SlideShare une entreprise Scribd logo
1  sur  5
Télécharger pour lire hors ligne
Journal of Applied Horticulture, 15(1): 21-25, 2013
Post-tsunami collection of polyembryonic mango diversity from
Andaman islands and their ex situ reaction to high sodium in
sodic soil
T. Damodarana
*, Shailendra Rajanb
, Ram Kumarb
, D.K. Sharmaa
, V.K. Misraa
,
S.K. Jhaa
and R.B. Raic
a
Central Soil Salinity Research Institute, RRS, Lucknow, India, b
Central Institute of Sub-tropical Horticulture, Lucknow,
India, c
Indian Veterinary Research Institute, Bareilly, India. *E-mail: damhort2002@yahoo.com
Abstract
The study includes collection of polyembryonic mango types from tsunami affected areas of the South Andaman district where trees
are under natural selection pressure for salt tolerance and screening of collections against high sodium in sodic soils ex situ. Forty two
accessions were located and collected on the basis of phenotypic expression and indentation level in tsunami. Out of which 15 diverse
polyembryony types from different locations were evaluated for survival and growth in sodic soils of pHe 9.51 and sodium (Na+
)
21.20 meq/L at Lucknow. The mortality percentage and relationship between the salt tolerance potential of the selections and Na+
/
K+
ratio, root length and shoot length were investigated. Based on mortality in ex situ screening, collected types were classified into
different groups. An increase in pH and Na+
concentrations led to higher mortality (96.67 -100.00 %) in polyembronic seedlings when
compared to salt tolerant types (3.33-16.678 %). Six accessions GPL-1, GPL-3, ML-3, ML-4, ML-2 and GPL-4 exhibited tolerance to
high soil sodium content and pH. Accessions GPL-1 and ML-2 collected from sites affected by inundation of sea water during tsunami
under acid saline soil conditions were found to have the highest tolerance level. These accessions accumulated comparatively higher
amounts of K+ ions in leaves than other accessions. They also had lower Na+ / K+ ratio which was even lower than the other tolerant
collections. The collections demonstrated an increase in the root and shoot length and significant negative correlation with mortality of
the seedlings (r= 0.97 and 0.98, respectively). The study revealed the importance of natural selection of mango polyembryony seedlings
for salt tolerance and scope of its utilization.
Key words: Polyembryony, mango, natural selection, tsunami, Andaman Islands, sodium toxicity, tolerance, sodic soils, mortality
Introduction
Andaman and Nicobar islands are one of the most important zones
of variability in mangoes offering choice of selection for wide range
of economical traits (Yadav and Rajan, 1993; Ram and Rajan,
2003; Damodaran et al., 2012). These islands are situated about
1,200 km away from mainland India and form an arched string of
about 572 islands and isles stretching from Burma in the north to
Sumatra in the south between 6 and 14 ◦
N latitudes and 92and 94◦
E
longitudes (Ahlawat, 2001). Earthquake measuring 9.4 on Richter
scale struck the Andaman and Nicobar islands on 26th
December
2004 at 6.40AM which triggered the tsunami killer waves causing
the sea water to inundate the cultivated lands (Srivastava et al.,
2008). Mango originated in the Indo-Burma region (Yonemori et
al., 2002) is considered as leading economically important fruit
crop of the tropical and subtropical regions of the world and was
introduced in these islands by the settlers from rich diversity areas
of Indo-Myanmar region (Ram and Rajan, 2003)
Soil salinity / sodicity is one of the most important abiotic stress
increasing steadily in many parts of the of the world, in particular,
the arid and semi arid areas (Al-Karaki, 2006). Salt toxicity is
also a major mango productivity constraint in arid environments
(Hoult et al., 1997), limits its cultivation in soils suitable for
several other fruit crops. Mango, in particular, is more sensitive
to salinity, particularly at early stage of growth (Varu and Barad,
2010). Salt-affected soils may contain excess soluble salts (saline
soils), excess exchangeable sodium (sodic soils), or both (saline-
sodic soils). Specific ions such as sodium and chloride have toxic
effects on plants, reducing growth or causing damage to cells and
cell membranes (Majerus, 1996). Leaf scorching due to sodium
toxicity is common in mangoes (Samra, 1985). Polyembryonic
graft compatible rootstock with tolerance to calacareous soils
and salinity are preferred for propagation on commercial scale in
few parts of the world (Litz and Gomez, 2002).Apolyembryonic
type, 13-1 has been well exploited as rootstock in different parts
of the world (Ram and Rajan, 2003). In India, limited efforts
have been made to identify tolerant type polyembryonic mangoes
(Varu and Barad, 2010). Most of the reported studies were on
common polyemryonic varieties available in main land of India
and may have limited tolerance to salts. Efforts for collection of
diverse polyembryonic types from islands for salt tolerance and
screening under ex situ conditions have not been reported so far.
The major objective of the study was to collect diversity of the
polyembryony types from island areas inundated with sea water
during tsunami and screen out their potential against soil sodium
toxicity in sodic soils of high pH > 9.40.
Materials and methods
Explorations: For the present experiment, an exploratory survey
was first conducted in 2005 immediately after tsunami in the
affected mango growing regions of SouthAndaman (Fig. 1) villages
Journal
Appl
through a transect survey starting from the head quarters Port Blair.
Subsequent survey was made during 2012 based on the results of
the earlier collections and diverse conditions in island (Table 1).
Table 1. Collection site characterstics
Site Feature Location
I Low lying coastal areas, permanent
stagnation of sea water and the depth
of impounding of sea water increases
with high tide.
Chouldhari, Mitakhari,
Ferrarganj and Ograbrij
II Low lying coastal areas, sea water
reaches with every high tide and recedes
with low tide (areas affected with
fluctuating sea water table).
Guptapara, Manglutan,
Baratang
III Low lying coastal areas, sea water has
intruded only during Tsunami and then
receded permanently
Manjeri, Garacharma,
Guptapara, Pothrapur
and Chidyatapu
Screening: The stones from the collected fruits of different
accessions were sown in nursery beds after extraction from the
pulp and washing thoroughly in tap water. After three months of
sowing the nucellar seedlings of uniform vigour were uprooted
(along with soil adhered to roots) from nursery bed and planted
in polythene lined pots filled with 5 kg of sodic soil. The sodic
soil used for ex situ screening was Typic Natrustalfs with pHe
9.51, electrical conductivity (ECe) 6.7 dSm-2
; sodium (Na+
) 21.20
meq / L and potassium (K+
) 0.126 meq / L at the beginning of
the experiment. The soil paramters like pHe, ECe, sodium and
potassium contents were recorded regularly at the interval of 60
