SlideShare une entreprise Scribd logo
Université Joseph Fourrier
Département Licence Sciences & Technologies
Rapport de stage
"Produits financiers en temps discret :
simulation et couverture"
Anne-Laure Ducrocq
Laboratoire d’accueil : Laboratoire Jean Kuntzmann
Directeur du laboratoire : Eric Bonnetier
Maître de stage : Jérôme Lelong
L1 Mathématiques-Informatique
03-28 Juin 2013
Remerciements
Je tiens dans un premier temps à remercier Bernard Ycart pour son soutien, son entière confiance à
mon égare et enfin pour sa coopération. Ainsi que Patricia Cajot, responsable des stages d’excellence
du DLST, qui a permis la réalisation de ce stage d’un point de vue administratif. Je remercie aussi
tout particulièrement Jérome Lelong, mon maître de stage au sein du labo de Maths Financières qui a
su repérer mes difficultés dues à mes connaissances restreintes et ainsi adapter le stage à mon niveau.
Je suis tout à fait consciente du temps et de la patience que M. Lelong et M.Ycart m’ont accordée.
2
Sommaire
I Introduction 9
II Le modèle de Cox, Ross et Rubinstein 11
1 Présentation 12
1.1 Un exemple concret : le raffineur qui doit acheter des barils de pétrole . . . . . . . . 13
1.2 La problèmatique des options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Hypothèses et notations du modèle CRR . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 But : trouver une stratégie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Modèle à une période 21
2.1 Cas d’une option d’achat (CALL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 Calcul de E[V1(Φ)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Système d’équation solution . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Cas d’une option de vente (PUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Calcul de E[V1(Φ)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Système d’équation solution . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Comparaison CALL vs PUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Modèle à deux périodes 24
3.1 Cas d’une option d’achat (CALL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Résolution de φ0
2 et φ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Résolution de φ0
1 et φ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Vérification de la stratégie sous Scilab . . . . . . . . . . . . . . . . . . . . . 26
3.2 Cas d’une option de vente (PUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Résolution de φ0
2 et φ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Résolution de φ0
1 et φ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Vérification de la stratégie sous Scilab . . . . . . . . . . . . . . . . . . . . . 28
3.3 Cas particulier : non modification de la répartition du portefeuille . . . . . . . . . . . 29
4 Cas général : Modèle à N périodes 30
5 Etude asymptotique 31
3
A propos du LJK
4
Le laboratoire Jean Kuntzmann est un laboratoire de Mathématiques Appliquées et d’Informa-
tique. Il doit son nom à Jean Kuntzmann (1912-1992) pionnier de l’informatique et des mathématiques
appliquées à Grenoble et pionnier du décloisonnement des sciences numériques vers l’industrie et les
autres disciplines. Il regroupe des équipes de cultures assez différentes (dont 7 de l’INRIA) : mathé-
maticiens, numériciens, spécialistes de l’informatique graphique, du traitement d’images et de vision
par ordinateur. Cette diversité favorise des interactions très riches autour de la modélisation numé-
rique et du calcul, où les enjeux sont la complexité des systèmes (multi-échelles, multi-physiques),
les données massives, le calcul temps réel.
Le LJK joue aussi un rôle d’interface vers d’autres disciplines : les modèles et algorithmes qui y
sont développés trouvent des applications dans les domaines de l’environnement, des nanosciences,
de la biologie, des mathématiques financières, de la synthèse d’images et des sciences sociales.
Le laboratoire est structuré en 3 départements :
- Géométrie-Image regroupe des équipes de modélisation géométrique, de traitement, d’analyse et de
synthèse d’images et de vidéos et vision par ordinateur.
- Modèles et Algorithmes Déterministes centre ses activités sur la modélisation (par systèmes dyna-
miques, par équations aux dérivées partielles) et sur des outils pour le calcul numérique et symbolique.
- Probabilités/Statistique regroupe quant à lui des probabilistes, statisticiens et spécialistes de l’ana-
lyse des données et du traitement du signal.
5
Département Géométrie-Image
Le département Géométrie-Image développe des recherches en Modélisation Géométrique, Ana-
lyse d’Image, Informatique Graphique et Vision par ordinateur. Les recherches poursuivies ont pour
cadre commun le traitement informatique de la géométrie et des images. Les applications incluent
les systèmes informatiques de conception géométrique pour l’industrie manufacturière, la création de
films d’animation pour l’industrie du loisir, ou encore l’indexation et la fouille de grandes banques
d’images pour les technologies de l’information et de la communication. Ce regroupement d’exper-
tises informatiques en synthèse et analyse d’image, vision et géométrie est rare et constitue un creuset
idéal pour le développement de recherches innovantes vers une insertion totale de la géométrie 3D et
des images dans la Société de l’Information.
Ce département est consitué des équipes suivantes :
– ARTIS Acquisition, Représentation et Transformations pour l’Image de Synthèse (projet IN-
RIA)
– IMAGINE Modélisation Intuitive et Animation pour les Mondes 3D Interactifs et les Environ-
nements Narratifs (projet INRIA)
– LEAR Apprentissage et Reconnaissance en Vision (projet INRIA)
– MGMI Modélisation Géométrique et Multirésolution pour l’Images
– PERCEPTION Interpretation et Modelisation d’Images et Vidéos (projet INRIA)
– MORPHEO Capture et analyse de formes en mouvement (projet INRIA)
6
Département Modèles et Algorithmes
Déterministes
Le département MAD regroupe les chercheurs qui développent des outils numériques et symbo-
liques pour la résolution d’équations différentielles ordinaires ou d’équations aux dérivées partielles
et pour l’optimisation. Le département est structuré en 4 équipes :
– BIPOP : Modélisation, simulation et commande des systèmes dynamiques non réguliers, opti-
misation non-différentiable (projet INRIA)
– CASYS : Calcul exact, analyse et contrôle de systèmes dynamiques hybrides
(symboliques/exacts/numériques)
– EDP : Modélisation, analyse et calcul scientifique appliqué aux sciences du vivant et aux
sciences des matériaux
– MOISE : Méthodes mathématiques et numériques, calcul scientifique pour la modélisation di-
recte et inverse en géophysique (projet INRIA)
– STEEP : Soutenabilité, Territoire, Environnement, Economie et Politique
7
Département Probabilités/Statistique
Le département Probabilités et Statistique regroupe les chercheurs qui travaillent en probabilités,
statistique, mathématiques financières et traitement du signal et de l’image. Le département est struc-
turé en six équipes :
-MS3 Méthodologie Statistique et Sciences Sociales
-FIGAL Fiabilité et Géométrie Aléatoire
-MISTIS Modélisation et Inférence de phénomènes aléatoires complexes et structurés (projet INRIA)
-IPS Inférence Processus Stochastiques
-SAM Statistique Apprentissage Machine
-MATHFI Mathématiques financières
MATHFI
La gestion des risques financiers est devenue une préoccupation majeure des banques, assurances,
énergéticiens et autres entreprises exposées aux variations des marchés financiers. Ces phénomènes
aléatoires sont de nature complexe, car ils mettent souvent en jeu des variables de grande dimen-
sion avec des dépendances peu simples. L’équipe MATHFI étudie la modélisation/calibration de ces
phénomènes complexes par des processus stochastiques, leur simulation afin d’avoir une perception
dynamique des risques futurs, leur analyse mathématique et numérique. La formalisation mathéma-
tique des problèmes de couverture, de liquidité, d’imperfection de marchés, de risques extrêmes est
aussi au cœur de nos préoccupations.
Les compétences scientifiques de l’équipe portent sur :
-les processus stochastiques markoviens
-les équations aux dérivées partielles associées
-les méthodes numériques probabilistes dont celles de Monte Carlo
-le calcul de Malliavin
-le calcul parallèle pour la finance
Ces compétences permettent de relever des enjeux en gestion du risque et calculs temps réel, en
résolvant des problèmes de calcul de prix d’actifs complexes, d’optimisation de portefeuilles, d’éva-
luation de risques extrêmes... cela s’applique au secteur de la finance, de l’assurance et des marchés
énergétiques.
8
Première partie
Introduction
9
Etudiante en Licence 1 de Mathématique et d’Informatique (MIN) à l’Université Joseph Fourier
de Grenoble, j’ai effectué dans le cadre de ma formation un stage d’excellence dans ce dernier dépar-
tement de Probabilités et Statistique, en particulier dans l’équipe de MATHFI. Lorsque je recherchais
un stage, beaucoup de ceux proposés m’ont attirée. Mais quand j’ai aperçu sur le site de l’ENSIMAG
la spécialité d’ingénierie financière, cela m’a immédiatement interpellée. Pourtant je ne connaissais
pas du tout ce milieu mais c’est justement pour cette raison que j’ai voulu postuler. Effectivement, les
autres applications mathématiques sont plus concrètes dans notre perception de 1ère année.
Les mathématiques financières sont une branche des mathématiques appliquées ayant pour but la
modélisation, la quantification et la compréhension des phénomènes régissant les marchés financiers.
Elles utilisent principalement des outils issus de l’actualisation, de la théorie des probabilités, du
calcul stochastique, des statistiques et du calcul différentiel.
Faire un stage dans ce domaine s’est avéré particulièrement difficile, autant d’un point de vue
purement mathématique que d’un point de vue finance. C’est pourquoi, au début de mon stage j’ai du
me concentrer sur l’apprentissage théorique de ces notions.
Ensuite, mon maitre de stage, M. Lelong, a pris du temps pour adapter le sujet de mon stage à
mon niveau de connaissances. Nous nous sommes alors concentrés sur le modèle de Cox, Ross et
Rubinstein (noté CRR).
Pour commencer, j’ai étudier ce modèle à seulement une puis deux périodes avant de pouvoir
généraliser les notions au cas de N périodes. Au fur et à mesure, j’ai fait des simulations grâce au
logiciel libre de calcul numérique Scilab pour entre autres vérifier mes calculs.
10
Deuxième partie
Le modèle de Cox, Ross et Rubinstein
11
Chapitre 1
Présentation
Ce modèle binomial fournit une méthode numérique pour l’évaluation des options. Il a été pro-
posé pour la première fois par Cox, Ross et Rubinstein en 1979. Il s’agit d’un modèle discret pour
la dynamique du sous-jacent. L’évaluation de l’option est calculée par application de la probabilité
risque-neutre pour laquelle les prix actualisés sont des martingales (notion mathématique difficile que
nous n’aborderons pas). La méthode binomiale, pour valoriser les options, est très largement utili-
sée car elle est capable de prendre en compte un nombre important de conditions pour lesquelles
l’application d’autres modèles n’est pas aisée. Cela vient en grande partie du fait que la méthode
binomiale prend en compte les variations de l’actif sous-jacent (contrairement aux autres méthodes
qui ne prennent en compte qu’un point fixe). Par exemple la méthode binomiale est utilisée pour
les options américaines (celles-ci peuvent être exercées à tout moment) et les options des Bermudes
(celles-ci peuvent être exercées à différents moments). La méthode binomiale est de plus mathémati-
quement relativement simple et peut être facilement programmée en logiciel (ou éventuellement sur
une feuille de calcul). Bien que plus lente que la méthode de Black-Scholes, la méthode binomiale
est considérée comme plus précise, particulièrement pour les options à long terme et les options sur
titre versant des dividendes. C’est pourquoi il existe plusieurs versions du modèle binomial qui sont
utilisées par les personnes travaillant sur le marché des options. Pour les options comportant plusieurs
sources d’incertitudes ou pour les options complexes l’application de la méthode binomiale en « arbre
» présente des difficultés et n’est pas pratique. Dans ces cas-là il vaut mieux utiliser la Méthode de
Monte-Carlo.
Le but est de comprendre le principe de la couverture ou réplication de produits financiers dans ce
modèle.
John C.Cox, Stephen A.Ross, Mark E.Rubinstein
12
1.1 Un exemple concret : le raffineur qui doit acheter des barils
de pétrole
Nous allons tout d’abord commencer par étudier un exemple concret afin de comprendre l’utilité
de ce modèle.
Imaginons un raffineur ABC qui, au 1er janvier, sait que, pour son activité, il devra acheter au
30 juin 1 000 000 de barils de pétrole brut. Ce jour-là, le 1er janvier, le pétrole brut s’échange sur le
marché à 50$ par baril. Or, ABC anticipe une forte reprise économique ayant pour conséquence une
hausse des prix du pétrole. Au-delà de 60$ par baril, ABC commence à perdre de l’argent. Il décide
donc d’utiliser sa trésorerie pour acheter 1 000 000 de calls de prix d’exercice 60$ de date d’échéance
le 30 juin, et de prime 2$ par baril. Que va-t-il se passer au 30 juin ? Il aura la possibilité d’exercer ou
non ses calls.
– Cas 1 : le pétrole brut s’échange à 40$ par baril.
Le scénario anticipé par ABC ne s’est pas réalisé, et le call n’a plus aucune valeur. ABC aban-
donne l’option. Le bilan financier de l’opération est une perte de 2 000 000$. ABC va pouvoir
acheter son pétrole sur le marché à 40$ par baril, et aura dépensé au total 42$ par baril pour cela.
– Cas 2 : le pétrole brut s’échange à 55$ par baril.
Le scénario anticipé par ABC s’est en partie réalisé, mais le call n’a plus aucune valeur puisque
le prix d’exercice est supérieur au prix du marché : ce cas est en fait équivalent au précédent.
ABC abandonne l’option. Le bilan financier de l’opération est une perte de 2 000 000$. ABC
va pouvoir acheter son pétrole sur le marché à 55$ par baril, et aura dépensé au total 57$ par
baril pour cela.
– Cas 3 : le pétrole brut s’échange à 80$ par baril.
L’anticipation d’ABC s’est réalisée. Celui-ci va exercer son call : il va donc pouvoir acheter 1
000 000 barils à 60$ et, ainsi, limiter ses pertes. Il aura dépensé au total 62$ par baril pour cela.
S’il avait dû s’approvisionner sur le marché, il aurait payé 80$ par baril, soit une économie de
18$ par baril. Le raffineur ABC a donc protégé son approvisionnement contre une hausse trop
importante pour lui du prix du pétrole brut. En revanche, cette assurance a un coût. À lui de
décider si ce dernier est intéressant pour lui ou pas...
13
1.2 La problèmatique des options
Une option sur un actif S de maturité N est une assurance qui donne à son détenteur le droit, et non
l’obligation d’acheter (resp. de vendre) une certaine quantité d’actif financier S à une date convenue
(l’échéance N) et à un prix fixé d’avance par le contrat (K).
Le vendeur d’une option d’achat (resp. de vente) s’engage à donner au détenteur du contrat la somme
(SN − K)+ (resp. (K − SN )+).
La description précise d’une option se fait à partir de :
-La nature de l’option : Call (pour une option d’achat) ou Put (pour une option de vente).
-L’actif sous-jacent
-Le montant : la quantité d’actif sous-jacent à acheter ou à vendre
-Le prix d’exercice qui est le prix fixé d’avance auquel se fait la transaction en cas d’exercice de l’op-
tion.
-L’échéance, qui limite la durée de vie de l’option : si l’option peut être exercée à nimporte quel ins-
tant avant l’échéance, on parle d’option américaine, si l’option ne peut être exercée qu’à l’échéance,
on parle d’option européenne.
-Le prix de l’option elle-même appelé prime.
Il faut bien retenir que le détenteur n’est pas obligé d’exercer son option. Effectivement, si le prix
de son actif à la date N est inférieur au prix d’exercice, il ne va pas avoir besoin de l’exercer.
14
Dans le cas d’un call européen, soit Sn le cours de l’action à la date n. Il est clair que si, à
l’échéance N, le cours SN est inférieur au prix K, le détenteur de l’option n’a aucun intérêt à l’exer-
cer. Par contre, si SN > K, l’exercice de l’option permet à son détenteur de faire un profit égale à
SN − K en achetant l’action au prix K et en la revendant sur le marché au cours SN . On voit qu’à
l’échéance la valeur du Put est donné par la quantité :
(SN − K)+ = max(SN − K, 0)
Pour le vendeur de l’option, il s’agit, en cas d’exercice, d’être en mesure de fournir une action au
prix K et donc de pouvoir produire à l’échéance N une richesse égale à (SN − K)+. Au moment de
la vente de l’option (n=0), le cours SN est donc inconnu et 2 questions se posent :
1. Combien faut-il faire payer à l’acheteur de l’option, comment évaluer à l’instant n=0 une ri-
chesse (SN − K)+ disponible à la date N ? C’est le problème du PRICING.
2. Comment le vendeur, qui touche la prime à n=0 parviendra-t-il à produire la richesse (SN −K)+
à la date N ? C’est le problème de la COUVERTURE.
1.3 Hypothèses et notations du modèle CRR
On se place dans un marché idéalisé en faisant les 3 hypothèses économiques suivantes :
– Le marché est sans friction
– Il y a Absence d’Opportunité d’Arbitrage : il est impossible de faire des profits sans prendre de
risques
– Les investisseurs sont insatiables
Par ailleurs :
– On se place en temps discret
– On suppose qu’il n’y a qu’un seul actif à risque noté Sn à l’instant n.
– On suppose qu’il n’y a qu’un seul actif sans risque de rendement certain R sur une période noté
S0
n.
S0
n = (1 + R)n
où R > 0 représente le taux d’intérêt sur une période. S0
n correspond à la somme
obtenue à l’instant n pour un investissement de 1 à n = 0. C’est à dire que si l’on place x au taux R à
l’instant n, on obtient (1 + R)x à l’instant n + 1.
L’évolution du cours d’un actif est modélisée par la suite de variables aléatoires discrètes (Sn)0≤n≤N
définie par :
Sn+1 =
Sn × (1 + b)avec probabilité p
Sn × (1 + a)avec probabilité 1-p
où −1 < a < b et p ∈ [0; 1].
On définit également la suite des rendements (Tn)n≥1 par Tn = Sn
Sn−1
.
15
En introduisant une suite de variables aléatoires indépendantes et identiquement distribuées (i.i.d)
(Yi)1≤i≤N selon la loi de Bernoulli de paramètre p à valeurs dans {1 + a, 1 + b}, on peut écrire
Sn+1 = Sn × Yn+1.
Voici ci-dessous l’arbre probabilisé qui représente les évolutions possibles du cours Sn à chaque
instant t de S0 à S3. Il est important de remarquer que si le cours augmente puis diminue, sa valeur
est identique s’il diminue puis augmente.
16
Calculs d’espérances :
E[(1 + R)−(n+1)
Sn+1|Sn] = (1 + R)−(n+1)
E[Sn+1|Sn] = (1 + R)−(n+1)
E[Sn × Yn+1|Sn] =
(1+R)−(n+1)
SnE[Yn+1|Sn] = (1+R)−(n+1)
SnE[Yn+1] = (1+R)−(n+1)
Sn[p(1+b)+(1−p)(1+a)]
E[(1+R)−1
Tn+1|Sn] = (1+R)−1
E[Tn+1|Sn] = (1+R)−1
E[
Sn+1
Sn
|Sn] = (1+R)−1
E[
Sn × Yn+1
Sn
|Sn] =
(1+R)−1
E[Yn+1|Sn] = (1+R)−1
E[Yn+1] = (1+R)−1
[p(1+b)+(1−p)(1+a)] = E[(1+R)−1
Tn+1]
Relation entre p, R, a et b pour que E[(1 + R)−(n+1)
Sn+1|Sn] = (1 + R)−n
Sn :
E[(1 + R)−(n+1)
Sn+1|Sn] = (1 + R)−n
Sn
⇔ (1 + R)−(n+1)
Sn[p(1 + b) + (1 − p)(1 + a)] = (1 + R)−n
Sn
⇔ p(1 + b) + (1 − p)(1 + a) = 1 + R
⇔ pb + (1 − p)a = R
R est donc une combinaison convexe de a et b donc R ∈]a; b[
De plus, on obtient : p = R−a
b−a
Sous cette condition, on observe que E[Tn+1|Sn] = 1 + R
17
1.4 But : trouver une stratégie
On appelle stratégie toute suite de variables aléatoires Φ = (φ0
n, φn)0≤n≤N telles que :
– φ0
0 et φ0 soient des quantités déterministes
– à n > 0 fixé, les variables aléatoires φ0
n et φn ne dépendent que de l’information jusqu’à l’instant
n − 1.
– Pour tout n < N,
φ0
n+1S0
n + φn+1Sn = φ0
nS0
n + φnSn
Cette dernière condition s’appelle condition d’autofinancement qui interdit de réinjecter de l’ar-
gent supplémentaire à toute date n > 0.
La variable φ0
n (resp. φn) représente la quantité d’actif S0
n (resp. Sn) détenus à l’instant n. La valeur
à l’instant n de cette stratégie sera notée Vn(Φ) et vaut :
Vn(Φ) = φ0
nS0
n + φnSn
Remarque : La composition du portefeuille à l’instant n est décidée à l’instant n − 1.
Le but de la suite de cette présentation du modèle CRR est donc de comprendre comment on peut
construire une stratégie Φ telle que VN (Φ) = (SN − K)+ dans le cas d’une option d’achat (resp.
VN (Φ) = (K − SN )+ dans le cas d’une option de vente).
Une stratégie de valeur finale (SN − K)+ (resp. (K − SN )+) s’appelle stratégie de couverture
pour l’option d’achat (resp. de vente).
18
On peut observer une relation intéressante entre Vn et Vn−1 si on calcule l’espérance suivante :
E[(1 + R)-n
Vn(Φ)|(S0, S1, ..., Sn−1)]
E[(1+R)−n
Vn(Φ)|(S0, S1, ..., Sn−1)] = (1+R)−n
E[Vn(Φ)|Sn−1] = (1+R)−n
E[φ0
nS0
n +φnSn|Sn−1]
Mais φ0
n et φn ne dépendent pas de S0, ..., Sn−1 donc :
(1 + R)−n
[φ0
nE[S0
n|Sn−1] + φnE[Sn|Sn−1]] = (1 + R)−n
[φ0
n(1 + R)n
+ φnE[Sn−1 × Yn|Sn−1]] =
(1+R)−n
[φ0
n(1+R)n
+φnSn−1E[Yn|Sn−1]] = (1+R)−n
[φ0
n(1+R)n
+φnSn−1[p(1+b)+(1−p)(1+a)]] =
Or [p(1 + b) + (1 − p)(1 + a)] = 1 + R d’après p = R−a
b−a
(1 + R)−n
[φ0
n(1 + R)n
+ φnSn−1(1 + R)] = φ0
n + φnSn−1(1 + R)−(n−1)
=
[φ0
n(1 + R)n−1
+ φnSn−1](1 + R)−(n−1)
= [φ0
nS0
n−1 + φnSn−1](1 + R)−(n−1)
=
D’après la condition d’autofinancement, on obtient :
[φ0
n−1S0
n−1 + φn−1Sn−1](1 + R)−(n−1)
= Vn−1(Φ)(1 + R)−(n−1)
Finalement :
E[(1 + R)−n
Vn(Φ)|(S0, S1, ..., Sn−1)] = Vn−1(Φ)(1 + R)−(n−1)
D’autre part, le calcul de Vn+1 −Vn est particulièrement intéressant pour la suite de notre analyse.
Vn+1−Vn = φ0
n+1S0
n+1+φn+1Sn+1−(φ0
nS0
n+φnSn) = φ0
n+1S0
n+1+φn+1Sn+1−(φ0
n+1S0
n+φn+1Sn) =
φ0
n+1(S0
n+1 − S0
n) + φn+1(Sn+1 − Sn)
De cette dernière relation, on peut exprimer Vn(Φ) d’une autre manière :
(Hn) : Vn(Φ) = V0(Φ) + n
i=1 φi∆Si + n
i=1 φ0
i ∆S0
i
où ∆Si = Si − Si−1 et ∆S0
i = S0
i − S0
i−1
Preuve par récurrence :
*Vrai pour n=0.
*Supposons (Hn) vraie.
19
Vn(Φ) = V0(Φ) +
n
i=1
φi∆Si +
n
i=1
φ0
i ∆S0
i
Vn+1(Φ) = V0(Φ) +
n
i=1
φi∆Si + φn+1(Sn+1 − Sn) +
n
i=1
φ0
i ∆S0
i + φ0
n+1(S0
n+1 − S0
n)
(Hn+1) : Vn+1(Φ) = V0(Φ) +
n+1
i=1
φi∆Si +
n+1
i=1
φ0
i ∆S0
i
20
Chapitre 2
Modèle à une période
Dans cette section, on se restreint au mo-
dèle à une période, c’est-à-dire que N=1.
Nous n’avons alors que 2 possibilités
pour la valeur de S1.
2.1 Cas d’une option d’achat (CALL)
Soit Φ la stratégie de couverture de valeur finale V1(Φ) = (S1 − K)+.
2.1.1 Calcul de E[V1(Φ)]
D’après 1.4.1 :
E[V1(Φ)] = V0(Φ)(1 + R)
Donc
V0(Φ) = E[V1(Φ)](1+R)−1
= E[(S1−K)+](1+R)−1
= [p(S0(1+b)−K)++(1−p)(S0(1+a)−K)+](1+R)−1
= [
R − a
b − a
(S0(1 + b) − K)+ −
R − b
b − a
(S0(1 + a) − K)+](1 + R)−1
2.1.2 Système d’équation solution
V1(Φ) = (S1 − K)+
21
φ0
1S0
1 + φ1S1 = (S1 − K)+
S :
φ0
1(1 + R) + φ1S0(1 + b) = (S0(1 + b) − K)+
φ0
1(1 + R) + φ1S0(1 + a) = (S0(1 + a) − K)+
S :
φ1 = 1
S0(b−a)
[(S0(1 + b) − K)+ − (S0(1 + a) − K)+]
φ0
1 = 1
1+R
[1+a
a−b
(S0(1 + b) − K)+ − 1+b
a−b
(S0(1 + a) − K)+]
2.2 Cas d’une option de vente (PUT)
2.2.1 Calcul de E[V1(Φ)]
D’après 1.4.1 :
E[V1(Φ)] = V0(Φ)(1 + R)
Donc
V0(Φ) = E[V1(Φ)](1+R)−1
= E[(K−S1)+](1+R)−1
= [p(K−S0(1+b))++(1−p)(K−S0(1+a))](1+R)−1
= [
R − a
b − a
(K − S0(1 + b))+ −
R − b
b − a
(K − S0(1 + a))+](1 + R)−1
2.2.2 Système d’équation solution
V1(Φ) = (K − S1)+
φ0
1S0
1 + φ1S1 = (K − S1)+
S :
φ0
1(1 + R) + φ1S0(1 + b) = (K − S0(1 + b))+
φ0
1(1 + R) + φ1S0(1 + a) = (K − S0(1 + a))+
S :
φ1 = 1
S0(b−a)
[(K − S0(1 + b))+ − (K − S0(1 + a))+]
φ0
1 = 1
1+R
[1+a
a−b
(K − S0(1 + b))+ − 1+b
a−b
(K − S0(1 + a))+]
22
2.3 Comparaison CALL vs PUT
Nous allons nous concentrer ici sur la comparaison entre un call et un put européen de même
échéance n=1 et de même prix d’exercice K, sur une action de cours Sn à l’instant n.
On remarque que :
φ1 −φ1 =
1
S0(b − a)
[(S0(1+b)−K)+ −(K −S0(1+b))+ +(K −S0(1+a))+ −(S0(1+a)−K)+] =
1
S0(b − a)
[(S0(1+b)−K)+(K−S0(1+a))] =
1
S0(b − a)
[S0(1+b)−S0(1+a)] =
1
(b − a)
[(1+b)−(1+a)] = 1
φ0
1−φ0
1 =
1
1 + R
[
1 + a
a − b
(S0(1+b)−K)+
1 + b
a − b
(K−S0(1+a))] =
1
1 + R
[K(
1 + b
a − b
−
1 + a
a − b
)] = −
K
1 + R
V1(Φ) − V1(Φ) = φ0
1S0
1 + φ1S1 − (φ0
1S0
1 + φ1S1) = S0
1(φ0
1 − φ0
1) + S1(φ1 − φ1) = S1 − K
On appelle cette égalité la relation de parité call-put.
On observe alors qu’avec l’opportunité de détenir à la fois un call et un put, si l’on achète un put
V1(Φ) et une action S1 et si l’on vend un call V1(Φ), on obtient un profit égal à :
V1(Φ) − V1(Φ) − S1
A la date N=1, deux cas peuvent se présenter :
– S1 > K alors on exerce le call et on se retrouve avec une richesse égale à K+V1(Φ)−V1(Φ)−S1
– S1 <= K alors on exerce le put et comme précédemment on se retrouve avec une richesse
égale à K + V1(Φ) − V1(Φ) − S1
Dans les 2 cas, on réalise un profit positif sans mise de fond initial. Donc il est effectivement
intéréssant d’avoir l’opportunité de détenir à la fois un call et un put.
23
Chapitre 3
Modèle à deux périodes
Dans cette section, on se restreint au
modèle à deux périodes, c’est-à-dire
que N=2. Une stratégie Φ peut donc
se représenter comme un quadruplet
(φ0
1, φ1, φ0
2, φ2)
S2 =



