Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Analysis and Visualization of Real-Time Twitter Data

Presentation of masterthesis, Graz University of Technology, November 2015

Livres associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir
  • Soyez le premier à commenter

Analysis and Visualization of Real-Time Twitter Data

  1. 1 W I S S E N  T E C H N I K  L E I D E N S C H A F T  www.tugraz.at Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead Harmandic
  2. 22 Motivation • Social Network and Networking • Micro-Blogging • Twitter • Launched in 2006 • Active users per month • ~ 316 Milions (August) • ~ 320 Milions (current) • Tweets per day ~ 500 Milions Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  3. 33 Problem and Research Objective • Problems with Twitter • Event based data • Detail event information • Collection of information • Research Objective • What kind or sort of information are we capable of providing during and after Twitter event? Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  4. 44 State of the Art I Analyse Twitter as a form of electronic word-of-mouth in correlation to brands and the influence of the service on various brands. [Jansen et al., 2009] • Brands • H&M, Honda, Exxon, Dell, Lenovo, Amazon, etc. • Opinion (sentiment) • None; Wretched ; Bad; So-So; Swell; Great Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  5. 55 State of the Art II Using Twitter and (classified) real-time data in order to notify the public about the eathquake. [Sakaki et al., 2010] • Test region: Japan • Large ammount of Twitter users • High rate of earthquakes per year • Twitter user  sensor • Tweet  sensor information (social sensor) • Toretter („we have taken it“) since 2010 • Faster then Japan Meteorogical Agency Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  6. 66 Available Tools • TweetTracker • Pros: Geo. Maps; Translation of Non-English; Keyword comparison • Cons: Visualizing up to 7500 Tweets • TweetArchivist • Pros: Top Users; Top Hashtags; Language • Cons: No storage or APIs, Paid service • twExplorer • Pros: Top Users; Top Hashtags • Cons: No archiv or APIs, Maximum of 500 Tweets Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  7. 77 TwitterSuitcase • Why Suitcase • Identification • Objective • TU Graz Twitter Applications • TweetCollector (raw Twitter data) • TwitterWall (event representation) • TwitterStat (analysis of keyword, hashtag or person) • TweetGraph (scope of tweets) • TwitterSuitcase Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  8. 88 TwitterSuitcase - Concept Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  9. 99 TwitterSuitcase – Overview Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  10. 1010 TwitterSuitcase – Categories I Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Users
  11. 1111 TwitterSuitcase – Categories II Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Links
  12. 1212 TwitterSuitcase – Categories III Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Most Popular Retweets
  13. 1313 TwitterSuitcase – Categories IV Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Timeline
  14. 1414 TwitterSuitcase – Categories V Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Words
  15. 1515 TwitterSuitcase – Categories VI Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Software
  16. 1616 TwitterSuitcase – Categories VII Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Most Popular Hashtags
  17. 1717 TwitterSuitcase – Categories VIII Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Screenshots
  18. 1818 TwitterSuitcase – Categories IX Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Wikipedia Article(s)
  19. 1919 TwitterSuitcase – Use Case I • European Massive Open Online Courses • #emoocs2014 • Total of 4450 Tweets Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  20. 2020 TwitterSuitcase – Use Case II • Most Popular Hashtags Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  21. 2121 TwitterSuitcase – Use Case III • Top Users • moocf(185), Agora Sup(141), fuscia info(134), pabloachard(124), mooc24(120), tkoscielniak(103), bobreuter(85), OpenEduEU(84), yveszieba(81), redasadki(81) ~ 25% • Top Link(s) • http://bit.ly/1la3yJX (32)  HTML Page „eLearning Papers Issue 37“ • Top Words • RT(2567), moocs(802), mooc(639), learning(339) and openedueu(319). The rest of the words belong mostly to prepositions or articles. • Used Software • Web(1574 or 35.4%), Apple devices(1253 or 28.5%), TweetDeck(564 or 12.7%), Android devices(288 or 6.5%) Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  22. 2222 Conclusion • TwitterSuitcase • Research objective  What kind or sort of information are we capable of providing during and after Twitter event? • TwitterSuitcase extensions • Visualizing Tweets on Geographical Maps; Region-Tweet-Search • MentionMaps • ReTweets; HTTP Links; Data sources; etc. Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  23. 2323 Thank you for your attention. Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  24. 2424 Bibliography [Java et al., 2007] Java, A., Song, X., Finin, T., and Tseng, B. (2007). Why we twitter: Understanding microblogging usage and communities. Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, pages 56– 65. [Jansen et al., 2009] Jansen, B. J., Zhang, M., Sobel, K., and Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American society for information science and technology, page 2169–2188. [Sakaki et al., 2010] Sakaki, T., Okazaki, M., and Matsuo, Y. (2010). Earthquake shakes twitter users: real-time event detection by social sensors. Proceedings of the 19th international conference on World wide web, pages 851–860. Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC

×