days till 240 days. Observations on mortality percentage (M) were
recorded at an interval of 60, 120, 180 and 240 days after planting
in sodic soil.
Mortality % (M) =
Number of plants died
x 100
Total number of plants
The leaf (3rd
leaf from terminal portion of seedling) samples
were collected at the end of the experiment from the plants for
analyzing the content of Na+
and K+
by extracting the oven-dried
(65o
C) samples in 100 mmol m-3
acetic acid kept in a water bath
for 2 h at 90o
C. Na+
and K+
content in the extract were determined
using a flame photometer. At 240 days after sodicity treatment,
three samples from each accession were removed from the pots
for recording the root and shoot length (cm). A set of untreated
control was maintained to assess the effect of sodicity on the
polyembryonic types.
Statistical analysis: The experiment was laid out in completely
randomized design with three replication having ten numbers of
plants in each replication. The data was analyzed using analysis
of variance (ANOVA) using SAS 9.2 statistical software. Valid
conclusions were drawn using Duncans Multiple Range Test at
P=0.05. Disimilarity co-efficients were used to construct the
dendrogram using EUCLID co-efficient in clustering using SAS
for grouping the accessions based on edaphic factors.
Results and discussion
Atransect survey carried out from Port Blair towards the Northern
part of the South Andaman district where the region depicted all
the three situations of inundations created by tsunami. The survey
locations included the villages of Manjeri, Guptapara, Garacharma,
Pothrapur and Chidyatapu which had sea water inundation for
a short period after tsunami, leaving behind a deposition of salt
after recession of sea water. Further, the areas where there was
inundation during the high tides like Guptapara, Manglutan,
Baratang and the locations including Chouldhari, Mitakhari,
Ferrarganj and Ograbrij where there was permanent inundation was
surveyed (Table 2). Post tsunami survey, conducted immediately
after inundation of sea water for selection of the salt tolerance in
the mango, resulted in collection of 42 types which were assigned
accession numbers after initial establishment at the germplasm
collection centre at Central Agricultural Research Institute, Port
Blair. The representation/occurrence of the polyembryonic types
was more than monoembryonic ones. Most of the monoembryonic
collections were of introduced type of Indian sub-continent earlier
reported by Damodaran et al. (2007).
Subsequent surveys were undertaken to monitor the status of
collected accessions for assessing their in situ status after being
subjected to sea water inundation over a period of time. This
resulted in narrowing the selection to 15 polyembryonic types
based on survival of seedlings under natural salinity stress
created by tsunami over the period of time. The altitude of the
surveyed locations range from 51 to 227 m (Table 2) and the soils
Fig. 1. Location of collection sites in the South Andaman Islands
22 Post-tsunami collection of polyembryonic mangoes from Andaman Islands and their ex situ reaction
condition are acid-saline to acid with fine texture. The soils were
subjected to continuous leaching by heavy rainfall due to tropical
rainforest conditions and occasional sea water ingression during
high tides or disturbance in sluice gates constructed near the site
for prevention of sea water ingression after tsunami. Tsunami led
conversion of acid soils to saline acid soils and acid sodic soils to
acid saline sodic soils in areas of SouthAndaman inundated during
tsunami and permanently receded later and in the low-lying area
submerged during high tides (Nayak et al., 2009). The tsunami by
and large has modified some depositional layer affecting the salt
accumulation to a greater extent (Srivastava, 2008).
The selected 15 polyembryonic accessions (Table 2) were
recollected in large numbers and evaluated for their reaction
to sodium toxicity under field conditions. Monoembryonic
accessions were excluded from screening because of their
segregating nature and limited possibility for getting true to
type material by seeds and stress tolerance. Earlier workers have
substantiated that considerable variation occurs in soil salinity
tolerance of both within and between mono and polyembryonic
mango ecotypes. Polyembryonic cultivars appear to be greater salt
tolerant than monoembryonic (Knight and Schnell, 1993; Ram
and Rajan, 2003). There appears to be sufficient genetic diversity
within M. indica to enable the selection and development of
rootstocks for abiotic stress tolerance (Ram and Rajan, 2003).
The mango seedlings exhibited significantly different mortality
percentage under the same sodicity level of pHe 9.51 and sodium
9.21 meq / L. Response of accessions grown in the sodic soil
over 240 days after sodicity treatment (DAST) was used for
grouping, which indicated two major groups ‘A’ and ‘B’, based
on their mortality percentage (Table 3). At 60th
DAST group ‘A’
plants exhibited salt tolerance with no mortality (GPL-1, GPL-3,
ML-3, ML-2 and GPL-4) except for ML-4 which showed 6.67 %
seedling mortality and was also on par with the others in group
‘A’. Group ‘B’ was represented by accessions with mortality
ranging from 23.33 to 86.67 %. The accessions of group ‘A’
remained unchanged at the end of 120 DAST except for ML-4
with an increased mortality of 16.67 % . All other accessions
exhibited severe sodicity injury and mortality ranging from
90.00 to 100.00 %. Majority of the accessions were affected
significantly by sodicity after (240 DAST). The accessions
GPL-1 and ML-2 were superior than the other collections in
terms of sodicity tolerance and survival percentage, followed by
the accessions GPL-3, ML-3, GPL-4 and ML-4 which showed
mortality percent ranging from 6.67 to 13.33 %. Earlier, increase
in salinity in soil up to 12 dsm-1
increased the mortality to 67 %
in Gaillardia aristata an ornamental plant (Rao and Mohammed,
2011). The lower mortality percentage was earlier reported in
13-1, one of the most successful rootstock selections from Israel
for its tolerance to salinity (Gazit and Kadman, 1980). Due to the
lower success rate on 13-1 under European conditions, studies
on comparitative evaluation of Gomera I, II, III rootstock were
conducted and Gomera I was identified as the salinity tolerant
rootstock for mango (Duran-Zuazo et al., 2003). Similarly,
identification of polyembronic rootstocks for salt tolerance in
Indian sub-continent is essential which resulted identification of
Karukkan as a moderately salt tolerant rootstock among a limited
native polyembryonic population (Dubey, 2007).
The dendrogram showing clustering of mango accessions
based on altitude of collection location and soil salinity (ECe)
are presented in Fig. 2. The dendrogram showed three major
clusters A, B and C. Cluster A consisted of three selections
Table 2. Polyembryony mangoes collected from tsunami affected areas of South Andaman
Accession Location Latitude Longitude Altitude Soil pHe Soil ECe