S0(1 + b)2
avec probabilité p2
S0(1 + a)(1 + b) avec probabilité 2p(1-p)
S0(1 + a)2
avec probabilité (1 − p)2
S2 peut donc prendre 3 valeurs notées :
1 + ¯a = (1 + a)2
1 + ¯b = (1 + b)2
1 + ¯c = (1 + a)(1 + b)
24
3.1 Cas d’une option d’achat (CALL)
Soit Φ la stratégie de couverture de valeur finale V2(Φ) = (S2 − K)+.
3.1.1 Résolution de φ0
2 et φ2
V2(Φ) = (S2 − K)+
φ0
2S0
2 + φ2S2 = (S2 − K)+
S :
φ0
2(1 + R)2
+ φ2S1(1 + b) = (S1(1 + b) − K)+
φ0
2(1 + R)2
+ φ2S1(1 + a) = (S1(1 + a) − K)+
S :
φ2 = 1
S1(b−a)
[(S1(1 + b) − K)+ − (S1(1 + a) − K)+]
φ0
2 = 1
(1+R)2 [1+a
a−b
(S1(1 + b) − K)+ − 1+b
a−b
(S1(1 + a) − K)+]
3.1.2 Résolution de φ0
1 et φ1
E[(S2 − K)+|S1] = E[(S1Y2 − K)+] = p(S1(1 + b) − K)+ + (1 − p)(S1(1 + a) − K)+ =
R − a
b − a
(S1(1 + b) − K)+ +
b − R
b − a
(S1(1 + a) − K)+
D’après 1.4.1, E[Vn+1(Φ)] = Vn(Φ)(1 + R) donc E[V2(Φ)] = V1(Φ)(1 + R)
E[(S2 − K)+] = V1(Φ)(1 + R)
V1(Φ)(1 + R) =
R − a
b − a
(S1(1 + b) − K)+ +
b − R
b − a
(S1(1 + a) − K)+
(φ0
1S0
1 + φ1S1)(1 + R) =
R − a
b − a
(S1(1 + b) − K)+ +
b − R
b − a
(S1(1 + a) − K)+
(φ0
1(1 + R) + φ1S1)(1 + R) =
R − a
b − a
(S1(1 + b) − K)+ +
b − R
b − a
(S1(1 + a) − K)+
φ0
1(1 + R)2
+ φ1S0(1 + b)(1 + R) = R−a
b−a
(S0(1 + b)2
− K)+ + b−R
b−a
(S0(1 + a)(1 + b) − K)+
φ0
1(1 + R)2
+ φ1S0(1 + a)(1 + R) = R−a
b−a
(S0(1 + a)(1 + b) − K)+ + b−R
b−a
(S0(1 + a)2
− K)+
φ1 =
1
S0(1 + R)(b − a)2
[(R−a)(S0(1+b)2
−K)++(R−b)(S0(1+a)2
−K)++(b+a−2R)(S0(1+a)(1+b)−K)+]
25
φ0
1 =
1
(1 + R)2(b − a)2
[(1 + a)(a − R)(S0(1 + b)2
− K)+ + (1 + b)(b − R)(S0(1 + a)2
− K)+
+((b − a)(b − R) + (1 + b)(2R − a − b))(S0(1 + a)(1 + b) − K)+]
3.1.3 Vérification de la stratégie sous Scilab
/ / Modele a deux p er i od e s
function f = p o s i t i v e ( x )
i f x<0 then f =0 ;
e l s e f =x ;
end
endfunction
a =0.2 ; b =0.7 ; K=1 ; R=0.5 ; p =0.5 ;
S02=(1+R) ∗(1+R) ; S01=(1+R) ; S00=1 ;
function S=s ( n )
i f ( n==0) then S=1 ;
e l s e
i f rand ( 1 , 1 ) <p then S=s ( n−1)∗(1+ b ) ;
e l s e S=s ( n−1)∗(1+ a ) ;
end
end
endfunction
phi2 =(1/ s ( 1 ) ∗( b−a ) ) ∗( p o s i t i v e (K−s ( 1 ) ∗(1+ b ) )−p o s i t i v e (K−s ( 1 ) ∗(1+ a ) ) ;
phi02 =(1/(1+R) ∗(1+R) ) ∗(((1+ a ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 1 ) ∗(1+ b ) ) −((1+b ) / ( a−b ) )
∗ p o s i t i v e (K−s ( 1 ) ∗(1+ a ) ) ) ;
phi1 =(1/ s ( 0 ) ∗(1+R) ∗( b−a ) ) ∗( p o s i t i v e (K−s ( 0 ) ∗(1+ b ) ∗(1+R) )−p o s i t i v e (K−s ( 0 )
∗(1+ a ) ∗(1+R) ) ) ;
phi01 =(1/(1+R) ∗(1+R) ) ∗(((1+ a ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 0 ) ∗(1+ b ) ∗(1+R) ) −((1+b )
/ ( a−b ) ) ∗ p o s i t i v e (K−s ( 0 ) ∗(1+ a ) ∗(1+R) ) ) ;
V2=phi02 ∗S02+phi2 ∗ s ( 2 ) ;
V1=phi01 ∗S01+phi1 ∗ s ( 1 ) ;
26
3.2 Cas d’une option de vente (PUT)
Soit Φ la stratégie de couverture de valeur finale V2(Φ) = (K − S2)+.
3.2.1 Résolution de φ0
2 et φ2
V2(Φ) = (K − S2)+
φ0
2S0
2 + φ2S2 = (K − S2)+
S :
φ0
2(1 + R)2 + φ2S1(1 + b) = (K − S1(1 + b))+
φ0
2(1 + R)2 + φ2S1(1 + a) = (K − S1(1 + a))+
S :
φ2 = 1
S1(b−a) [(K − S1(1 + b))+ − (K − S1(1 + a))+]
φ0
2 = 1
(a−b)(1+R)2 [(1 + a)(K − S1(1 + b))+ − (1 + b)(K − S1(1 + a))+]
3.2.2 Résolution de φ0
1 et φ1
E[(K − S2)+|S1] = E[(K − S1Y2)+] = p(K − S1(1 + b))+ + (1 − p)(K − S1(1 + a))+ =
R − a
b − a
(K − S1(1 + b))+ +
b − R
b − a
(K − S1(1 + a))+
D’après 1.4.1, E[Vn+1(Φ)] = Vn(Φ)(1 + R) donc E[V2(Φ)] = V1(Φ)(1 + R)
E[(K − S2)+] = V1(Φ)(1 + R)
V1(Φ)(1 + R) =
R − a
b − a
(K − S1(1 + b))+ +
b − R
b − a
(K − S1(1 + a))+
(φ0
1S0
1 + φ1S1)(1 + R) =
R − a
b − a
(K − S1(1 + b))+ +
b − R
b − a
(K − S1(1 + a))+
(φ0
1(1 + R) + φ1S1)(1 + R) =
R − a
b − a
(K − S1(1 + b))+ +
b − R
b − a
(K − S1(1 + a))+
φ0
1(1 + R)2 + φ1S0(1 + b)(1 + R) = R−a
b−a (K − S0(1 + b)2)+ + b−R
b−a (K − S0(1 + a)(1 + b))+
φ0
1(1 + R)2 + φ1S0(1 + a)(1 + R) = R−a
b−a (K − S0(1 + a)(1 + b))+ + b−R
b−a (K − S0(1 + a)2)+
φ1 =
1
S0(1 + R)(b − a)2
[(R−a)(K−S0(1+b)2
)++(R−b)(K−S0(1+a)2
)++(b+a−2R)(K−S0(1+a)(1+b))+]
φ0
1 =
1
(1 + R)2(b − a)2
[(1 + a)(a − R)(K − S0(1 + b)2
)+ + (1 + b)(b − R)(K − S0(1 + a)2
)+
+((b − a)(b − R) + (1 + b)(2R − a − b))(K − S0(1 + a)(1 + b))+]
27
3.2.3 Vérification de la stratégie sous Scilab
/ / Modele a deux p er i od e s
function f = p o s i t i v e ( x )
i f x<0 then f =0 ;
e l s e f =x ;
end
endfunction
a =0.2 ; b =0.7 ; K=1 ; R=0.5 ; p =0.5 ;
S02=(1+R) ∗(1+R) ; S01=(1+R) ; S00=1 ;
function S=s ( n )
i f ( n==0) then S=1 ;
e l s e
i f rand ( 1 , 1 ) <p then S=s ( n−1)∗(1+ b ) ;
e l s e S=s ( n−1)∗(1+ a ) ;
end
end
endfunction
phi2 =(1/ s ( 1 ) ∗( b−a ) ) ∗( p o s i t i v e (K−s ( 1 ) ∗(1+ b ) )−p o s i t i v e (K−s ( 1 ) ∗(1+ a ) ) ;
phi02 =(1/(1+R) ∗(1+R) ) ∗(((1+ a ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 1 ) ∗(1+ b ) ) −((1+b ) / ( a−b ) )
∗ p o s i t i v e (K−s ( 1 ) ∗(1+ a ) ) ) ;
phi1 =(1/ s ( 0 ) ∗(1+R) ∗( b−a ) ) ∗( p o s i t i v e (K−s ( 0 ) ∗(1+ b ) ∗(1+R) )−p o s i t i v e (K−s ( 0 )
∗(1+ a ) ∗(1+R) ) ) ;
phi01 =(1/(1+R) ∗(1+R) ) ∗(((1+ a ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 0 ) ∗(1+ b ) ∗(1+R) ) −((1+b )
/ ( a−b ) ) ∗ p o s i t i v e (K−s ( 0 ) ∗(1+ a ) ∗(1+R) ) ) ;
V2=phi02 ∗S02+phi2 ∗ s ( 2 ) ;
V1=phi01 ∗S01+phi1 ∗ s ( 1 ) ;
28
3.3 Cas particulier : non modification de la répartition du porte-
feuille
Supposons qu’il existe une stratégie telle que φ0
1 = φ0
2 et que φ1 = φ2, c’est-à-dire telle que l’on ne modifie
pas la répartition du portefeuille entre les instants 1 et 2.
Voici les 3 équations vérifiées par le couple (φ0
1, φ1) si la valeur finale de cette stratégie est V2(Φ) =
(S2 − K)+ :
φ0
2(1 + R)2
+ φ2S2 = (S2 − K)+
φ0
1(1 + R)2
+ φ1S2 = (S2 − K)+



