compréhension des complexités des systèmes qui nous entourent. Ces systèmes font généralement allure de collection à gros volume de données, relatifs à un domaine (ancien/nouveaux) sinon déduits d’une résolution résultat d’une approche thématique. Les disciplines impliquées pour mettre au point une application SIG sont : ● Géographie : étude et analyse de processus spatiaux ● Cartographie : techniques de dessin de cartes ● Télédétection/Télémesure : espace ou aérien, à faible coût, possibilité de mises à jour, fonds et détails de carte ● Statistiques : incertitude des données, Segmentation, Prédiction ● Photogrammétrie/Géodésie : précision des mesures ● Informatique : support et périphériques de gestion/analyse, SGBD, IA., CAO., accessibilité ● Mathématiques : algorithmique géométrique, Algèbre linéaire, logique, stratégies ● Recherche Opérationnelle : techniques d'optimisation, d'affectation, coloriage, gestion des ressources ● Domaine : Informations relatives aux domaines visés par l’application SIG (Agriculture, Météorologie, Hydrologie, …) ● Histoire : trace des informations et consolidation pour l’étude prévisionnelle ● Administration : structure de gestion et les données dynamiques, politique, planification ● Et bien d’autres domaines … 1212 SIG, Concepts de baseSIG, Concepts de base
  • 16. Les informations ainsi que leurs parcours anciens ou nouveau sont en liés dans un cycle de vie qui fait que ces mêmes informations évoluent et changent de consistance, de volume et de pertinence. Cycle de vie Collecte Interaction Réinjection SGBD 1313 SIG, Concepts de base, la plateforme SIGSIG, Concepts de base, la plateforme SIG
  • 17. SIG, Concepts de baseSIG, Concepts de base Fonctionnalités Applicatives Fonctionnalités Métier/Domaine Typologies des cartes ● Topographiques : Résultat d'observation directe ● Thématiques : Sur classe (repère) des phénomènes qualitatifs, quantitatifs ou administratives ○ Chorographique (surface) ○ Choroplèthe (valeurs/Intensités) ○ Courbes (différence) ○ Points : (présence) ○ Proportion Éléments d'une carte • Titre • Source, date, producteur • Orientation • Échelle • Légende et toponymie • Informations particulières SEMIOLOGIE • Ensemble de règles permettant l'utilisation d'un système graphique – Forme : géométrique (trait) symbolique (avion) – Taille : variation sur la longueur, surface – Orientation : symbolique (sens du vent, d'une rue, d'un trait) – Couleur : ton, intensité, saturation – Valeur : extension de la notion d'intensité couleur ou trame, dégradé) – Grain : taille des éléments constituants la texture, trame (tiret, hachure, ...) 5As : Acquisition, Abstraction, Archivage, Affichage, Analyse 1414
  • 18. Fonctionnalités Applicatives Les 5As/6As : Acquisition : Collecte de l’information Abstraction : Projection mathématique Archivage : Consolidation et stockage Affichage : Visualisation personnalisée Analyse : Extraction des sens Anticipation : Prospective. 1515 SIG, Concepts de baseSIG, Concepts de base 6A
  • 19. Domaines d’application & OutilsDomaines d’application & Outils ● Cadastre & parcellisation ● Logistique : aide à la navigation (GPS), suivi de flottes. ● Travaux publics, télécoms : travaux sur structure voirie ou sur réseaux. ● Militaire & Stratégie sécuritaire. ● Géomarketing & Géopolitique. ● Aménagement du territoire, urbanisme. ● Risques majeures : plan de prévention et d’intervention et gestion des crises/évènements à risque majeure. ● Agriculture & Forêts. ● Gestion des processus et des systèmes par similitude spatiale. ● Simulations & Prédiction (IA) OUTILS Propriétaire ARCGIS, MapInfo, ArcView, Geomedia, Géoconcept, APIC et WinSTAR, SynArc GPL & Open sources Grass, Quantum GIS, GMT APIs & Bibliothèques Google Maps, OpenLayers, OpenstreetMap, Web & Cloud GIS Cloud, OpenLayers, OpenstreetMap, 1616
  • 20. Interfaces des outils logiciels GISInterfaces des outils logiciels GIS Application WEB Application WEB Application bureau/serveur STANDALONE Application bureau/serveur STANDALONE Geomedia SmartClientGeomedia SmartClient ArcGISArcGIS Quantum GISQuantum GIS Web OpenlayerWeb Openlayer MapInfoMapInfo 1717
  • 21. Géo-référencement Edition de cartes Composition d’impression de cartes Insertion de couches Configuration de système de référence global Interrogation de bases de données Importation/Exportation de cartes/données Publication de cartes Filtrage de cartes/données … Géo-référencement Edition de cartes Composition d’impression de cartes Insertion de couches Configuration de système de référence global Interrogation de bases de données Importation/Exportation de cartes/données Publication de cartes Filtrage de cartes/données … 1818 Opérations communes sur outils SIG (QGIS)Opérations communes sur outils SIG (QGIS)
  • 22. ConclusionConclusion De nos jours, avec l’augmentation de l’utilisation de l’ordinateur individuel/portable, les SIGs sont devenus accessibles en version bureau ou serveur. Les applications SIG se réfèrent à tous les aspects de gestion et d’utilisation de données de domaines par projection géographiques numériques. L’outil SIG reste jusqu’à lors, un outil préféré pour la conception des idées et des simulations des situations selon des stratégies locales ou globales. 1919
  • 23. MERCI POUR VOTRE ATTENTION Fin du sixième chapitre Comme nous utilisons un traitement de texte pour écrire des documents et traiter des mots sur un ordinateur, nous pouvons utiliser une application SIG pour traiter l’information spatiale sur un ordinateur. SIG est synonyme de ‘système d’information géographique’.
  • 24. Références L.-V. Bertallanfy, ‘General System Theory’, Edition MASSON, 1972. https://www.openstreetmap.org/node/2786792894#map=15/31.6035/-2.2352&layers=QND http://www.volle.com/travaux/modelisation2.htm http://physiologie.envt.fr/spip/IMG/pdf/modeles_generalites.pdf http://hal.inria.fr/docs/00/85/02/77/PDF/masyco2013_submission_3.pdf http://www.mgm.fr/PUB/Mappemonde/M201/Caron.pdf http://oran2.free.fr/CARTE%20D%20ALGERIE/ https://www.openstreetmap.org http://www.statsilk.com/maps/world-stats-open-data http://docs.qgis.org/2.2/fr/docs/gentle_gis_introduction/introducing_gis.html#overview