GPL-1 Guptapara, SA N 11o
33.62” E 92o
39.00” 67 5.58 4.1
GPL-3 Guptapara, SA N 11o
33.62” E 92o
39.00” 67 6.00 2.5
ML-3 Manjeri, SA N 11o
32.31” E 92o
39.03” 63 5.65 3.5
ML-4 Manjeri, SA N 11o
32.31” E 92o
39.03” 63 5.50 3.6
ML-2 Manjeri, SA N 11o
32.15” E 92o
39.03” 67 5.91 4.2
GPL-2 Guptapara, SA N 11o
33.62” E 92o
39.00” 67 5.55 4.0
GTP-1 Chidyatapu, SA N 110
37.31” E 920
43.28” 89 4.85 3.0
GPL-4 Guptapara, SA N 11o
33.62” E 92o
39.00” 67 5.55 4.6
GTP-3 Chidyatapu, SA N 110
37.31” E 920
43.28” 89 4.80 3.5
GCL-3 Garacharma, SA N 110
37.30” N 920
43.42” 227 6.20 2.8
BAA-1 Baratang, MA N 110
30.18” N 920
42.09” 17 4.48 2.4
GCL-2 Garacharma, SA N 110
37.30” N 920
43.43” 227 6.03 2.6
GCL-1 Garacharma, SA N 110
37.30” N 920
43.43” 227 6.12 2.0
KLA-2 Kalatang, SA N 110
32.66” N 920
39.05” 51 4.88 4.4
GTP-2 Chidyatapu, SA N 110
37.31” E 920
43.28” 89 4.75 3.0
SA= South Andaman; MA= Middle Andaman
Table 3. Effect of sodicity on the mortality of the mango accessions
Category Collection Mortality DAST (%)
30 60 120 240
A
GPL-1 0.00a 0.00a 0.00a 3.33a
GPL-3 0.00a 0.00a 0.00a 10.00ab
ML-3 0.00a 0.00a 0.00a 10.00ab
ML-4 6.67a 6.67a 16.67a 16.67ab
ML-2 0.00a 0.00a 0.00a 6.67a
GPL-4 0.00a 0.00a 0.00a 13.33ab
B
GTP-1 56.67c 56.67b 93.33b 100.00c
GPL-2 16.67ab 23.33a 96.67b 100.00c
GTP-3 60.00c 73.33b 90.00b 96.67c
GCL-3 63.33c 76.67b 93.33b 100.00c
BAA-1 66.67c 83.33b 100.00b 96.67c
GCL-2 70.00c 86.67b 100.00b 100.00c
GCL-1 56.67c 80.00b 100.00b 100.00c
KLA-2 26.67ab 86.67b 93.33b 100.00c
GTP-2 50.00bc 83.33b 96.67b 100.00c
Values are the means of three replicates. Means in the columns followed
by the same letter are not significantly different according to Duncan’s
multiple range test at P=0.05.
Post-tsunami collection of polyembryonic mangoes from Andaman Islands and their ex situ reaction 23
(GCL-3, GCL-2 and GCL-1) while the Cluster B consisted of
five collections (GTP-1, GTP-2, GTP-3, KLA-2 and KLA-1). All
these collections showed susceptibility to salinity. The Cluster C
consisted of 6 tolerant collections (GPL-1, GPL-3, ML-2, GPL-4,
ML-3 and ML-4) and one susceptable collection (GPL-2) . There
existed a clear grouping of selections based on their collection site
altitude and soil salinity (ECe) as evident from the clustering using
Euclidian distance. The collections, made at altitude range 63 to 67
m from mean sea level (MSL) and lying close to the sea and where
there was ingression during tsunami, grouped together in Cluster
C while the collections made at an altitude ranging from 81 to 89
m from MSL were in cluster B, which were growing on slightly
higher altitude with minimum disturbance during tsunami due to
ingression of sea water. The collections grouped in ClusterAwere
collected from an altitude of 227 m from MSLhad not experienced
any stress due to sea water ingression during tsunami.The current
study on screening of polyembryonic accessions collected from
tsunami affected soils fromAndaman had indicated the availability
of more polyembryonic types under natural conditions for carrying
out systematic ex situ screening in typically sodium (Na+
) stressed
sodic soils.
Significant difference was exhibited in sodium / potassium (Na+
/ K+
) ratio in leaves of the tolerant and susceptible seedlings
(Table 4). In comparison to the tolerant ones, the leaf tissues of
susceptible seedlings (mortality percentage 96.67 to 100.00 %)
accumulated more sodium (Na+
) but less potassium (K+
) resulting
in higher Na+
/ K+
ratio than tolerant accessions. The Na+
/ K+
ratio in tolerant accessions ranged from 0.47 (GPL-1) to 0.81
(ML-4) while in susceptible accessions it was from 3.06 (GTP-
2) to 6.53 (GPL-4). The shoot length (cm) and root length (cm)
had significant differences between the tolerant and susceptible
accessions (Table 4). The tolerant accessions produced root
length ranging from 36.0 cm (GPL-3) to 38.8 cm (ML-4) and
shoot length from 80.2 cm (ML-3) to 97.3 (ML-2). The root and
shoot length (cm) of the susceptible accessions which had higher
mortality percentage was significantly low, ranging from 11.2 cm
(BAA-1) to 21.3 (GCL-3) and 30.0 cm (GCL-3) to 45.6 cm (GTP-
3) in tolerant collection. However, the Na+
/ K+
ratio, root and
shoot length of all the tolerant accessions (GPL-1, GPL-3, ML-3,
ML-4, ML-2 and GPL-4) were statistically on par. Studies on Na+
/ K+
ratio in screening for salt tolerance was used as criterion to
determine levels of salt tolerance in melon (Sivritipe et al., 1999).
In conditions, where the salt concentration is higher in soil, the
plant gets more sodium (Na+
) ions than it requires thereby blocks
the intake of potassium (K+
) and calcium (Ca+
) ions to the leaves
(Turhan and Seniz, 2010). This results in more Na+
uptake by the
tolerant accessions, however, the tolerant accessions partition the
Na+
in their lower organs and increases the content of potassium
(K+
) uptake to reduce the toxicity of sodium (Cuartero and
Fernandez-Munoz, 1999). Selections in wheat for salt tolerance
was made using screening for cultivars having low Na+
uptake
and high K+
/ Na+
discrimination (Munns et al., 2000). It was
reported by Boursier and Lauchli (1990) that under salt stress, the
sensitive genotypes exhibit the lowest leaf potassium content and
the highest sodium content in maize. Evaluation of various growth
parameters like shoot length and root length in 13-1, Zebda and
Sukkary mango rootstocks under saline conditions confirmed that
the salt tolerant Zebda rootstock produced longer roots and shoots
as compared to Sukkary mango (Shaban, 2010). Similar results
were also described in the rootstock screening studies with Kesar
mangoes (Varu and Barad, 2010). Increase in salinity resulted in
decreased root length in zinnia (Zivdar et al., 2011). The decrease
in root and shoot length were due to negative effects of salinity
on permeability of membrane, cell division, protein synthesis and
enzymatic activities, average time for germination, germination
rate and length of rootlet (Hardegree and Emmerich, 1990).
The differential response of the Na+
/K+
ratio, shoot length and root
length exhibited significant relationship with seedling mortality
as measured by Pearsons correlation co-efficient (Table 5). This
revealed that significant positive correlation exists between
the Na+
/ K+
ratio and the mortality while there was a negative
correlation between root length and shoot length with mortality
of the mango accessions subjected to sodium stress. The Na+
and
Table 4. Effect of sodicity on leaf sodium potassium contents, root length
and shoot weight of the mango accessions
Accessions Na/K
ratio in leaf
Root
length (cm)
Shoot length
(cm)
GPL-1 0.47d 37.5b 87.5b
GPL-3 0.57d 36.0a 84.4b
ML-3 0.73d 38.9a 80.2b
ML-4 0.81d 37.3a 83.7b
ML-2 0.49d 38.8a 97.2a
GPL-2 0.53d 37.2a 85.3b
GTP-1 3.80c 14.7cd 39.2de
GPL-4 6.53a 20.6b 44.1cd
GTP-3 3.44c 17.3bc 45.6c
GCL-3 2.94c 21.3b 30.0fg
BAA-1 3.74c 11.2d 38.3ef
GCL-2 3.58c 16.8bc 39.7de
GCL-1 6.06b 17.0bc 40.2cd
KLA-2 5.30b 11.5d 36.2ef
GTP-2 3.06c 14.4cd 33.5fg