φ0
1(1 + R)2 + φ1S0(1 + b)2 = (S0(1 + b)2 − K)+
φ0
1(1 + R)2 + φ1S0(1 + a)2 = (S0(1 + a)2 − K)+
φ0
1(1 + R)2 + φ1S0(1 + a)(1 + b) = (S0(1 + a)(1 + b) − K)+
Si K ∈]S0(1 + ¯a); S0(1 + ¯b)[ alors ces 3 équations précédentes n’admettent aucune solution et donc il
n’existe pas de stratégies de couverture statique entre les instants 1 et 2.
Maintenant, si K /∈]S0(1 + ¯a); S0(1 + ¯b)[, il est possible de trouver des stratégies de couverture sans
réallocation après la date 1.
29
Chapitre 4
Cas général : Modèle à N périodes
Simulation sous Scilab de l’évolution du
cours Sn réalisée plusieurs fois sur le même
graphique. On reconnaît bien l’arbre proba-
bilisé où se rejoignent les courbes.
On considère dans cette section le modèle général à N périodes. Soit Φ une stratégie de couverture de l’op-
tion d’achat. On note c(n, Sn) la valeur Vn(Φ).
Pour chaque Sn le nombre de valeurs possibles différentes est de n+1.
D’après 1.4.1, E[Vn+1(Φ)] = Vn(1 + R) donc
E[Vn+1(Φ)|(S0, ..., Sn)] = Vn(1 + R)
E[c(n + 1, Sn+1)] = c(n, Sn)(1 + R)
c(n + 1, E[Sn+1]) = c(n, Sn)(1 + R)
c(n + 1, E[SnYn+1]) = c(n, Sn)(1 + R)
c(n + 1, Sn(1 + a))(1 − p) + c(n + 1, Sn(1 + b))p = c(n, Sn)(1 + R)
La suite (c(n, Sn))0≤n≤N est donc solution de la récurrence rétrograde :
c(N, SN ) = (SN − K)+
c(n, Sn) = (1 + R)−1[c(n + 1, Sn(1 + a))(1 − p) + c(n + 1, Sn(1 + b))p]
30
Chapitre 5
Etude asymptotique
Dans cette partie, on considère le modèle CRR comme une discrétisation d’un modèle en temps continu
sur un intervalle [0 ;T]. On considère la subdivision tk = kT
N , dans la suite on pose h = T
N . Dans une optique
de faire tendre N vers l’infini, il convient de faire dépendre les paramètres a, b et R de h. On pose alors
1 + R = erh
; 1 + a = e−σ
√
h
; 1 + b = eσ
√
h
avec σ > 0 et r > 0. On remarquera que r s’interprète comme un taux d’intérêt instantané.
D’après 1.3, p(1 + b) + (1 − p)(1 + a) = 1 + R d’où :
peσ
√
h
+ (1 − p)e−σ
√
h
= erh
p(eσ
√
h
− e−σ
√
h
) = erh
− e−σ
√
h
p =
erh − e−σ
√
h
eσ
√
h − e−σ
√
h
Calculons maintenant la limite de p lorsque h tends vers 0 :
lim
h→0
p = lim
h→0
erh − e−σ
√
h
eσ
√
h − e−σ
√
h
= lim
h→0
(erh − e−σ
√
h)(eσ
√
h − e−σ
√
h)
(eσ
√
h − e−σ
√
h)(eσ
√
h − e−σ
√
h)
= lim
h→0
erh+σ
√
h − erh−σ
√
h − 1 + e−2σ
√
h
e2σ
√
h + e−2σ
√
h − 2
=
1
2
31
Nous allons maintenant tracé l’histogramme de log(Sn) pour :
σ = 0.2; T = 1; N = 100; h = T/N = 0.01; r = 0.05
Puis on trace aussi sur le même graphe la courbe de densité de la loi normale de moyenne (r − σ2
2 ) et de
variance σ2.
/ / Etude asymptotique
M = 1000; / / nombre de t r a j e c t o i r e s
sigma =0.2 ; T=1 ; N=1000 ; r =0.05 ; h=T /N ; R=1−exp ( r ∗h ) ; s0 =1;
p =( exp ( r ∗h )−exp(−sigma ∗ sqrt ( h ) ) ) / ( exp ( sigma ∗ sqrt ( h ) )−exp(−sigma ∗ sqrt ( h ) ) )
;
Y=exp ( sigma ∗ sqrt ( h ) ∗ (1 − 2 ∗ bool2s ( rand (M,N) >p ) ) ) ;
Sn=prod (Y, ’ c ’ ) ;
LogSn=log ( Sn ) ;
h i s t p l o t (30 , LogSn )
/ / Comparaison l o i Normale N(mu , sigma ^2)
mu=r −0.5∗( sigma ^2) ;
x= l in sp ac e (−3 ∗ sigma , 3 ∗ sigma , 100) ’;
f =(1 . / ( sigma ∗ sqrt (2∗ %pi ) ) ) ∗ exp ( −0.5 ∗ ( ( ( x−mu) / sigma ) ^2) ) ;
plot2d ( x , f , s t y l e =5)
32
Histogramme obtenu :
33
Conclusion
Mon stage d’excellence au sein de l’équipe de MATHFI du laboratoire Jean Kuntzmann a été très enrichis-
sant aussi bien sur le plan de la recherche que sur le plan humain. En effet, les autres stagiaires et les thésards
ont été très accueillant pour permettre un travail dans une ambiance très conviviale.
Ce stage m’a apporté de réelles connaissances tant dans le domaine des mathématiques probabilistes que
dans celui de la finance. J’ai découvert un modèle financier très intéressant qui permet aux banques et autres
institutions financières de proposer des prix d’options judicieux, c’est-à-dire assez élevés pour ne pas avoir de
perte mais assez bas pour que les concurrents ne proposent mieux aux clients. C’est une version discrétisée du
modèle de Black Scholes qui lui aussi est intéressant mais n’est pas appliqué dans les mêmes conditions.
J’ai appris à travailler en autonomie mais d’un autre côté, M. Lelong et M. Ycart m’ont beaucoup épaulée
tout au long de ce mois de stage et m’ont permis d’avancer et de débloquer mes problèmes rencontrés de ma-
nière très pédagogue. J’ai notamment, grâce aux simulations effectuées à l’aide du logiciel Scilab, énormément
amélioré la maîtrise de cet outil que je ne maitrisais pas vraiment pour les applications statistiques.
Pour conclure, j’ai donc eu l’opportunité d’apprendre, durant ce dernier mois, un aspect du monde des
mathématiques financières que je ne connaissais pas du tout et que M. Lelong a su me faire apprécier.
34
Bibliographie
D. LAMBERTON et B. LAPEYRE, Introduction au Calcul Stochastique Appliqué à la Finance. 2012
B. JOURDAIN, Probabilités et Statistiques. 2009
R. BOURLES Chap. 9 : Le modèle Cox, Ross et Rubinstein Mathémtiques pour la finance, Cours Master
Finance Université Toulouse Sciences Sociales. 2010
A-V. AURIAULT Utilisation des arbres binomiaux pour le pricing des options américaines ENSIMAG.
2010
LJK - Laboratoire Jean Kuntzmann - http ://www-ljk.imag.fr/
35

