Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Security and Legitimacy in a
Web Observatory
Kieron O’Hara, Alistair Sackley, Ian Brown,
Ramine Tinati, Thanassis Tiropani...
Complex England & Wales Policing
Context
• 43 regional police forces
• Several specialised national bodies
• E.g. Serious ...
Policing Requirements
• Highly data (intelligence) driven
• Need to retain legitimacy
• Policing by consent
• Greater scru...
Data Management Requirements
• Effective
• The right people get the data at the right time
• Safe
• Data subjects (victims...
Potential for Web Obs Contribution
to Data Management
• Control
• Security
• Privacy
• Discriminating
sharing
Potential for Contribution to
Engagement Strategy
Leigh Park Twitter mention network
(High IMD [index of multiple
deprivat...
Potential for Contribution to Low-
Level Intelligence Gathering
• NOT surveillance, but understanding
• Only a small Twitt...
Need to Demonstrate
• Security
• Data protection
• Preservation of data control
• Potential of “safe haven”
• Utility
• Le...
Prochain SlideShare
Chargement dans…5
×

Security and Legitimacy in a Web Observatory: Requirements for Data Linkage, Sharing and Collection in Policing and Justice

1 241 vues

Publié le

Paper presentation at the Building Web Observatories Workshop in Bloomington, USA
Presenter: Kieron O'Hara
Authors: Kieron O'Hara, Alistair Sackley, Ian Brown, Ramine Tinati, Thanassis Tiropanis, Xin Wang

Publié dans : Technologie, Business
  • Identifiez-vous pour voir les commentaires

  • Soyez le premier à aimer ceci

Security and Legitimacy in a Web Observatory: Requirements for Data Linkage, Sharing and Collection in Policing and Justice

  1. 1. Security and Legitimacy in a Web Observatory Kieron O’Hara, Alistair Sackley, Ian Brown, Ramine Tinati, Thanassis Tiropanis & Xin Wang presented at Workshop on Building Web Observatories, WebSci14, Bloomington, Indiana, 23 June 2014
  2. 2. Complex England & Wales Policing Context • 43 regional police forces • Several specialised national bodies • E.g. Serious Fraud Office • Many multi-agency partnerships • E.g. Integrated Offender Management • Data only loosely standardised • Some brought together in national open data site police.uk • Police data v performance data • Extremely sensitive personal data
  3. 3. Policing Requirements • Highly data (intelligence) driven • Need to retain legitimacy • Policing by consent • Greater scrutiny • Cost constraints • Control • Data protection liability for personal data • Big IT mindset • Risk aversion
  4. 4. Data Management Requirements • Effective • The right people get the data at the right time • Safe • Data subjects (victims, witnesses) not exposed • Secure • Investigations not compromised • Transparent • Open to democratic scrutiny
  5. 5. Potential for Web Obs Contribution to Data Management • Control • Security • Privacy • Discriminating sharing
  6. 6. Potential for Contribution to Engagement Strategy Leigh Park Twitter mention network (High IMD [index of multiple deprivation]) Eastleigh Twitter mention network (Diverse area with pockets of deprivation)
  7. 7. Potential for Contribution to Low- Level Intelligence Gathering • NOT surveillance, but understanding • Only a small Twitter community in Leigh Park • What are the appropriate sources of online data? • Engagement means taking part (e.g. retweeting) • Placing police data in context of public and open data • Opening out some police data/analytics to community groups, or even making it open
  8. 8. Need to Demonstrate • Security • Data protection • Preservation of data control • Potential of “safe haven” • Utility • Legitimacy • Low/justified cost • Compatibility with more traditional data • Compatibility with workflow

×