Values are the means of three replicates. Means in the columns followed
by the same subscript letter are not significantly different according to
Duncan’s multiple range test at P=0.05
Fig. 2. Dendrogram generated using unweighted pair group method with
arithmetic average analysis for variation in site altitude and soil ECe at
the place of collection.
24 Post-tsunami collection of polyembryonic mangoes from Andaman Islands and their ex situ reaction
Cl-
in leaves of local pummel seedlings was found closely related
with the salt tolerant at 50 mM NaCl concentration after 56 days
of salt treatment (El-Hammady et al., 1995).
The study revealed that significant differences for sodicity tolerance
were found among polyembroynic mangoes collected after tsunami
in the Andaman Islands. The six accessions GPL-1, GPl-3, ML-
3, ML-4, ML-2 and GPL-4 exhibited tolerance to high sodium
conditions. However, the accessions GPL-1 and ML-2 collected
from the sites affected by inundation of sea water during tsunami
were found to have the highest tolerance level to high pH and
sodium content in sodic soils.The tolerant accessions accomplished
lower Na+
/ K+
ratio which facilitated the higher shoot growth and
reduced the toxic scorching symptoms of Na+
. The current research
proved that natural selections in polyembryonic mangoes in hot
spots of diversity subjected to natural disturbances can serve as
a potential tool for selecting the most adaptable rootstock with
salinity tolerance. Considering the diversity and utility of the
polyembryonic types of the Andaman Islands it can be suggested
that intensified mining of genes from the islands will help in mango
rootstock breeding programme.
Acknowledgement
Authors greatly acknowledge Director, Central Institute of Sub-
tropical Horticulture, Lucknow and Director, CentralAgricultural
Research Institute, Port Blair and National Co-ordinator- III,
NAIP, ICAR, New Delhi for their support in collection and
executing the above experiments.
References
Ahlawat, S.P.S. 2001. Biodiversity of Andaman and Nicobar Islands. J
Andaman Science Association, 17: 1-2.
Al-Karaki, G.N. 2006. Nursery inoculation of tomato with arbuscular
mycorrhizal fungi and subsequent performance under irrigation with
saline water. Scientia Hort., 109: 1-7
Boursier, P. andA. Läuchli, 1990. Growth responses and mineral nutrient
relations of salt-stressed sorghum. Crop Sci., 30: 1226-1233.
Cuartero, J. and R. Fernandez-Munoz, 1999.Tomato and salinity. Scientia
Hort., 78: 83-125.
Damodaran, T., R. Kannan, Israr Ahmed, R.C. Srivastava, R.B. Rai and
S. Umamaheshwari, 2012. Assessing genetic relationships among
mango (Mangifera indica L.) accessions of Andaman Islands using
inter simple sequence repeat markers. New Zealand J. Crop Hort.
Sci., 1175-8783: 1-12
Damodaran, T., R.P. Medhi, D.R. Singh, R.B. Rai, V. Damodaran and
Kapil Dev, 2007. Identification of molecular markers linked with
differential flowering behaviour of mangoes inAndaman and Nicobar
islands. Curr. Sci., 92: 1053-1056
Dubey,A.K.,A.K. Singh and Manish Srivastav, 2007. Salt stress studies
in mango- a review. Agric. Rev., 28(1): 75-78
Duran-Zuazo, V.H., A. Martinez-Raya and J. Aguilar Ruiz, 2003. Salt
tolerance of mango rootstock. Spanish J. Agr. Res., 1: 67-78.
El- Hammady,A.M., M.Abou- Rawash,A.Abou-Aziz, N.Abdel- Hamid
and E. Abdel- Noneim, 1995. Impact of irrigation with salinized
water on growth and mineral content of some citrus rootstock
seedlings. Hort. Abstracts, 67(6): 675.
Gazit, S. and A. Kadman, 1980. 13–1 mango rootstock selection.
HortSci,. 15: 669.
Hardegree, S.P. and W.E. Emmerich, 1990. Partitioning water potential
and specific salt effect on seed germination of four grasses. Annals
Botany, 65: 587-585.
Hoult, M.D., M.M. Donnelly and M.W. Smith, 1997. Salt exclusion
varies amongst polyembryonic mango cultivar seedlings. Acta Hort.,
455: 455-458.
Knight, R.J. and R.J. Schnell, 1993. Mango (Mangifera indica)
Introduction and evaluation in florida and its impact on the world
industry. Acta Hort., 34: 125-135.
Litz, R.E. and M.A. Gomez-Lim, 2002. Genetic transformation of
mango. In: Transgenic Plants and Crops. G. Khachatourians, A.
McHughern, R. Scorza, W.K. Nip &Y.H. Hui (eds). Marcel Dekker,
New York. p. 421-436.
Majerus, M. 1996. Plant Materials for Saline-Alkaline Soils. USDA.
Natural Resources Conservation Service. Bridger Plant Materials
Center. Montana Technical Note No. 26. p.55.
Munns, R., R.A. Hare, R.A. James and G.J. Rebetzke, 2000. Genetic
variation for improving the salt tolerance of durum wheat. Aust. J.
Agric. Res., 51: 69-74.
Nayak, A.K., T. Damodaran, C.S. Singh, S.K. Jha, V.K. Misra, D.K.
Sharma and Gurubachan Singh, 2009. Post tsunami changes in soil
properties of Andaman Islands. India. Eniv. Monit. Assess.,170:
185-193.
Rao, N.K. and Mohammed Shahid, 2011. Response of Gaillardia aristata
Pursh to salinity. J. Applied Hort., 13(1): 65-67.
Ram, S. and S. Rajan, 2003. Status Report on Genetic resoruces of
mango inAsia-Pacific Region, International Plant Genetic Resource
Institute, New Delhi., p196.
Samara, J.S. 1985. Effect of irrigation water and soil sodicity on the
performance and leaf nutrient composition of mango cultivars. Acta.
Hort., 231: 306-311.
Shaban,A.E.A. 2010. Comparative study on some polyembryonic Mango
rootstock, Agric. Environ. Sci., 7(5): 527-534.
Srivastava, R.C., T. Damodaran, N. Ravisankar, S. Jeyakumar,
Prasanth Deshmukh, S.K. Zamir Ahmed, M. Balakrishnan and
C.S. Chaturvedi, 2008. Rehabilitation of tsunami affected people
through technological intervention in A & N islands, CARI, Port
Blair, India, p.1-61.
Sivritepe, H.O., A. Eris and N. Sivritepe, 1999. The effects of priming
treatments on salt tolerance in melon seeds. Acta Hort,. 492: 287-
296.
Turhan, A. and V. Seniz, 2010. Salt tolerance of some tomato genotypes
grown in Turkey. J. Food Ag. Environ., 8(3&4): 332-339.
Varu, D.K. and A.V. Barad, 2010. Standardization of mango rootstock
for mitigating salt stress. Indian J. Hort., 67: 79-83.
Yadav, I.S. and S. Rajan, 1993. Genetic Resources of Mangifera. In:
Advances in Horticulture, Vol. 1 Part 1. K.L. Chadha and O.P. Pareek
(Eds.), Malhotra Publishing House, New Delhi p 77-93.
Yonemori, K., C. Honsho, S. Kanzaki, W. Eiadthong and A. Sugiura,
2002. Phylogenetic relationships of Mangifera species revealed by
ITS sequences of nuclear ribosomal DNA and a possibility of their
hybrid origin. Plant System. Evol., 231: 59-75.
Zivdar, S., E. Khaleghi and F. Sedighi Dehkordi, 2011. Effect of salinity
and temperature on seed germination indices of Zinnia elegans L. J.
Applied Hort.,13(1): 48-51.
Received: February, 2013; Revised: March, 2013; Accepted: April, 2013
Table 5. Relationship of seedling mortality with Na/K, root length, shoot
length (Pearson Correlation Coefficients)
Parameter Root length
(cm)
Shoot length
(cm)
Seedling mortality
(%)
Na/K -0.84* -0.83* 0.88*
Root length 0.95* -0.97*
Shoot length -0.98*
*significant at P=0.01
Post-tsunami collection of polyembryonic mangoes from Andaman Islands and their ex situ reaction 25