Contenu connexe

Tendances

Chapitre4 Les sondages à probabilité inégales
Chapitre4 Les sondages à probabilité inégalesChapitre4 Les sondages à probabilité inégales
Chapitre4 Les sondages à probabilité inégales
Mahamadou Haro
 
Chapitre 9 flexion simple
Chapitre 9 flexion simpleChapitre 9 flexion simple
Chapitre 9 flexion simpleMouna Souissi
 
Conception datawarehouse
Conception datawarehouseConception datawarehouse
Conception datawarehouse
Hassane Dkhissi
 
Page de garde arabe
Page de garde arabePage de garde arabe
Page de garde arabe
n allali
 
La Soutenace
La SoutenaceLa Soutenace
La SoutenaceDavid Sar
 
CV de Fatma CHIHAOUI
CV de Fatma CHIHAOUICV de Fatma CHIHAOUI
CV de Fatma CHIHAOUI
Fatma CHIHAOUI
 
A. BERRICHI ( Méthodologie travail universitaire - FSJESO)
A. BERRICHI ( Méthodologie travail universitaire - FSJESO)A. BERRICHI ( Méthodologie travail universitaire - FSJESO)
A. BERRICHI ( Méthodologie travail universitaire - FSJESO)
Université Mohamed Premier
 
Curriculum informatique 2ème année Septembre 2019
Curriculum informatique 2ème année Septembre 2019Curriculum informatique 2ème année Septembre 2019
Curriculum informatique 2ème année Septembre 2019
Amine Ellouze
 
Rapport De Stage de Fin d'etude : Modélisation et Dématérialisation des Proc...
Rapport De Stage de Fin  d'etude : Modélisation et Dématérialisation des Proc...Rapport De Stage de Fin  d'etude : Modélisation et Dématérialisation des Proc...
Rapport De Stage de Fin d'etude : Modélisation et Dématérialisation des Proc...
Issa BEN MANSOUR
 
Les systèmes d'information décisionnel pour les assurances
Les systèmes d'information décisionnel pour les assurancesLes systèmes d'information décisionnel pour les assurances
Les systèmes d'information décisionnel pour les assurancesdihiaselma
 
regression_logistique.pdf
regression_logistique.pdfregression_logistique.pdf
regression_logistique.pdf
SidiAbdallah1
 
Analyse et conception des systèmes d’information
Analyse et conception des systèmes d’informationAnalyse et conception des systèmes d’information
Analyse et conception des systèmes d’information
Mireille Blay-Fornarino
 
microscope à balayage Electronique
microscope à balayage Electronique microscope à balayage Electronique
microscope à balayage Electronique
ImadeddineBakouk
 
COURS Dessin du batiment 2023.pdf
COURS Dessin du batiment 2023.pdfCOURS Dessin du batiment 2023.pdf
COURS Dessin du batiment 2023.pdf
NabilWidadiWidadi
 
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELUSBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
Marwan Sadek
 
Rapport PFE | Eolane | Amélioration de la productivité de l'atelier CMS
Rapport PFE | Eolane | Amélioration de la productivité de l'atelier CMSRapport PFE | Eolane | Amélioration de la productivité de l'atelier CMS
Rapport PFE | Eolane | Amélioration de la productivité de l'atelier CMS
Zouhair Boufakri
 
Mini projet statistique bahtat ayoub
Mini projet statistique bahtat ayoubMini projet statistique bahtat ayoub
Mini projet statistique bahtat ayoub
Ayoub BAHTAT
 
La Regression lineaire
La Regression lineaireLa Regression lineaire
La Regression lineaire
FIKRIMAIL
 

Tendances (20)

Chapitre4 Les sondages à probabilité inégales
Chapitre4 Les sondages à probabilité inégalesChapitre4 Les sondages à probabilité inégales
Chapitre4 Les sondages à probabilité inégales
 
Chapitre 9 flexion simple
Chapitre 9 flexion simpleChapitre 9 flexion simple
Chapitre 9 flexion simple
 
Conception datawarehouse
Conception datawarehouseConception datawarehouse
Conception datawarehouse
 
Page de garde arabe
Page de garde arabePage de garde arabe
Page de garde arabe
 
La Soutenace
La SoutenaceLa Soutenace
La Soutenace
 
CV de Fatma CHIHAOUI
CV de Fatma CHIHAOUICV de Fatma CHIHAOUI
CV de Fatma CHIHAOUI
 
A. BERRICHI ( Méthodologie travail universitaire - FSJESO)
A. BERRICHI ( Méthodologie travail universitaire - FSJESO)A. BERRICHI ( Méthodologie travail universitaire - FSJESO)
A. BERRICHI ( Méthodologie travail universitaire - FSJESO)
 
Curriculum informatique 2ème année Septembre 2019
Curriculum informatique 2ème année Septembre 2019Curriculum informatique 2ème année Septembre 2019
Curriculum informatique 2ème année Septembre 2019
 
Rapport De Stage de Fin d'etude : Modélisation et Dématérialisation des Proc...
Rapport De Stage de Fin  d'etude : Modélisation et Dématérialisation des Proc...Rapport De Stage de Fin  d'etude : Modélisation et Dématérialisation des Proc...
Rapport De Stage de Fin d'etude : Modélisation et Dématérialisation des Proc...
 
Les systèmes d'information décisionnel pour les assurances
Les systèmes d'information décisionnel pour les assurancesLes systèmes d'information décisionnel pour les assurances
Les systèmes d'information décisionnel pour les assurances
 
regression_logistique.pdf
regression_logistique.pdfregression_logistique.pdf
regression_logistique.pdf
 
Analyse et conception des systèmes d’information
Analyse et conception des systèmes d’informationAnalyse et conception des systèmes d’information
Analyse et conception des systèmes d’information
 
microscope à balayage Electronique
microscope à balayage Electronique microscope à balayage Electronique
microscope à balayage Electronique
 
COURS Dessin du batiment 2023.pdf
COURS Dessin du batiment 2023.pdfCOURS Dessin du batiment 2023.pdf
COURS Dessin du batiment 2023.pdf
 
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELUSBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
 
Cours de probabilites
Cours de probabilitesCours de probabilites
Cours de probabilites
 
Rapport PFE | Eolane | Amélioration de la productivité de l'atelier CMS
Rapport PFE | Eolane | Amélioration de la productivité de l'atelier CMSRapport PFE | Eolane | Amélioration de la productivité de l'atelier CMS
Rapport PFE | Eolane | Amélioration de la productivité de l'atelier CMS
 
Mini projet statistique bahtat ayoub
Mini projet statistique bahtat ayoubMini projet statistique bahtat ayoub
Mini projet statistique bahtat ayoub
 
CM4 - Transformée en z
CM4 - Transformée en zCM4 - Transformée en z
CM4 - Transformée en z
 
La Regression lineaire
La Regression lineaireLa Regression lineaire
La Regression lineaire
 

En vedette

Un taxi pour Khamût Khan
Un taxi pour Khamût KhanUn taxi pour Khamût Khan
Un taxi pour Khamût Khan
anto Sass
 
Década de la Educación por la Sostenibilidad
Década de la Educación por la SostenibilidadDécada de la Educación por la Sostenibilidad
Década de la Educación por la Sostenibilidad
decadaoei
 
Fauxproverbes 0
Fauxproverbes 0Fauxproverbes 0
Fauxproverbes 0lyago
 
www.saficooasisci.net
www.saficooasisci.netwww.saficooasisci.net
www.saficooasisci.net
saficooasisci
 
Doc97713
Doc97713Doc97713
Doc97713lyago
 
Actividad Nro.2b
Actividad Nro.2bActividad Nro.2b
Actividad Nro.2b
marisagodoy
 
Antonio Puerta
Antonio PuertaAntonio Puerta
Antonio Puerta
sergiofm
 
Resumen opygua-pra-tedxba
Resumen opygua-pra-tedxbaResumen opygua-pra-tedxba
Resumen opygua-pra-tedxba
Patricia Bertolotti
 
Victoria Beckham
Victoria BeckhamVictoria Beckham
Victoria Beckham
mirima
 
Pasantia Profesor Abraham Farias
Pasantia Profesor Abraham FariasPasantia Profesor Abraham Farias
Pasantia Profesor Abraham Farias
Universidad de Talca
 
Championnat assoication internationaux de france
Championnat assoication internationaux de franceChampionnat assoication internationaux de france
Championnat assoication internationaux de france
Fabrice Carlier
 
Atelier numérique n°5 de l'Office de tourisme Luberon Durance: L'importance d...
Atelier numérique n°5 de l'Office de tourisme Luberon Durance: L'importance d...Atelier numérique n°5 de l'Office de tourisme Luberon Durance: L'importance d...
Atelier numérique n°5 de l'Office de tourisme Luberon Durance: L'importance d...
Office de Tourisme Luberon Durance
 
Combo On Line
Combo On LineCombo On Line
Combo On Line
daceti
 
Vitamins and Supplements at a glance
Vitamins and Supplements at a glanceVitamins and Supplements at a glance
Vitamins and Supplements at a glance
King Associates International (GR)
 
El destino del hombre
El destino del hombreEl destino del hombre
El destino del hombre
Euler
 
Deseos
DeseosDeseos
Deseos
zyanya5
 
Camí de santiago- xacobeo
Camí de santiago- xacobeoCamí de santiago- xacobeo
Camí de santiago- xacobeo
Teresa Torné
 
La Orchila
La OrchilaLa Orchila
La Orchila
Lin
 
Linea de investigación creatividad en educación
Linea de investigación creatividad en educaciónLinea de investigación creatividad en educación
Linea de investigación creatividad en educación
Manuel Mujica
 
Compartiendo Experiencias Docentes Farias
Compartiendo Experiencias Docentes FariasCompartiendo Experiencias Docentes Farias
Compartiendo Experiencias Docentes Farias
Universidad de Talca
 

En vedette (20)

Un taxi pour Khamût Khan
Un taxi pour Khamût KhanUn taxi pour Khamût Khan
Un taxi pour Khamût Khan
 
Década de la Educación por la Sostenibilidad
Década de la Educación por la SostenibilidadDécada de la Educación por la Sostenibilidad
Década de la Educación por la Sostenibilidad
 
Fauxproverbes 0
Fauxproverbes 0Fauxproverbes 0
Fauxproverbes 0
 
www.saficooasisci.net
www.saficooasisci.netwww.saficooasisci.net
www.saficooasisci.net
 
Doc97713
Doc97713Doc97713
Doc97713
 
Actividad Nro.2b
Actividad Nro.2bActividad Nro.2b
Actividad Nro.2b
 
Antonio Puerta
Antonio PuertaAntonio Puerta
Antonio Puerta
 
Resumen opygua-pra-tedxba
Resumen opygua-pra-tedxbaResumen opygua-pra-tedxba
Resumen opygua-pra-tedxba
 
Victoria Beckham
Victoria BeckhamVictoria Beckham
Victoria Beckham
 
Pasantia Profesor Abraham Farias
Pasantia Profesor Abraham FariasPasantia Profesor Abraham Farias
Pasantia Profesor Abraham Farias
 
Championnat assoication internationaux de france
Championnat assoication internationaux de franceChampionnat assoication internationaux de france
Championnat assoication internationaux de france
 
Atelier numérique n°5 de l'Office de tourisme Luberon Durance: L'importance d...
Atelier numérique n°5 de l'Office de tourisme Luberon Durance: L'importance d...Atelier numérique n°5 de l'Office de tourisme Luberon Durance: L'importance d...
Atelier numérique n°5 de l'Office de tourisme Luberon Durance: L'importance d...
 
Combo On Line
Combo On LineCombo On Line
Combo On Line
 
Vitamins and Supplements at a glance
Vitamins and Supplements at a glanceVitamins and Supplements at a glance
Vitamins and Supplements at a glance
 
El destino del hombre
El destino del hombreEl destino del hombre
El destino del hombre
 
Deseos
DeseosDeseos
Deseos
 
Camí de santiago- xacobeo
Camí de santiago- xacobeoCamí de santiago- xacobeo
Camí de santiago- xacobeo
 
La Orchila
La OrchilaLa Orchila
La Orchila
 
Linea de investigación creatividad en educación
Linea de investigación creatividad en educaciónLinea de investigación creatividad en educación
Linea de investigación creatividad en educación
 
Compartiendo Experiencias Docentes Farias
Compartiendo Experiencias Docentes FariasCompartiendo Experiencias Docentes Farias
Compartiendo Experiencias Docentes Farias
 

Similaire à Rapport stage

Projet_Monte_Carlo_Dauphine
Projet_Monte_Carlo_DauphineProjet_Monte_Carlo_Dauphine
Projet_Monte_Carlo_DauphineAli Sana
 
recherche operationnelle
recherche operationnelle recherche operationnelle
recherche operationnelle
mohamednacim
 
Etude de la mise en place et de la stratégie de lancement d’une plateforme so...
Etude de la mise en place et de la stratégie de lancement d’une plateforme so...Etude de la mise en place et de la stratégie de lancement d’une plateforme so...
Etude de la mise en place et de la stratégie de lancement d’une plateforme so...
Houssem Eddine Jebri
 
Ingénierie du chaos, Approche par rétro-ingénierie
Ingénierie du chaos, Approche par rétro-ingénierieIngénierie du chaos, Approche par rétro-ingénierie
Ingénierie du chaos, Approche par rétro-ingénierie
Patrice Coppens
 
Rapport Projet de Fin d'Etudes
Rapport Projet de Fin d'EtudesRapport Projet de Fin d'Etudes
Rapport Projet de Fin d'Etudes
Hosni Mansour
 
Programme_MEA
Programme_MEAProgramme_MEA
Programme_MEAMaiko MOU
 
Conception et réalisation d’un Système d’information des étudiants du départe...
Conception et réalisation d’un Système d’information des étudiants du départe...Conception et réalisation d’un Système d’information des étudiants du départe...
Conception et réalisation d’un Système d’information des étudiants du départe...
Ilyas CHAOUA
 
Memoire Egir Briantais
Memoire Egir BriantaisMemoire Egir Briantais
Memoire Egir Briantais
briantais
 
Rapport stage david_tchouta
Rapport stage david_tchoutaRapport stage david_tchouta
Rapport stage david_tchouta
David TCHOUTA
 
Fourth year internship report
Fourth year internship reportFourth year internship report
Fourth year internship report
Slimane Akaliâ , سليمان أقليع
 
Mon Projet Fin d'étude: Conception et développement d'une application de géol...
Mon Projet Fin d'étude: Conception et développement d'une application de géol...Mon Projet Fin d'étude: Conception et développement d'une application de géol...
Mon Projet Fin d'étude: Conception et développement d'une application de géol...
rim elaire
 
Rapport genie logiciel
Rapport genie logicielRapport genie logiciel
Rapport genie logiciel
serge sonfack
 
PFA___Hlabba_Bacem.pdf
PFA___Hlabba_Bacem.pdfPFA___Hlabba_Bacem.pdf
PFA___Hlabba_Bacem.pdf
BacemHlabba
 
Impl´ementation d’une copule mutilvari´ee.pdf
Impl´ementation d’une copule mutilvari´ee.pdfImpl´ementation d’une copule mutilvari´ee.pdf
Impl´ementation d’une copule mutilvari´ee.pdf
NuioKila
 
Outpatient Department System (OPD)
Outpatient Department System (OPD) Outpatient Department System (OPD)
Outpatient Department System (OPD)
Ben Ahmed Zohra
 
Implémentation et mise en place d’un système décisionnel pour la solution Meg...
Implémentation et mise en place d’un système décisionnel pour la solution Meg...Implémentation et mise en place d’un système décisionnel pour la solution Meg...
Implémentation et mise en place d’un système décisionnel pour la solution Meg...
Houssem Eddine Jebri
 
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
Arthur Crosse
 
Mémoire de Master 2
Mémoire de Master 2Mémoire de Master 2
Mémoire de Master 2
Montrésor Konan
 
Evaluation de la quantité de travail (in)utile dans l’exécution des programmes
Evaluation de la quantité de travail (in)utile dans l’exécution des programmesEvaluation de la quantité de travail (in)utile dans l’exécution des programmes
Evaluation de la quantité de travail (in)utile dans l’exécution des programmes
Benjamin Vidal
 

Similaire à Rapport stage (20)

Projet_Monte_Carlo_Dauphine
Projet_Monte_Carlo_DauphineProjet_Monte_Carlo_Dauphine
Projet_Monte_Carlo_Dauphine
 
recherche operationnelle
recherche operationnelle recherche operationnelle
recherche operationnelle
 
Etude de la mise en place et de la stratégie de lancement d’une plateforme so...
Etude de la mise en place et de la stratégie de lancement d’une plateforme so...Etude de la mise en place et de la stratégie de lancement d’une plateforme so...
Etude de la mise en place et de la stratégie de lancement d’une plateforme so...
 
Ingénierie du chaos, Approche par rétro-ingénierie
Ingénierie du chaos, Approche par rétro-ingénierieIngénierie du chaos, Approche par rétro-ingénierie
Ingénierie du chaos, Approche par rétro-ingénierie
 
Rapport Projet de Fin d'Etudes
Rapport Projet de Fin d'EtudesRapport Projet de Fin d'Etudes
Rapport Projet de Fin d'Etudes
 
Programme_MEA
Programme_MEAProgramme_MEA
Programme_MEA
 
Conception et réalisation d’un Système d’information des étudiants du départe...
Conception et réalisation d’un Système d’information des étudiants du départe...Conception et réalisation d’un Système d’information des étudiants du départe...
Conception et réalisation d’un Système d’information des étudiants du départe...
 
Memoire Egir Briantais
Memoire Egir BriantaisMemoire Egir Briantais
Memoire Egir Briantais
 
Rapport stage david_tchouta
Rapport stage david_tchoutaRapport stage david_tchouta
Rapport stage david_tchouta
 
Fourth year internship report
Fourth year internship reportFourth year internship report
Fourth year internship report
 
Mon Projet Fin d'étude: Conception et développement d'une application de géol...
Mon Projet Fin d'étude: Conception et développement d'une application de géol...Mon Projet Fin d'étude: Conception et développement d'une application de géol...
Mon Projet Fin d'étude: Conception et développement d'une application de géol...
 
Rapport genie logiciel
Rapport genie logicielRapport genie logiciel
Rapport genie logiciel
 
PFA___Hlabba_Bacem.pdf
PFA___Hlabba_Bacem.pdfPFA___Hlabba_Bacem.pdf
PFA___Hlabba_Bacem.pdf
 
Impl´ementation d’une copule mutilvari´ee.pdf
Impl´ementation d’une copule mutilvari´ee.pdfImpl´ementation d’une copule mutilvari´ee.pdf
Impl´ementation d’une copule mutilvari´ee.pdf
 
Outpatient Department System (OPD)
Outpatient Department System (OPD) Outpatient Department System (OPD)
Outpatient Department System (OPD)
 
Implémentation et mise en place d’un système décisionnel pour la solution Meg...
Implémentation et mise en place d’un système décisionnel pour la solution Meg...Implémentation et mise en place d’un système décisionnel pour la solution Meg...
Implémentation et mise en place d’un système décisionnel pour la solution Meg...
 
Le grafcet
Le grafcet Le grafcet
Le grafcet
 
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
 
Mémoire de Master 2
Mémoire de Master 2Mémoire de Master 2
Mémoire de Master 2
 
Evaluation de la quantité de travail (in)utile dans l’exécution des programmes
Evaluation de la quantité de travail (in)utile dans l’exécution des programmesEvaluation de la quantité de travail (in)utile dans l’exécution des programmes
Evaluation de la quantité de travail (in)utile dans l’exécution des programmes
 