Contenu connexe

Tendances

Studies of Hydrogeochemical in Groundwater Quality around Chakghat Area, Rew...
Studies of Hydrogeochemical in Groundwater Quality around Chakghat  Area, Rew...Studies of Hydrogeochemical in Groundwater Quality around Chakghat  Area, Rew...
Studies of Hydrogeochemical in Groundwater Quality around Chakghat Area, Rew...IJMER
 
(2)_IJGES_A023_(p.12-24)
(2)_IJGES_A023_(p.12-24)(2)_IJGES_A023_(p.12-24)
(2)_IJGES_A023_(p.12-24)rakeshsucks
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...Associate Professor in VSB Coimbatore
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
F243238
F243238F243238
F243238irjes
 
Effects of Nitrogen Fertilization and interZiziphus Jujubealleys cropping on ...
Effects of Nitrogen Fertilization and interZiziphus Jujubealleys cropping on ...Effects of Nitrogen Fertilization and interZiziphus Jujubealleys cropping on ...
Effects of Nitrogen Fertilization and interZiziphus Jujubealleys cropping on ...Agriculture Journal IJOEAR
 
Acidification of Sundarban water
Acidification of Sundarban waterAcidification of Sundarban water
Acidification of Sundarban waterAbhijit Mitra
 
Impact of long term application of agrochemicals on the agro-ecology of the l...
Impact of long term application of agrochemicals on the agro-ecology of the l...Impact of long term application of agrochemicals on the agro-ecology of the l...
Impact of long term application of agrochemicals on the agro-ecology of the l...Alexander Decker
 
Chemical Characteristics of Groundwater and its Suitability for Irrigation pu...
Chemical Characteristics of Groundwater and its Suitability for Irrigation pu...Chemical Characteristics of Groundwater and its Suitability for Irrigation pu...
Chemical Characteristics of Groundwater and its Suitability for Irrigation pu...Agriculture Journal IJOEAR
 
sima taheri
sima taherisima taheri
sima taherisima57
 
Quantification of Heavy Metals using Contamination and Pollution Index in Sel...
Quantification of Heavy Metals using Contamination and Pollution Index in Sel...Quantification of Heavy Metals using Contamination and Pollution Index in Sel...
Quantification of Heavy Metals using Contamination and Pollution Index in Sel...IJEAB
 
C:\fakepath\Impact of tsunami on soil properties
C:\fakepath\Impact of tsunami on soil propertiesC:\fakepath\Impact of tsunami on soil properties
C:\fakepath\Impact of tsunami on soil propertiessekaran
 
Analysis of the Potential for Acid Mine Drainage of the Nickel Mining Area in...
Analysis of the Potential for Acid Mine Drainage of the Nickel Mining Area in...Analysis of the Potential for Acid Mine Drainage of the Nickel Mining Area in...
Analysis of the Potential for Acid Mine Drainage of the Nickel Mining Area in...Asramid Yasin
 
Santharam & tarachand mining of beach sand-water resource management
Santharam & tarachand mining of beach sand-water resource managementSantharam & tarachand mining of beach sand-water resource management
Santharam & tarachand mining of beach sand-water resource managementTarachand Veeragattapu
 
Assessment of Water Quality of Lakes for Drinking and Irrigation Purposes in ...
Assessment of Water Quality of Lakes for Drinking and Irrigation Purposes in ...Assessment of Water Quality of Lakes for Drinking and Irrigation Purposes in ...
Assessment of Water Quality of Lakes for Drinking and Irrigation Purposes in ...IJERA Editor
 

Tendances (20)

Studies of Hydrogeochemical in Groundwater Quality around Chakghat Area, Rew...
Studies of Hydrogeochemical in Groundwater Quality around Chakghat  Area, Rew...Studies of Hydrogeochemical in Groundwater Quality around Chakghat  Area, Rew...
Studies of Hydrogeochemical in Groundwater Quality around Chakghat Area, Rew...
 
(2)_IJGES_A023_(p.12-24)
(2)_IJGES_A023_(p.12-24)(2)_IJGES_A023_(p.12-24)
(2)_IJGES_A023_(p.12-24)
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
 
IJACSmajid
IJACSmajidIJACSmajid
IJACSmajid
 
Life in the mangrove by APHUNU DANIEL]
Life in the mangrove by APHUNU DANIEL]Life in the mangrove by APHUNU DANIEL]
Life in the mangrove by APHUNU DANIEL]
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
F243238
F243238F243238
F243238
 
Effects of Nitrogen Fertilization and interZiziphus Jujubealleys cropping on ...
Effects of Nitrogen Fertilization and interZiziphus Jujubealleys cropping on ...Effects of Nitrogen Fertilization and interZiziphus Jujubealleys cropping on ...
Effects of Nitrogen Fertilization and interZiziphus Jujubealleys cropping on ...
 
RELATIONSHIP BETWEEN HEAVY METAL AND TRANSFER FACTOR FROM SOIL TO VEGETABLE C...
RELATIONSHIP BETWEEN HEAVY METAL AND TRANSFER FACTOR FROM SOIL TO VEGETABLE C...RELATIONSHIP BETWEEN HEAVY METAL AND TRANSFER FACTOR FROM SOIL TO VEGETABLE C...
RELATIONSHIP BETWEEN HEAVY METAL AND TRANSFER FACTOR FROM SOIL TO VEGETABLE C...
 
Acidification of Sundarban water
Acidification of Sundarban waterAcidification of Sundarban water
Acidification of Sundarban water
 
Impact of long term application of agrochemicals on the agro-ecology of the l...
Impact of long term application of agrochemicals on the agro-ecology of the l...Impact of long term application of agrochemicals on the agro-ecology of the l...
Impact of long term application of agrochemicals on the agro-ecology of the l...
 
Chemical Characteristics of Groundwater and its Suitability for Irrigation pu...
Chemical Characteristics of Groundwater and its Suitability for Irrigation pu...Chemical Characteristics of Groundwater and its Suitability for Irrigation pu...
Chemical Characteristics of Groundwater and its Suitability for Irrigation pu...
 
Breeding for Salt tolerance
Breeding for Salt toleranceBreeding for Salt tolerance
Breeding for Salt tolerance
 
sima taheri
sima taherisima taheri
sima taheri
 
Quantification of Heavy Metals using Contamination and Pollution Index in Sel...
Quantification of Heavy Metals using Contamination and Pollution Index in Sel...Quantification of Heavy Metals using Contamination and Pollution Index in Sel...
Quantification of Heavy Metals using Contamination and Pollution Index in Sel...
 
C:\fakepath\Impact of tsunami on soil properties
C:\fakepath\Impact of tsunami on soil propertiesC:\fakepath\Impact of tsunami on soil properties
C:\fakepath\Impact of tsunami on soil properties
 
Analysis of the Potential for Acid Mine Drainage of the Nickel Mining Area in...
Analysis of the Potential for Acid Mine Drainage of the Nickel Mining Area in...Analysis of the Potential for Acid Mine Drainage of the Nickel Mining Area in...
Analysis of the Potential for Acid Mine Drainage of the Nickel Mining Area in...
 
Santharam & tarachand mining of beach sand-water resource management
Santharam & tarachand mining of beach sand-water resource managementSantharam & tarachand mining of beach sand-water resource management
Santharam & tarachand mining of beach sand-water resource management
 
Assessment of Water Quality of Lakes for Drinking and Irrigation Purposes in ...
Assessment of Water Quality of Lakes for Drinking and Irrigation Purposes in ...Assessment of Water Quality of Lakes for Drinking and Irrigation Purposes in ...
Assessment of Water Quality of Lakes for Drinking and Irrigation Purposes in ...
 