Rapport stage

  • 1. Université Joseph Fourrier Département Licence Sciences & Technologies Rapport de stage "Produits financiers en temps discret : simulation et couverture" Anne-Laure Ducrocq Laboratoire d’accueil : Laboratoire Jean Kuntzmann Directeur du laboratoire : Eric Bonnetier Maître de stage : Jérôme Lelong L1 Mathématiques-Informatique 03-28 Juin 2013
  • 2. Remerciements Je tiens dans un premier temps à remercier Bernard Ycart pour son soutien, son entière confiance à mon égare et enfin pour sa coopération. Ainsi que Patricia Cajot, responsable des stages d’excellence du DLST, qui a permis la réalisation de ce stage d’un point de vue administratif. Je remercie aussi tout particulièrement Jérome Lelong, mon maître de stage au sein du labo de Maths Financières qui a su repérer mes difficultés dues à mes connaissances restreintes et ainsi adapter le stage à mon niveau. Je suis tout à fait consciente du temps et de la patience que M. Lelong et M.Ycart m’ont accordée. 2
  • 3. Sommaire I Introduction 9 II Le modèle de Cox, Ross et Rubinstein 11 1 Présentation 12 1.1 Un exemple concret : le raffineur qui doit acheter des barils de pétrole . . . . . . . . 13 1.2 La problèmatique des options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Hypothèses et notations du modèle CRR . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 But : trouver une stratégie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Modèle à une période 21 2.1 Cas d’une option d’achat (CALL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Calcul de E[V1(Φ)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.2 Système d’équation solution . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Cas d’une option de vente (PUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 Calcul de E[V1(Φ)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 Système d’équation solution . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Comparaison CALL vs PUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Modèle à deux périodes 24 3.1 Cas d’une option d’achat (CALL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Résolution de φ0 2 et φ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Résolution de φ0 1 et φ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.3 Vérification de la stratégie sous Scilab . . . . . . . . . . . . . . . . . . . . . 26 3.2 Cas d’une option de vente (PUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Résolution de φ0 2 et φ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Résolution de φ0 1 et φ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 Vérification de la stratégie sous Scilab . . . . . . . . . . . . . . . . . . . . . 28 3.3 Cas particulier : non modification de la répartition du portefeuille . . . . . . . . . . . 29 4 Cas général : Modèle à N périodes 30 5 Etude asymptotique 31 3
  • 4. A propos du LJK 4
  • 5. Le laboratoire Jean Kuntzmann est un laboratoire de Mathématiques Appliquées et d’Informa- tique. Il doit son nom à Jean Kuntzmann (1912-1992) pionnier de l’informatique et des mathématiques appliquées à Grenoble et pionnier du décloisonnement des sciences numériques vers l’industrie et les autres disciplines. Il regroupe des équipes de cultures assez différentes (dont 7 de l’INRIA) : mathé- maticiens, numériciens, spécialistes de l’informatique graphique, du traitement d’images et de vision par ordinateur. Cette diversité favorise des interactions très riches autour de la modélisation numé- rique et du calcul, où les enjeux sont la complexité des systèmes (multi-échelles, multi-physiques), les données massives, le calcul temps réel. Le LJK joue aussi un rôle d’interface vers d’autres disciplines : les modèles et algorithmes qui y sont développés trouvent des applications dans les domaines de l’environnement, des nanosciences, de la biologie, des mathématiques financières, de la synthèse d’images et des sciences sociales. Le laboratoire est structuré en 3 départements : - Géométrie-Image regroupe des équipes de modélisation géométrique, de traitement, d’analyse et de synthèse d’images et de vidéos et vision par ordinateur. - Modèles et Algorithmes Déterministes centre ses activités sur la modélisation (par systèmes dyna- miques, par équations aux dérivées partielles) et sur des outils pour le calcul numérique et symbolique. - Probabilités/Statistique regroupe quant à lui des probabilistes, statisticiens et spécialistes de l’ana- lyse des données et du traitement du signal. 5
  • 6. Département Géométrie-Image Le département Géométrie-Image développe des recherches en Modélisation Géométrique, Ana- lyse d’Image, Informatique Graphique et Vision par ordinateur. Les recherches poursuivies ont pour cadre commun le traitement informatique de la géométrie et des images. Les applications incluent les systèmes informatiques de conception géométrique pour l’industrie manufacturière, la création de films d’animation pour l’industrie du loisir, ou encore l’indexation et la fouille de grandes banques d’images pour les technologies de l’information et de la communication. Ce regroupement d’exper- tises informatiques en synthèse et analyse d’image, vision et géométrie est rare et constitue un creuset idéal pour le développement de recherches innovantes vers une insertion totale de la géométrie 3D et des images dans la Société de l’Information. Ce département est consitué des équipes suivantes : – ARTIS Acquisition, Représentation et Transformations pour l’Image de Synthèse (projet IN- RIA) – IMAGINE Modélisation Intuitive et Animation pour les Mondes 3D Interactifs et les Environ- nements Narratifs (projet INRIA) – LEAR Apprentissage et Reconnaissance en Vision (projet INRIA) – MGMI Modélisation Géométrique et Multirésolution pour l’Images – PERCEPTION Interpretation et Modelisation d’Images et Vidéos (projet INRIA) – MORPHEO Capture et analyse de formes en mouvement (projet INRIA) 6
  • 7. Département Modèles et Algorithmes Déterministes Le département MAD regroupe les chercheurs qui développent des outils numériques et symbo- liques pour la résolution d’équations différentielles ordinaires ou d’équations aux dérivées partielles et pour l’optimisation. Le département est structuré en 4 équipes : – BIPOP : Modélisation, simulation et commande des systèmes dynamiques non réguliers, opti- misation non-différentiable (projet INRIA) – CASYS : Calcul exact, analyse et contrôle de systèmes dynamiques hybrides (symboliques/exacts/numériques) – EDP : Modélisation, analyse et calcul scientifique appliqué aux sciences du vivant et aux sciences des matériaux – MOISE : Méthodes mathématiques et numériques, calcul scientifique pour la modélisation di- recte et inverse en géophysique (projet INRIA) – STEEP : Soutenabilité, Territoire, Environnement, Economie et Politique 7
  • 8. Département Probabilités/Statistique Le département Probabilités et Statistique regroupe les chercheurs qui travaillent en probabilités, statistique, mathématiques financières et traitement du signal et de l’image. Le département est struc- turé en six équipes : -MS3 Méthodologie Statistique et Sciences Sociales -FIGAL Fiabilité et Géométrie Aléatoire -MISTIS Modélisation et Inférence de phénomènes aléatoires complexes et structurés (projet INRIA) -IPS Inférence Processus Stochastiques -SAM Statistique Apprentissage Machine -MATHFI Mathématiques financières MATHFI La gestion des risques financiers est devenue une préoccupation majeure des banques, assurances, énergéticiens et autres entreprises exposées aux variations des marchés financiers. Ces phénomènes aléatoires sont de nature complexe, car ils mettent souvent en jeu des variables de grande dimen- sion avec des dépendances peu simples. L’équipe MATHFI étudie la modélisation/calibration de ces phénomènes complexes par des processus stochastiques, leur simulation afin d’avoir une perception dynamique des risques futurs, leur analyse mathématique et numérique. La formalisation mathéma- tique des problèmes de couverture, de liquidité, d’imperfection de marchés, de risques extrêmes est aussi au cœur de nos préoccupations. Les compétences scientifiques de l’équipe portent sur : -les processus stochastiques markoviens -les équations aux dérivées partielles associées -les méthodes numériques probabilistes dont celles de Monte Carlo -le calcul de Malliavin -le calcul parallèle pour la finance Ces compétences permettent de relever des enjeux en gestion du risque et calculs temps réel, en résolvant des problèmes de calcul de prix d’actifs complexes, d’optimisation de portefeuilles, d’éva- luation de risques extrêmes... cela s’applique au secteur de la finance, de l’assurance et des marchés énergétiques. 8
  • 10. Etudiante en Licence 1 de Mathématique et d’Informatique (MIN) à l’Université Joseph Fourier de Grenoble, j’ai effectué dans le cadre de ma formation un stage d’excellence dans ce dernier dépar- tement de Probabilités et Statistique, en particulier dans l’équipe de MATHFI. Lorsque je recherchais un stage, beaucoup de ceux proposés m’ont attirée. Mais quand j’ai aperçu sur le site de l’ENSIMAG la spécialité d’ingénierie financière, cela m’a immédiatement interpellée. Pourtant je ne connaissais pas du tout ce milieu mais c’est justement pour cette raison que j’ai voulu postuler. Effectivement, les autres applications mathématiques sont plus concrètes dans notre perception de 1ère année. Les mathématiques financières sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les marchés financiers. Elles utilisent principalement des outils issus de l’actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel. Faire un stage dans ce domaine s’est avéré particulièrement difficile, autant d’un point de vue purement mathématique que d’un point de vue finance. C’est pourquoi, au début de mon stage j’ai du me concentrer sur l’apprentissage théorique de ces notions. Ensuite, mon maitre de stage, M. Lelong, a pris du temps pour adapter le sujet de mon stage à mon niveau de connaissances. Nous nous sommes alors concentrés sur le modèle de Cox, Ross et Rubinstein (noté CRR). Pour commencer, j’ai étudier ce modèle à seulement une puis deux périodes avant de pouvoir généraliser les notions au cas de N périodes. Au fur et à mesure, j’ai fait des simulations grâce au logiciel libre de calcul numérique Scilab pour entre autres vérifier mes calculs. 10
  • 11. Deuxième partie Le modèle de Cox, Ross et Rubinstein 11
  • 12. Chapitre 1 Présentation Ce modèle binomial fournit une méthode numérique pour l’évaluation des options. Il a été pro- posé pour la première fois par Cox, Ross et Rubinstein en 1979. Il s’agit d’un modèle discret pour la dynamique du sous-jacent. L’évaluation de l’option est calculée par application de la probabilité risque-neutre pour laquelle les prix actualisés sont des martingales (notion mathématique difficile que nous n’aborderons pas). La méthode binomiale, pour valoriser les options, est très largement utili- sée car elle est capable de prendre en compte un nombre important de conditions pour lesquelles l’application d’autres modèles n’est pas aisée. Cela vient en grande partie du fait que la méthode binomiale prend en compte les variations de l’actif sous-jacent (contrairement aux autres méthodes qui ne prennent en compte qu’un point fixe). Par exemple la méthode binomiale est utilisée pour les options américaines (celles-ci peuvent être exercées à tout moment) et les options des Bermudes (celles-ci peuvent être exercées à différents moments). La méthode binomiale est de plus mathémati- quement relativement simple et peut être facilement programmée en logiciel (ou éventuellement sur une feuille de calcul). Bien que plus lente que la méthode de Black-Scholes, la méthode binomiale est considérée comme plus précise, particulièrement pour les options à long terme et les options sur titre versant des dividendes. C’est pourquoi il existe plusieurs versions du modèle binomial qui sont utilisées par les personnes travaillant sur le marché des options. Pour les options comportant plusieurs sources d’incertitudes ou pour les options complexes l’application de la méthode binomiale en « arbre » présente des difficultés et n’est pas pratique. Dans ces cas-là il vaut mieux utiliser la Méthode de Monte-Carlo. Le but est de comprendre le principe de la couverture ou réplication de produits financiers dans ce modèle. John C.Cox, Stephen A.Ross, Mark E.Rubinstein 12
  • 13. 1.1 Un exemple concret : le raffineur qui doit acheter des barils de pétrole Nous allons tout d’abord commencer par étudier un exemple concret afin de comprendre l’utilité de ce modèle. Imaginons un raffineur ABC qui, au 1er janvier, sait que, pour son activité, il devra acheter au 30 juin 1 000 000 de barils de pétrole brut. Ce jour-là, le 1er janvier, le pétrole brut s’échange sur le marché à 50$ par baril. Or, ABC anticipe une forte reprise économique ayant pour conséquence une hausse des prix du pétrole. Au-delà de 60$ par baril, ABC commence à perdre de l’argent. Il décide donc d’utiliser sa trésorerie pour acheter 1 000 000 de calls de prix d’exercice 60$ de date d’échéance le 30 juin, et de prime 2$ par baril. Que va-t-il se passer au 30 juin ? Il aura la possibilité d’exercer ou non ses calls. – Cas 1 : le pétrole brut s’échange à 40$ par baril. Le scénario anticipé par ABC ne s’est pas réalisé, et le call n’a plus aucune valeur. ABC aban- donne l’option. Le bilan financier de l’opération est une perte de 2 000 000$. ABC va pouvoir acheter son pétrole sur le marché à 40$ par baril, et aura dépensé au total 42$ par baril pour cela. – Cas 2 : le pétrole brut s’échange à 55$ par baril. Le scénario anticipé par ABC s’est en partie réalisé, mais le call n’a plus aucune valeur puisque le prix d’exercice est supérieur au prix du marché : ce cas est en fait équivalent au précédent. ABC abandonne l’option. Le bilan financier de l’opération est une perte de 2 000 000$. ABC va pouvoir acheter son pétrole sur le marché à 55$ par baril, et aura dépensé au total 57$ par baril pour cela. – Cas 3 : le pétrole brut s’échange à 80$ par baril. L’anticipation d’ABC s’est réalisée. Celui-ci va exercer son call : il va donc pouvoir acheter 1 000 000 barils à 60$ et, ainsi, limiter ses pertes. Il aura dépensé au total 62$ par baril pour cela. S’il avait dû s’approvisionner sur le marché, il aurait payé 80$ par baril, soit une économie de 18$ par baril. Le raffineur ABC a donc protégé son approvisionnement contre une hausse trop importante pour lui du prix du pétrole brut. En revanche, cette assurance a un coût. À lui de décider si ce dernier est intéressant pour lui ou pas... 13
  • 14. 1.2 La problèmatique des options Une option sur un actif S de maturité N est une assurance qui donne à son détenteur le droit, et non l’obligation d’acheter (resp. de vendre) une certaine quantité d’actif financier S à une date convenue (l’échéance N) et à un prix fixé d’avance par le contrat (K). Le vendeur d’une option d’achat (resp. de vente) s’engage à donner au détenteur du contrat la somme (SN − K)+ (resp. (K − SN )+). La description précise d’une option se fait à partir de : -La nature de l’option : Call (pour une option d’achat) ou Put (pour une option de vente). -L’actif sous-jacent -Le montant : la quantité d’actif sous-jacent à acheter ou à vendre -Le prix d’exercice qui est le prix fixé d’avance auquel se fait la transaction en cas d’exercice de l’op- tion. -L’échéance, qui limite la durée de vie de l’option : si l’option peut être exercée à nimporte quel ins- tant avant l’échéance, on parle d’option américaine, si l’option ne peut être exercée qu’à l’échéance, on parle d’option européenne. -Le prix de l’option elle-même appelé prime. Il faut bien retenir que le détenteur n’est pas obligé d’exercer son option. Effectivement, si le prix de son actif à la date N est inférieur au prix d’exercice, il ne va pas avoir besoin de l’exercer. 14
  • 15. Dans le cas d’un call européen, soit Sn le cours de l’action à la date n. Il est clair que si, à l’échéance N, le cours SN est inférieur au prix K, le détenteur de l’option n’a aucun intérêt à l’exer- cer. Par contre, si SN > K, l’exercice de l’option permet à son détenteur de faire un profit égale à SN − K en achetant l’action au prix K et en la revendant sur le marché au cours SN . On voit qu’à l’échéance la valeur du Put est donné par la quantité : (SN − K)+ = max(SN − K, 0) Pour le vendeur de l’option, il s’agit, en cas d’exercice, d’être en mesure de fournir une action au prix K et donc de pouvoir produire à l’échéance N une richesse égale à (SN − K)+. Au moment de la vente de l’option (n=0), le cours SN est donc inconnu et 2 questions se posent : 1. Combien faut-il faire payer à l’acheteur de l’option, comment évaluer à l’instant n=0 une ri- chesse (SN − K)+ disponible à la date N ? C’est le problème du PRICING. 2. Comment le vendeur, qui touche la prime à n=0 parviendra-t-il à produire la richesse (SN −K)+ à la date N ? C’est le problème de la COUVERTURE. 1.3 Hypothèses et notations du modèle CRR On se place dans un marché idéalisé en faisant les 3 hypothèses économiques suivantes : – Le marché est sans friction – Il y a Absence d’Opportunité d’Arbitrage : il est impossible de faire des profits sans prendre de risques – Les investisseurs sont insatiables Par ailleurs : – On se place en temps discret – On suppose qu’il n’y a qu’un seul actif à risque noté Sn à l’instant n. – On suppose qu’il n’y a qu’un seul actif sans risque de rendement certain R sur une période noté S0 n. S0 n = (1 + R)n où R > 0 représente le taux d’intérêt sur une période. S0 n correspond à la somme obtenue à l’instant n pour un investissement de 1 à n = 0. C’est à dire que si l’on place x au taux R à l’instant n, on obtient (1 + R)x à l’instant n + 1. L’évolution du cours d’un actif est modélisée par la suite de variables aléatoires discrètes (Sn)0≤n≤N définie par : Sn+1 = Sn × (1 + b)avec probabilité p Sn × (1 + a)avec probabilité 1-p où −1 < a < b et p ∈ [0; 1]. On définit également la suite des rendements (Tn)n≥1 par Tn = Sn Sn−1 . 15
  • 16. En introduisant une suite de variables aléatoires indépendantes et identiquement distribuées (i.i.d) (Yi)1≤i≤N selon la loi de Bernoulli de paramètre p à valeurs dans {1 + a, 1 + b}, on peut écrire Sn+1 = Sn × Yn+1. Voici ci-dessous l’arbre probabilisé qui représente les évolutions possibles du cours Sn à chaque instant t de S0 à S3. Il est important de remarquer que si le cours augmente puis diminue, sa valeur est identique s’il diminue puis augmente. 16
  • 17. Calculs d’espérances : E[(1 + R)−(n+1) Sn+1|Sn] = (1 + R)−(n+1) E[Sn+1|Sn] = (1 + R)−(n+1) E[Sn × Yn+1|Sn] = (1+R)−(n+1) SnE[Yn+1|Sn] = (1+R)−(n+1) SnE[Yn+1] = (1+R)−(n+1) Sn[p(1+b)+(1−p)(1+a)] E[(1+R)−1 Tn+1|Sn] = (1+R)−1 E[Tn+1|Sn] = (1+R)−1 E[ Sn+1 Sn |Sn] = (1+R)−1 E[ Sn × Yn+1 Sn |Sn] = (1+R)−1 E[Yn+1|Sn] = (1+R)−1 E[Yn+1] = (1+R)−1 [p(1+b)+(1−p)(1+a)] = E[(1+R)−1 Tn+1] Relation entre p, R, a et b pour que E[(1 + R)−(n+1) Sn+1|Sn] = (1 + R)−n Sn : E[(1 + R)−(n+1) Sn+1|Sn] = (1 + R)−n Sn ⇔ (1 + R)−(n+1) Sn[p(1 + b) + (1 − p)(1 + a)] = (1 + R)−n Sn ⇔ p(1 + b) + (1 − p)(1 + a) = 1 + R ⇔ pb + (1 − p)a = R R est donc une combinaison convexe de a et b donc R ∈]a; b[ De plus, on obtient : p = R−a b−a Sous cette condition, on observe que E[Tn+1|Sn] = 1 + R 17
  • 18. 1.4 But : trouver une stratégie On appelle stratégie toute suite de variables aléatoires Φ = (φ0 n, φn)0≤n≤N telles que : – φ0 0 et φ0 soient des quantités déterministes – à n > 0 fixé, les variables aléatoires φ0 n et φn ne dépendent que de l’information jusqu’à l’instant n − 1. – Pour tout n < N, φ0 n+1S0 n + φn+1Sn = φ0 nS0 n + φnSn Cette dernière condition s’appelle condition d’autofinancement qui interdit de réinjecter de l’ar- gent supplémentaire à toute date n > 0. La variable φ0 n (resp. φn) représente la quantité d’actif S0 n (resp. Sn) détenus à l’instant n. La valeur à l’instant n de cette stratégie sera notée Vn(Φ) et vaut : Vn(Φ) = φ0 nS0 n + φnSn Remarque : La composition du portefeuille à l’instant n est décidée à l’instant n − 1. Le but de la suite de cette présentation du modèle CRR est donc de comprendre comment on peut construire une stratégie Φ telle que VN (Φ) = (SN − K)+ dans le cas d’une option d’achat (resp. VN (Φ) = (K − SN )+ dans le cas d’une option de vente). Une stratégie de valeur finale (SN − K)+ (resp. (K − SN )+) s’appelle stratégie de couverture pour l’option d’achat (resp. de vente). 18
  • 19. On peut observer une relation intéressante entre Vn et Vn−1 si on calcule l’espérance suivante : E[(1 + R)-n Vn(Φ)|(S0, S1, ..., Sn−1)] E[(1+R)−n Vn(Φ)|(S0, S1, ..., Sn−1)] = (1+R)−n E[Vn(Φ)|Sn−1] = (1+R)−n E[φ0 nS0 n +φnSn|Sn−1] Mais φ0 n et φn ne dépendent pas de S0, ..., Sn−1 donc : (1 + R)−n [φ0 nE[S0 n|Sn−1] + φnE[Sn|Sn−1]] = (1 + R)−n [φ0 n(1 + R)n + φnE[Sn−1 × Yn|Sn−1]] = (1+R)−n [φ0 n(1+R)n +φnSn−1E[Yn|Sn−1]] = (1+R)−n [φ0 n(1+R)n +φnSn−1[p(1+b)+(1−p)(1+a)]] = Or [p(1 + b) + (1 − p)(1 + a)] = 1 + R d’après p = R−a b−a (1 + R)−n [φ0 n(1 + R)n + φnSn−1(1 + R)] = φ0 n + φnSn−1(1 + R)−(n−1) = [φ0 n(1 + R)n−1 + φnSn−1](1 + R)−(n−1) = [φ0 nS0 n−1 + φnSn−1](1 + R)−(n−1) = D’après la condition d’autofinancement, on obtient : [φ0 n−1S0 n−1 + φn−1Sn−1](1 + R)−(n−1) = Vn−1(Φ)(1 + R)−(n−1) Finalement : E[(1 + R)−n Vn(Φ)|(S0, S1, ..., Sn−1)] = Vn−1(Φ)(1 + R)−(n−1) D’autre part, le calcul de Vn+1 −Vn est particulièrement intéressant pour la suite de notre analyse. Vn+1−Vn = φ0 n+1S0 n+1+φn+1Sn+1−(φ0 nS0 n+φnSn) = φ0 n+1S0 n+1+φn+1Sn+1−(φ0 n+1S0 n+φn+1Sn) = φ0 n+1(S0 n+1 − S0 n) + φn+1(Sn+1 − Sn) De cette dernière relation, on peut exprimer Vn(Φ) d’une autre manière : (Hn) : Vn(Φ) = V0(Φ) + n i=1 φi∆Si + n i=1 φ0 i ∆S0 i où ∆Si = Si − Si−1 et ∆S0 i = S0 i − S0 i−1 Preuve par récurrence : *Vrai pour n=0. *Supposons (Hn) vraie. 19
  • 20. Vn(Φ) = V0(Φ) + n i=1 φi∆Si + n i=1 φ0 i ∆S0 i Vn+1(Φ) = V0(Φ) + n i=1 φi∆Si + φn+1(Sn+1 − Sn) + n i=1 φ0 i ∆S0 i + φ0 n+1(S0 n+1 − S0 n) (Hn+1) : Vn+1(Φ) = V0(Φ) + n+1 i=1 φi∆Si + n+1 i=1 φ0 i ∆S0 i 20
  • 21. Chapitre 2 Modèle à une période Dans cette section, on se restreint au mo- dèle à une période, c’est-à-dire que N=1. Nous n’avons alors que 2 possibilités pour la valeur de S1. 2.1 Cas d’une option d’achat (CALL) Soit Φ la stratégie de couverture de valeur finale V1(Φ) = (S1 − K)+. 2.1.1 Calcul de E[V1(Φ)] D’après 1.4.1 : E[V1(Φ)] = V0(Φ)(1 + R) Donc V0(Φ) = E[V1(Φ)](1+R)−1 = E[(S1−K)+](1+R)−1 = [p(S0(1+b)−K)++(1−p)(S0(1+a)−K)+](1+R)−1 = [ R − a b − a (S0(1 + b) − K)+ − R − b b − a (S0(1 + a) − K)+](1 + R)−1 2.1.2 Système d’équation solution V1(Φ) = (S1 − K)+ 21
  • 22. φ0 1S0 1 + φ1S1 = (S1 − K)+ S : φ0 1(1 + R) + φ1S0(1 + b) = (S0(1 + b) − K)+ φ0 1(1 + R) + φ1S0(1 + a) = (S0(1 + a) − K)+ S : φ1 = 1 S0(b−a) [(S0(1 + b) − K)+ − (S0(1 + a) − K)+] φ0 1 = 1 1+R [1+a a−b (S0(1 + b) − K)+ − 1+b a−b (S0(1 + a) − K)+] 2.2 Cas d’une option de vente (PUT) 2.2.1 Calcul de E[V1(Φ)] D’après 1.4.1 : E[V1(Φ)] = V0(Φ)(1 + R) Donc V0(Φ) = E[V1(Φ)](1+R)−1 = E[(K−S1)+](1+R)−1 = [p(K−S0(1+b))++(1−p)(K−S0(1+a))](1+R)−1 = [ R − a b − a (K − S0(1 + b))+ − R − b b − a (K − S0(1 + a))+](1 + R)−1 2.2.2 Système d’équation solution V1(Φ) = (K − S1)+ φ0 1S0 1 + φ1S1 = (K − S1)+ S : φ0 1(1 + R) + φ1S0(1 + b) = (K − S0(1 + b))+ φ0 1(1 + R) + φ1S0(1 + a) = (K − S0(1 + a))+ S : φ1 = 1 S0(b−a) [(K − S0(1 + b))+ − (K − S0(1 + a))+] φ0 1 = 1 1+R [1+a a−b (K − S0(1 + b))+ − 1+b a−b (K − S0(1 + a))+] 22