En vedette

Genetic variability in quality and yield parameters of early ripening grape
Genetic variability in quality and yield parameters of  early ripening grapeGenetic variability in quality and yield parameters of  early ripening grape
Genetic variability in quality and yield parameters of early ripening grapesrajanlko
 
Forecasting model for veneer grafting success in mango
Forecasting model for veneer grafting success in mangoForecasting model for veneer grafting success in mango
Forecasting model for veneer grafting success in mangosrajanlko
 
En Joan i la Laia viatgen a l'espai
En Joan i la Laia viatgen a l'espaiEn Joan i la Laia viatgen a l'espai
En Joan i la Laia viatgen a l'espaiNeus
 
Juguem amb les dites 2
Juguem amb les dites 2Juguem amb les dites 2
Juguem amb les dites 2Neus
 
Foufou Dog Portfolio Presentation
Foufou Dog Portfolio PresentationFoufou Dog Portfolio Presentation
Foufou Dog Portfolio Presentationcheryl ng
 
Effect of defoliation, decapitation and deblossoming on fruit bud differentia...
Effect of defoliation, decapitation and deblossoming on fruit bud differentia...Effect of defoliation, decapitation and deblossoming on fruit bud differentia...
Effect of defoliation, decapitation and deblossoming on fruit bud differentia...srajanlko
 
Variation in canopy characteristics of mango
Variation in canopy characteristics of mangoVariation in canopy characteristics of mango
Variation in canopy characteristics of mangosrajanlko
 
Els mitjans de transport- Dibuix inicial
Els mitjans de transport-  Dibuix inicialEls mitjans de transport-  Dibuix inicial
Els mitjans de transport- Dibuix inicialNeus
 
Use of logistic, gompertz and richards functions for fitting normal and malfo...
Use of logistic, gompertz and richards functions for fitting normal and malfo...Use of logistic, gompertz and richards functions for fitting normal and malfo...
Use of logistic, gompertz and richards functions for fitting normal and malfo...srajanlko
 
Application of extended bbch scale for phenological
Application of extended bbch scale for phenologicalApplication of extended bbch scale for phenological
Application of extended bbch scale for phenologicalsrajanlko
 
Influence of pruning date on fruit yield of guava
Influence of pruning date on fruit yield of guavaInfluence of pruning date on fruit yield of guava
Influence of pruning date on fruit yield of guavasrajanlko
 
transports 2
transports 2transports 2
transports 2Neus
 
Juguem amb dites
Juguem amb ditesJuguem amb dites
Juguem amb ditesNeus
 
Selection possibilities for seed content fresh fruit quality in guava j. ap...
Selection possibilities for seed content   fresh fruit quality in guava j. ap...Selection possibilities for seed content   fresh fruit quality in guava j. ap...
Selection possibilities for seed content fresh fruit quality in guava j. ap...srajanlko
 
Advancing alphonso mango harvest season in lateritic rocky soils of konkan re...
Advancing alphonso mango harvest season in lateritic rocky soils of konkan re...Advancing alphonso mango harvest season in lateritic rocky soils of konkan re...
Advancing alphonso mango harvest season in lateritic rocky soils of konkan re...srajanlko
 
Influence of pruning date on fruit yield of guava (psidium guajava l.) under ...
Influence of pruning date on fruit yield of guava (psidium guajava l.) under ...Influence of pruning date on fruit yield of guava (psidium guajava l.) under ...
Influence of pruning date on fruit yield of guava (psidium guajava l.) under ...srajanlko
 
Strategy for crop regulation in guava through foliar urea in leaves jah
Strategy for crop regulation in guava through foliar urea in leaves jahStrategy for crop regulation in guava through foliar urea in leaves jah
Strategy for crop regulation in guava through foliar urea in leaves jahsrajanlko
 

En vedette (18)

Genetic variability in quality and yield parameters of early ripening grape
Genetic variability in quality and yield parameters of  early ripening grapeGenetic variability in quality and yield parameters of  early ripening grape
Genetic variability in quality and yield parameters of early ripening grape
 
Forecasting model for veneer grafting success in mango
Forecasting model for veneer grafting success in mangoForecasting model for veneer grafting success in mango
Forecasting model for veneer grafting success in mango
 
En Joan i la Laia viatgen a l'espai
En Joan i la Laia viatgen a l'espaiEn Joan i la Laia viatgen a l'espai
En Joan i la Laia viatgen a l'espai
 
Juguem amb les dites 2
Juguem amb les dites 2Juguem amb les dites 2
Juguem amb les dites 2
 
Foufou Dog Portfolio Presentation
Foufou Dog Portfolio PresentationFoufou Dog Portfolio Presentation
Foufou Dog Portfolio Presentation
 
1. OtwóRz Mnie
1. OtwóRz Mnie1. OtwóRz Mnie
1. OtwóRz Mnie
 
Effect of defoliation, decapitation and deblossoming on fruit bud differentia...
Effect of defoliation, decapitation and deblossoming on fruit bud differentia...Effect of defoliation, decapitation and deblossoming on fruit bud differentia...
Effect of defoliation, decapitation and deblossoming on fruit bud differentia...
 
Variation in canopy characteristics of mango
Variation in canopy characteristics of mangoVariation in canopy characteristics of mango
Variation in canopy characteristics of mango
 
Els mitjans de transport- Dibuix inicial
Els mitjans de transport-  Dibuix inicialEls mitjans de transport-  Dibuix inicial
Els mitjans de transport- Dibuix inicial
 
Use of logistic, gompertz and richards functions for fitting normal and malfo...
Use of logistic, gompertz and richards functions for fitting normal and malfo...Use of logistic, gompertz and richards functions for fitting normal and malfo...
Use of logistic, gompertz and richards functions for fitting normal and malfo...
 
Application of extended bbch scale for phenological
Application of extended bbch scale for phenologicalApplication of extended bbch scale for phenological
Application of extended bbch scale for phenological
 
Influence of pruning date on fruit yield of guava
Influence of pruning date on fruit yield of guavaInfluence of pruning date on fruit yield of guava
Influence of pruning date on fruit yield of guava
 
transports 2
transports 2transports 2
transports 2
 
Juguem amb dites
Juguem amb ditesJuguem amb dites
Juguem amb dites
 
Selection possibilities for seed content fresh fruit quality in guava j. ap...
Selection possibilities for seed content   fresh fruit quality in guava j. ap...Selection possibilities for seed content   fresh fruit quality in guava j. ap...
Selection possibilities for seed content fresh fruit quality in guava j. ap...
 
Advancing alphonso mango harvest season in lateritic rocky soils of konkan re...
Advancing alphonso mango harvest season in lateritic rocky soils of konkan re...Advancing alphonso mango harvest season in lateritic rocky soils of konkan re...
Advancing alphonso mango harvest season in lateritic rocky soils of konkan re...
 
Influence of pruning date on fruit yield of guava (psidium guajava l.) under ...
Influence of pruning date on fruit yield of guava (psidium guajava l.) under ...Influence of pruning date on fruit yield of guava (psidium guajava l.) under ...
Influence of pruning date on fruit yield of guava (psidium guajava l.) under ...
 
Strategy for crop regulation in guava through foliar urea in leaves jah
Strategy for crop regulation in guava through foliar urea in leaves jahStrategy for crop regulation in guava through foliar urea in leaves jah
Strategy for crop regulation in guava through foliar urea in leaves jah
 

Similaire à Post tsunami natural selection of polyembryonic mangoes from andaman islands ex situ sodium toxicity

ENVIRONMENTAL IMPACT OF SOIL AND SAND MINING: A REVIEW
ENVIRONMENTAL IMPACT OF SOIL AND SAND MINING: A REVIEWENVIRONMENTAL IMPACT OF SOIL AND SAND MINING: A REVIEW
ENVIRONMENTAL IMPACT OF SOIL AND SAND MINING: A REVIEWnurul fadhilla yuzia putri
 
International journal of science technology
International journal of science technologyInternational journal of science technology
International journal of science technologyMiftahur Rizqi
 
Vegetation_Analysis_in_the_Red_Sea-Eastern_Desert_Ecotone_at_the.pdf
Vegetation_Analysis_in_the_Red_Sea-Eastern_Desert_Ecotone_at_the.pdfVegetation_Analysis_in_the_Red_Sea-Eastern_Desert_Ecotone_at_the.pdf
Vegetation_Analysis_in_the_Red_Sea-Eastern_Desert_Ecotone_at_the.pdfAgathaHaselvin
 