  • 23. 2.3 Comparaison CALL vs PUT Nous allons nous concentrer ici sur la comparaison entre un call et un put européen de même échéance n=1 et de même prix d’exercice K, sur une action de cours Sn à l’instant n. On remarque que : φ1 −φ1 = 1 S0(b − a) [(S0(1+b)−K)+ −(K −S0(1+b))+ +(K −S0(1+a))+ −(S0(1+a)−K)+] = 1 S0(b − a) [(S0(1+b)−K)+(K−S0(1+a))] = 1 S0(b − a) [S0(1+b)−S0(1+a)] = 1 (b − a) [(1+b)−(1+a)] = 1 φ0 1−φ0 1 = 1 1 + R [ 1 + a a − b (S0(1+b)−K)+ 1 + b a − b (K−S0(1+a))] = 1 1 + R [K( 1 + b a − b − 1 + a a − b )] = − K 1 + R V1(Φ) − V1(Φ) = φ0 1S0 1 + φ1S1 − (φ0 1S0 1 + φ1S1) = S0 1(φ0 1 − φ0 1) + S1(φ1 − φ1) = S1 − K On appelle cette égalité la relation de parité call-put. On observe alors qu’avec l’opportunité de détenir à la fois un call et un put, si l’on achète un put V1(Φ) et une action S1 et si l’on vend un call V1(Φ), on obtient un profit égal à : V1(Φ) − V1(Φ) − S1 A la date N=1, deux cas peuvent se présenter : – S1 > K alors on exerce le call et on se retrouve avec une richesse égale à K+V1(Φ)−V1(Φ)−S1 – S1 <= K alors on exerce le put et comme précédemment on se retrouve avec une richesse égale à K + V1(Φ) − V1(Φ) − S1 Dans les 2 cas, on réalise un profit positif sans mise de fond initial. Donc il est effectivement intéréssant d’avoir l’opportunité de détenir à la fois un call et un put. 23
  • 24. Chapitre 3 Modèle à deux périodes Dans cette section, on se restreint au modèle à deux périodes, c’est-à-dire que N=2. Une stratégie Φ peut donc se représenter comme un quadruplet (φ0 1, φ1, φ0 2, φ2) S2 =    S0(1 + b)2 avec probabilité p2 S0(1 + a)(1 + b) avec probabilité 2p(1-p) S0(1 + a)2 avec probabilité (1 − p)2 S2 peut donc prendre 3 valeurs notées : 1 + ¯a = (1 + a)2 1 + ¯b = (1 + b)2 1 + ¯c = (1 + a)(1 + b) 24
  • 25. 3.1 Cas d’une option d’achat (CALL) Soit Φ la stratégie de couverture de valeur finale V2(Φ) = (S2 − K)+. 3.1.1 Résolution de φ0 2 et φ2 V2(Φ) = (S2 − K)+ φ0 2S0 2 + φ2S2 = (S2 − K)+ S : φ0 2(1 + R)2 + φ2S1(1 + b) = (S1(1 + b) − K)+ φ0 2(1 + R)2 + φ2S1(1 + a) = (S1(1 + a) − K)+ S : φ2 = 1 S1(b−a) [(S1(1 + b) − K)+ − (S1(1 + a) − K)+] φ0 2 = 1 (1+R)2 [1+a a−b (S1(1 + b) − K)+ − 1+b a−b (S1(1 + a) − K)+] 3.1.2 Résolution de φ0 1 et φ1 E[(S2 − K)+|S1] = E[(S1Y2 − K)+] = p(S1(1 + b) − K)+ + (1 − p)(S1(1 + a) − K)+ = R − a b − a (S1(1 + b) − K)+ + b − R b − a (S1(1 + a) − K)+ D’après 1.4.1, E[Vn+1(Φ)] = Vn(Φ)(1 + R) donc E[V2(Φ)] = V1(Φ)(1 + R) E[(S2 − K)+] = V1(Φ)(1 + R) V1(Φ)(1 + R) = R − a b − a (S1(1 + b) − K)+ + b − R b − a (S1(1 + a) − K)+ (φ0 1S0 1 + φ1S1)(1 + R) = R − a b − a (S1(1 + b) − K)+ + b − R b − a (S1(1 + a) − K)+ (φ0 1(1 + R) + φ1S1)(1 + R) = R − a b − a (S1(1 + b) − K)+ + b − R b − a (S1(1 + a) − K)+ φ0 1(1 + R)2 + φ1S0(1 + b)(1 + R) = R−a b−a (S0(1 + b)2 − K)+ + b−R b−a (S0(1 + a)(1 + b) − K)+ φ0 1(1 + R)2 + φ1S0(1 + a)(1 + R) = R−a b−a (S0(1 + a)(1 + b) − K)+ + b−R b−a (S0(1 + a)2 − K)+ φ1 = 1 S0(1 + R)(b − a)2 [(R−a)(S0(1+b)2 −K)++(R−b)(S0(1+a)2 −K)++(b+a−2R)(S0(1+a)(1+b)−K)+] 25
  • 26. φ0 1 = 1 (1 + R)2(b − a)2 [(1 + a)(a − R)(S0(1 + b)2 − K)+ + (1 + b)(b − R)(S0(1 + a)2 − K)+ +((b − a)(b − R) + (1 + b)(2R − a − b))(S0(1 + a)(1 + b) − K)+] 3.1.3 Vérification de la stratégie sous Scilab / / Modele a deux p er i od e s function f = p o s i t i v e ( x ) i f x<0 then f =0 ; e l s e f =x ; end endfunction a =0.2 ; b =0.7 ; K=1 ; R=0.5 ; p =0.5 ; S02=(1+R) ∗(1+R) ; S01=(1+R) ; S00=1 ; function S=s ( n ) i f ( n==0) then S=1 ; e l s e i f rand ( 1 , 1 ) <p then S=s ( n−1)∗(1+ b ) ; e l s e S=s ( n−1)∗(1+ a ) ; end end endfunction phi2 =(1/ s ( 1 ) ∗( b−a ) ) ∗( p o s i t i v e (K−s ( 1 ) ∗(1+ b ) )−p o s i t i v e (K−s ( 1 ) ∗(1+ a ) ) ; phi02 =(1/(1+R) ∗(1+R) ) ∗(((1+ a ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 1 ) ∗(1+ b ) ) −((1+b ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 1 ) ∗(1+ a ) ) ) ; phi1 =(1/ s ( 0 ) ∗(1+R) ∗( b−a ) ) ∗( p o s i t i v e (K−s ( 0 ) ∗(1+ b ) ∗(1+R) )−p o s i t i v e (K−s ( 0 ) ∗(1+ a ) ∗(1+R) ) ) ; phi01 =(1/(1+R) ∗(1+R) ) ∗(((1+ a ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 0 ) ∗(1+ b ) ∗(1+R) ) −((1+b ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 0 ) ∗(1+ a ) ∗(1+R) ) ) ; V2=phi02 ∗S02+phi2 ∗ s ( 2 ) ; V1=phi01 ∗S01+phi1 ∗ s ( 1 ) ; 26
  • 27. 3.2 Cas d’une option de vente (PUT) Soit Φ la stratégie de couverture de valeur finale V2(Φ) = (K − S2)+. 3.2.1 Résolution de φ0 2 et φ2 V2(Φ) = (K − S2)+ φ0 2S0 2 + φ2S2 = (K − S2)+ S : φ0 2(1 + R)2 + φ2S1(1 + b) = (K − S1(1 + b))+ φ0 2(1 + R)2 + φ2S1(1 + a) = (K − S1(1 + a))+ S : φ2 = 1 S1(b−a) [(K − S1(1 + b))+ − (K − S1(1 + a))+] φ0 2 = 1 (a−b)(1+R)2 [(1 + a)(K − S1(1 + b))+ − (1 + b)(K − S1(1 + a))+] 3.2.2 Résolution de φ0 1 et φ1 E[(K − S2)+|S1] = E[(K − S1Y2)+] = p(K − S1(1 + b))+ + (1 − p)(K − S1(1 + a))+ = R − a b − a (K − S1(1 + b))+ + b − R b − a (K − S1(1 + a))+ D’après 1.4.1, E[Vn+1(Φ)] = Vn(Φ)(1 + R) donc E[V2(Φ)] = V1(Φ)(1 + R) E[(K − S2)+] = V1(Φ)(1 + R) V1(Φ)(1 + R) = R − a b − a (K − S1(1 + b))+ + b − R b − a (K − S1(1 + a))+ (φ0 1S0 1 + φ1S1)(1 + R) = R − a b − a (K − S1(1 + b))+ + b − R b − a (K − S1(1 + a))+ (φ0 1(1 + R) + φ1S1)(1 + R) = R − a b − a (K − S1(1 + b))+ + b − R b − a (K − S1(1 + a))+ φ0 1(1 + R)2 + φ1S0(1 + b)(1 + R) = R−a b−a (K − S0(1 + b)2)+ + b−R b−a (K − S0(1 + a)(1 + b))+ φ0 1(1 + R)2 + φ1S0(1 + a)(1 + R) = R−a b−a (K − S0(1 + a)(1 + b))+ + b−R b−a (K − S0(1 + a)2)+ φ1 = 1 S0(1 + R)(b − a)2 [(R−a)(K−S0(1+b)2 )++(R−b)(K−S0(1+a)2 )++(b+a−2R)(K−S0(1+a)(1+b))+] φ0 1 = 1 (1 + R)2(b − a)2 [(1 + a)(a − R)(K − S0(1 + b)2 )+ + (1 + b)(b − R)(K − S0(1 + a)2 )+ +((b − a)(b − R) + (1 + b)(2R − a − b))(K − S0(1 + a)(1 + b))+] 27
  • 28. 3.2.3 Vérification de la stratégie sous Scilab / / Modele a deux p er i od e s function f = p o s i t i v e ( x ) i f x<0 then f =0 ; e l s e f =x ; end endfunction a =0.2 ; b =0.7 ; K=1 ; R=0.5 ; p =0.5 ; S02=(1+R) ∗(1+R) ; S01=(1+R) ; S00=1 ; function S=s ( n ) i f ( n==0) then S=1 ; e l s e i f rand ( 1 , 1 ) <p then S=s ( n−1)∗(1+ b ) ; e l s e S=s ( n−1)∗(1+ a ) ; end end endfunction phi2 =(1/ s ( 1 ) ∗( b−a ) ) ∗( p o s i t i v e (K−s ( 1 ) ∗(1+ b ) )−p o s i t i v e (K−s ( 1 ) ∗(1+ a ) ) ; phi02 =(1/(1+R) ∗(1+R) ) ∗(((1+ a ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 1 ) ∗(1+ b ) ) −((1+b ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 1 ) ∗(1+ a ) ) ) ; phi1 =(1/ s ( 0 ) ∗(1+R) ∗( b−a ) ) ∗( p o s i t i v e (K−s ( 0 ) ∗(1+ b ) ∗(1+R) )−p o s i t i v e (K−s ( 0 ) ∗(1+ a ) ∗(1+R) ) ) ; phi01 =(1/(1+R) ∗(1+R) ) ∗(((1+ a ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 0 ) ∗(1+ b ) ∗(1+R) ) −((1+b ) / ( a−b ) ) ∗ p o s i t i v e (K−s ( 0 ) ∗(1+ a ) ∗(1+R) ) ) ; V2=phi02 ∗S02+phi2 ∗ s ( 2 ) ; V1=phi01 ∗S01+phi1 ∗ s ( 1 ) ; 28
  • 29. 3.3 Cas particulier : non modification de la répartition du porte- feuille Supposons qu’il existe une stratégie telle que φ0 1 = φ0 2 et que φ1 = φ2, c’est-à-dire telle que l’on ne modifie pas la répartition du portefeuille entre les instants 1 et 2. Voici les 3 équations vérifiées par le couple (φ0 1, φ1) si la valeur finale de cette stratégie est V2(Φ) = (S2 − K)+ : φ0 2(1 + R)2 + φ2S2 = (S2 − K)+ φ0 1(1 + R)2 + φ1S2 = (S2 − K)+    φ0 1(1 + R)2 + φ1S0(1 + b)2 = (S0(1 + b)2 − K)+ φ0 1(1 + R)2 + φ1S0(1 + a)2 = (S0(1 + a)2 − K)+ φ0 1(1 + R)2 + φ1S0(1 + a)(1 + b) = (S0(1 + a)(1 + b) − K)+ Si K ∈]S0(1 + ¯a); S0(1 + ¯b)[ alors ces 3 équations précédentes n’admettent aucune solution et donc il n’existe pas de stratégies de couverture statique entre les instants 1 et 2. Maintenant, si K /∈]S0(1 + ¯a); S0(1 + ¯b)[, il est possible de trouver des stratégies de couverture sans réallocation après la date 1. 29
  • 30. Chapitre 4 Cas général : Modèle à N périodes Simulation sous Scilab de l’évolution du cours Sn réalisée plusieurs fois sur le même graphique. On reconnaît bien l’arbre proba- bilisé où se rejoignent les courbes. On considère dans cette section le modèle général à N périodes. Soit Φ une stratégie de couverture de l’op- tion d’achat. On note c(n, Sn) la valeur Vn(Φ). Pour chaque Sn le nombre de valeurs possibles différentes est de n+1. D’après 1.4.1, E[Vn+1(Φ)] = Vn(1 + R) donc E[Vn+1(Φ)|(S0, ..., Sn)] = Vn(1 + R) E[c(n + 1, Sn+1)] = c(n, Sn)(1 + R) c(n + 1, E[Sn+1]) = c(n, Sn)(1 + R) c(n + 1, E[SnYn+1]) = c(n, Sn)(1 + R) c(n + 1, Sn(1 + a))(1 − p) + c(n + 1, Sn(1 + b))p = c(n, Sn)(1 + R) La suite (c(n, Sn))0≤n≤N est donc solution de la récurrence rétrograde : c(N, SN ) = (SN − K)+ c(n, Sn) = (1 + R)−1[c(n + 1, Sn(1 + a))(1 − p) + c(n + 1, Sn(1 + b))p] 30
  • 31. Chapitre 5 Etude asymptotique Dans cette partie, on considère le modèle CRR comme une discrétisation d’un modèle en temps continu sur un intervalle [0 ;T]. On considère la subdivision tk = kT N , dans la suite on pose h = T N . Dans une optique de faire tendre N vers l’infini, il convient de faire dépendre les paramètres a, b et R de h. On pose alors 1 + R = erh ; 1 + a = e−σ √ h ; 1 + b = eσ √ h avec σ > 0 et r > 0. On remarquera que r s’interprète comme un taux d’intérêt instantané. D’après 1.3, p(1 + b) + (1 − p)(1 + a) = 1 + R d’où : peσ √ h + (1 − p)e−σ √ h = erh p(eσ √ h − e−σ √ h ) = erh − e−σ √ h p = erh − e−σ √ h eσ √ h − e−σ √ h Calculons maintenant la limite de p lorsque h tends vers 0 : lim h→0 p = lim h→0 erh − e−σ √ h eσ √ h − e−σ √ h = lim h→0 (erh − e−σ √ h)(eσ √ h − e−σ √ h) (eσ √ h − e−σ √ h)(eσ √ h − e−σ √ h) = lim h→0 erh+σ √ h − erh−σ √ h − 1 + e−2σ √ h e2σ √ h + e−2σ √ h − 2 = 1 2 31
  • 32. Nous allons maintenant tracé l’histogramme de log(Sn) pour : σ = 0.2; T = 1; N = 100; h = T/N = 0.01; r = 0.05 Puis on trace aussi sur le même graphe la courbe de densité de la loi normale de moyenne (r − σ2 2 ) et de variance σ2. / / Etude asymptotique M = 1000; / / nombre de t r a j e c t o i r e s sigma =0.2 ; T=1 ; N=1000 ; r =0.05 ; h=T /N ; R=1−exp ( r ∗h ) ; s0 =1; p =( exp ( r ∗h )−exp(−sigma ∗ sqrt ( h ) ) ) / ( exp ( sigma ∗ sqrt ( h ) )−exp(−sigma ∗ sqrt ( h ) ) ) ; Y=exp ( sigma ∗ sqrt ( h ) ∗ (1 − 2 ∗ bool2s ( rand (M,N) >p ) ) ) ; Sn=prod (Y, ’ c ’ ) ; LogSn=log ( Sn ) ; h i s t p l o t (30 , LogSn ) / / Comparaison l o i Normale N(mu , sigma ^2) mu=r −0.5∗( sigma ^2) ; x= l in sp ac e (−3 ∗ sigma , 3 ∗ sigma , 100) ’; f =(1 . / ( sigma ∗ sqrt (2∗ %pi ) ) ) ∗ exp ( −0.5 ∗ ( ( ( x−mu) / sigma ) ^2) ) ; plot2d ( x , f , s t y l e =5) 32
  • 34. Conclusion Mon stage d’excellence au sein de l’équipe de MATHFI du laboratoire Jean Kuntzmann a été très enrichis- sant aussi bien sur le plan de la recherche que sur le plan humain. En effet, les autres stagiaires et les thésards ont été très accueillant pour permettre un travail dans une ambiance très conviviale. Ce stage m’a apporté de réelles connaissances tant dans le domaine des mathématiques probabilistes que dans celui de la finance. J’ai découvert un modèle financier très intéressant qui permet aux banques et autres institutions financières de proposer des prix d’options judicieux, c’est-à-dire assez élevés pour ne pas avoir de perte mais assez bas pour que les concurrents ne proposent mieux aux clients. C’est une version discrétisée du modèle de Black Scholes qui lui aussi est intéressant mais n’est pas appliqué dans les mêmes conditions. J’ai appris à travailler en autonomie mais d’un autre côté, M. Lelong et M. Ycart m’ont beaucoup épaulée tout au long de ce mois de stage et m’ont permis d’avancer et de débloquer mes problèmes rencontrés de ma- nière très pédagogue. J’ai notamment, grâce aux simulations effectuées à l’aide du logiciel Scilab, énormément amélioré la maîtrise de cet outil que je ne maitrisais pas vraiment pour les applications statistiques. Pour conclure, j’ai donc eu l’opportunité d’apprendre, durant ce dernier mois, un aspect du monde des mathématiques financières que je ne connaissais pas du tout et que M. Lelong a su me faire apprécier. 34
  • 35. Bibliographie D. LAMBERTON et B. LAPEYRE, Introduction au Calcul Stochastique Appliqué à la Finance. 2012 B. JOURDAIN, Probabilités et Statistiques. 2009 R. BOURLES Chap. 9 : Le modèle Cox, Ross et Rubinstein Mathémtiques pour la finance, Cours Master Finance Université Toulouse Sciences Sociales. 2010 A-V. AURIAULT Utilisation des arbres binomiaux pour le pricing des options américaines ENSIMAG. 2010 LJK - Laboratoire Jean Kuntzmann - http ://www-ljk.imag.fr/ 35