Health risks of heavy metals in selected food crops cultivated
Health risks of heavy metals in selected food crops cultivatedHealth risks of heavy metals in selected food crops cultivated
Health risks of heavy metals in selected food crops cultivatedAlexander Decker
 
FIELD AND ANALYTICAL ASPECTS IN THE MANG-GURM HABITAT-2013
FIELD AND ANALYTICAL ASPECTS IN THE MANG-GURM HABITAT-2013FIELD AND ANALYTICAL ASPECTS IN THE MANG-GURM HABITAT-2013
FIELD AND ANALYTICAL ASPECTS IN THE MANG-GURM HABITAT-2013Abdul-Sattar Al-Mashhadani
 
Interspecific Variation in Salt Tolerance of Some Acacia Species at Seed Germ...
Interspecific Variation in Salt Tolerance of Some Acacia Species at Seed Germ...Interspecific Variation in Salt Tolerance of Some Acacia Species at Seed Germ...
Interspecific Variation in Salt Tolerance of Some Acacia Species at Seed Germ...Agriculture Journal IJOEAR
 
Biodiversity and indicators of climate change
Biodiversity and indicators of climate changeBiodiversity and indicators of climate change
Biodiversity and indicators of climate changeWWF-India
 
Environmental burden of heavy metal contamination levels (zikai wang 的冲突副本 20...
Environmental burden of heavy metal contamination levels (zikai wang 的冲突副本 20...Environmental burden of heavy metal contamination levels (zikai wang 的冲突副本 20...
Environmental burden of heavy metal contamination levels (zikai wang 的冲突副本 20...Alexander Decker
 
Environmental burden of heavy metal contamination levels
Environmental burden of heavy metal contamination levelsEnvironmental burden of heavy metal contamination levels
Environmental burden of heavy metal contamination levelsAlexander Decker
 
Molluscan diversity in mangroves of uran
Molluscan diversity in mangroves of uranMolluscan diversity in mangroves of uran
Molluscan diversity in mangroves of uranPrabhakar Pawar
 
Identification of heavy metals contamination by multivariate statistical anal...
Identification of heavy metals contamination by multivariate statistical anal...Identification of heavy metals contamination by multivariate statistical anal...
Identification of heavy metals contamination by multivariate statistical anal...Alexander Decker
 
11.identification of heavy metals contamination by multivariate statistical a...
11.identification of heavy metals contamination by multivariate statistical a...11.identification of heavy metals contamination by multivariate statistical a...
11.identification of heavy metals contamination by multivariate statistical a...Alexander Decker
 
Investigation of Soil Status in Degraded Soils from Tantalum Mining in Gatumb...
Investigation of Soil Status in Degraded Soils from Tantalum Mining in Gatumb...Investigation of Soil Status in Degraded Soils from Tantalum Mining in Gatumb...
Investigation of Soil Status in Degraded Soils from Tantalum Mining in Gatumb...Premier Publishers
 
Spatial Analysis of Soil and Water Quality in Tsunami AffectedAreas of Nagapa...
Spatial Analysis of Soil and Water Quality in Tsunami AffectedAreas of Nagapa...Spatial Analysis of Soil and Water Quality in Tsunami AffectedAreas of Nagapa...
Spatial Analysis of Soil and Water Quality in Tsunami AffectedAreas of Nagapa...IJERA Editor
 
Seasonal Variations and Diversity of Marine Diatoms of Jegathapattinam and Ka...
Seasonal Variations and Diversity of Marine Diatoms of Jegathapattinam and Ka...Seasonal Variations and Diversity of Marine Diatoms of Jegathapattinam and Ka...
Seasonal Variations and Diversity of Marine Diatoms of Jegathapattinam and Ka...IJSRD
 
Protection of habitat of corals,mangrooves,seaweeds,sea grass beds
Protection of habitat of corals,mangrooves,seaweeds,sea grass bedsProtection of habitat of corals,mangrooves,seaweeds,sea grass beds
Protection of habitat of corals,mangrooves,seaweeds,sea grass bedsshibam saha
 
Coastal/Marine Pollution by Saumya Mishra
Coastal/Marine Pollution by Saumya MishraCoastal/Marine Pollution by Saumya Mishra
Coastal/Marine Pollution by Saumya MishraArunima Mishra
 

Similaire à Post tsunami natural selection of polyembryonic mangoes from andaman islands ex situ sodium toxicity (20)

ENVIRONMENTAL IMPACT OF SOIL AND SAND MINING: A REVIEW
ENVIRONMENTAL IMPACT OF SOIL AND SAND MINING: A REVIEWENVIRONMENTAL IMPACT OF SOIL AND SAND MINING: A REVIEW
ENVIRONMENTAL IMPACT OF SOIL AND SAND MINING: A REVIEW
 
ENVIRONMENTAL IMPACT OF SOIL AND SAND MINING
ENVIRONMENTAL IMPACT OF SOIL AND SAND MININGENVIRONMENTAL IMPACT OF SOIL AND SAND MINING
ENVIRONMENTAL IMPACT OF SOIL AND SAND MINING
 
International journal of science technology
International journal of science technologyInternational journal of science technology
International journal of science technology
 
Vegetation_Analysis_in_the_Red_Sea-Eastern_Desert_Ecotone_at_the.pdf
Vegetation_Analysis_in_the_Red_Sea-Eastern_Desert_Ecotone_at_the.pdfVegetation_Analysis_in_the_Red_Sea-Eastern_Desert_Ecotone_at_the.pdf
Vegetation_Analysis_in_the_Red_Sea-Eastern_Desert_Ecotone_at_the.pdf
 
Health risks of heavy metals in selected food crops cultivated
Health risks of heavy metals in selected food crops cultivatedHealth risks of heavy metals in selected food crops cultivated
Health risks of heavy metals in selected food crops cultivated
 
FIELD AND ANALYTICAL ASPECTS IN THE MANG-GURM HABITAT-2013
FIELD AND ANALYTICAL ASPECTS IN THE MANG-GURM HABITAT-2013FIELD AND ANALYTICAL ASPECTS IN THE MANG-GURM HABITAT-2013
FIELD AND ANALYTICAL ASPECTS IN THE MANG-GURM HABITAT-2013
 
Interspecific Variation in Salt Tolerance of Some Acacia Species at Seed Germ...
Interspecific Variation in Salt Tolerance of Some Acacia Species at Seed Germ...Interspecific Variation in Salt Tolerance of Some Acacia Species at Seed Germ...
Interspecific Variation in Salt Tolerance of Some Acacia Species at Seed Germ...
 
Biodiversity and indicators of climate change
Biodiversity and indicators of climate changeBiodiversity and indicators of climate change
Biodiversity and indicators of climate change
 
Environmental burden of heavy metal contamination levels (zikai wang 的冲突副本 20...
Environmental burden of heavy metal contamination levels (zikai wang 的冲突副本 20...Environmental burden of heavy metal contamination levels (zikai wang 的冲突副本 20...
Environmental burden of heavy metal contamination levels (zikai wang 的冲突副本 20...
 
Environmental burden of heavy metal contamination levels
Environmental burden of heavy metal contamination levelsEnvironmental burden of heavy metal contamination levels
Environmental burden of heavy metal contamination levels
 
Molluscan diversity in mangroves of uran
Molluscan diversity in mangroves of uranMolluscan diversity in mangroves of uran
Molluscan diversity in mangroves of uran
 
Analysis of Changing Vegetation Pattern Under Different Climatic, Edaphic and...
Analysis of Changing Vegetation Pattern Under Different Climatic, Edaphic and...Analysis of Changing Vegetation Pattern Under Different Climatic, Edaphic and...
Analysis of Changing Vegetation Pattern Under Different Climatic, Edaphic and...
 
Identification of heavy metals contamination by multivariate statistical anal...
Identification of heavy metals contamination by multivariate statistical anal...Identification of heavy metals contamination by multivariate statistical anal...
Identification of heavy metals contamination by multivariate statistical anal...
 
11.identification of heavy metals contamination by multivariate statistical a...
11.identification of heavy metals contamination by multivariate statistical a...11.identification of heavy metals contamination by multivariate statistical a...
11.identification of heavy metals contamination by multivariate statistical a...
 
Investigation of Soil Status in Degraded Soils from Tantalum Mining in Gatumb...
Investigation of Soil Status in Degraded Soils from Tantalum Mining in Gatumb...Investigation of Soil Status in Degraded Soils from Tantalum Mining in Gatumb...
Investigation of Soil Status in Degraded Soils from Tantalum Mining in Gatumb...
 
Spatial Analysis of Soil and Water Quality in Tsunami AffectedAreas of Nagapa...
Spatial Analysis of Soil and Water Quality in Tsunami AffectedAreas of Nagapa...Spatial Analysis of Soil and Water Quality in Tsunami AffectedAreas of Nagapa...
Spatial Analysis of Soil and Water Quality in Tsunami AffectedAreas of Nagapa...
 
Seasonal Variations and Diversity of Marine Diatoms of Jegathapattinam and Ka...
Seasonal Variations and Diversity of Marine Diatoms of Jegathapattinam and Ka...Seasonal Variations and Diversity of Marine Diatoms of Jegathapattinam and Ka...
Seasonal Variations and Diversity of Marine Diatoms of Jegathapattinam and Ka...
 
F031201034039
F031201034039F031201034039
F031201034039
 
Protection of habitat of corals,mangrooves,seaweeds,sea grass beds
Protection of habitat of corals,mangrooves,seaweeds,sea grass bedsProtection of habitat of corals,mangrooves,seaweeds,sea grass beds
Protection of habitat of corals,mangrooves,seaweeds,sea grass beds
 
Coastal/Marine Pollution by Saumya Mishra
Coastal/Marine Pollution by Saumya MishraCoastal/Marine Pollution by Saumya Mishra
Coastal/Marine Pollution by Saumya Mishra
 

Dernier

Green Horizons: Ecotourism Conference 2024 in Amsterdam
Green Horizons: Ecotourism Conference 2024 in AmsterdamGreen Horizons: Ecotourism Conference 2024 in Amsterdam
Green Horizons: Ecotourism Conference 2024 in AmsterdamDIGITALCONFEX
 
PPT TLE 7 and 8 Q3 AGRI CROP QUIZ 2.pptx
PPT TLE 7 and 8  Q3 AGRI CROP QUIZ 2.pptxPPT TLE 7 and 8  Q3 AGRI CROP QUIZ 2.pptx
PPT TLE 7 and 8 Q3 AGRI CROP QUIZ 2.pptxCrislynBaados
 
Monitoring songbirds' online market
Monitoring songbirds' online market Monitoring songbirds' online market
Monitoring songbirds' online market CIFOR-ICRAF
 
Item 7. Discussion on PWB 2023-24 work related to adaptation
Item 7. Discussion on PWB 2023-24 work related to adaptationItem 7. Discussion on PWB 2023-24 work related to adaptation
Item 7. Discussion on PWB 2023-24 work related to adaptationOECD Environment
 
Save the Environment - Environ Craft
Save the Environment -     Environ CraftSave the Environment -     Environ Craft
Save the Environment - Environ Craftenvironcraft
 
Third OECD-DOE Workshop Photo slide show.pdf
Third OECD-DOE Workshop Photo slide show.pdfThird OECD-DOE Workshop Photo slide show.pdf
Third OECD-DOE Workshop Photo slide show.pdfOECD Environment
 
Item 8. Developing EPOC's PWB related to adaptation
Item 8. Developing EPOC's PWB related to adaptationItem 8. Developing EPOC's PWB related to adaptation
Item 8. Developing EPOC's PWB related to adaptationOECD Environment
 
Ecosystem and their types ||Environmental Science||.pdf
Ecosystem and their types ||Environmental Science||.pdfEcosystem and their types ||Environmental Science||.pdf
Ecosystem and their types ||Environmental Science||.pdfMUKUL GAUR
 
Item 2.b The transformative effects of the Paris Agreement
Item 2.b The transformative effects of the Paris AgreementItem 2.b The transformative effects of the Paris Agreement
Item 2.b The transformative effects of the Paris AgreementOECD Environment
 
I MSc II Semester - Characteristics of a population.ppt
I MSc II Semester - Characteristics of a population.pptI MSc II Semester - Characteristics of a population.ppt
I MSc II Semester - Characteristics of a population.pptaigil2
 
The Dark Cloud of Global Air Pollution - Epcon
The Dark Cloud of Global Air Pollution - EpconThe Dark Cloud of Global Air Pollution - Epcon
The Dark Cloud of Global Air Pollution - EpconEpconLP
 
EC-funded Projects and CAPs Webinar slides
EC-funded Projects and CAPs Webinar slidesEC-funded Projects and CAPs Webinar slides
EC-funded Projects and CAPs Webinar slidesweADAPT
 
Green Giraffe Advisory: Offshore wind market today.pdf
Green Giraffe Advisory: Offshore wind market today.pdfGreen Giraffe Advisory: Offshore wind market today.pdf
Green Giraffe Advisory: Offshore wind market today.pdfOECD Environment
 
Best-NO1 Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
Best-NO1 Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...Best-NO1 Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
Best-NO1 Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...Amil baba
 
Personal Protective Equipment OSHA Regulations
Personal Protective Equipment OSHA RegulationsPersonal Protective Equipment OSHA Regulations
Personal Protective Equipment OSHA RegulationsATI Construction Products
 
How do TOPCon Solar Cells/Solar Panel Work?
How do TOPCon Solar Cells/Solar Panel Work?How do TOPCon Solar Cells/Solar Panel Work?
How do TOPCon Solar Cells/Solar Panel Work?Bluebird Solar Pvt. Ltd.
 
Item 6. Revision and consolidation of energy-related legal instruments
Item 6. Revision and consolidation of energy-related legal instrumentsItem 6. Revision and consolidation of energy-related legal instruments
Item 6. Revision and consolidation of energy-related legal instrumentsOECD Environment
 
4th Earthquake Drill Narraative Report.docx
4th Earthquake Drill Narraative Report.docx4th Earthquake Drill Narraative Report.docx
4th Earthquake Drill Narraative Report.docxJeneroseBaldoza
 
PBL Endangered and Vulnerable Species- Presentation.pptx
PBL Endangered and Vulnerable Species- Presentation.pptxPBL Endangered and Vulnerable Species- Presentation.pptx
PBL Endangered and Vulnerable Species- Presentation.pptxjabernethy
 

Dernier (20)

Green Horizons: Ecotourism Conference 2024 in Amsterdam
Green Horizons: Ecotourism Conference 2024 in AmsterdamGreen Horizons: Ecotourism Conference 2024 in Amsterdam
Green Horizons: Ecotourism Conference 2024 in Amsterdam
 
PPT TLE 7 and 8 Q3 AGRI CROP QUIZ 2.pptx
PPT TLE 7 and 8  Q3 AGRI CROP QUIZ 2.pptxPPT TLE 7 and 8  Q3 AGRI CROP QUIZ 2.pptx
PPT TLE 7 and 8 Q3 AGRI CROP QUIZ 2.pptx
 
Monitoring songbirds' online market
Monitoring songbirds' online market Monitoring songbirds' online market
Monitoring songbirds' online market
 
Item 7. Discussion on PWB 2023-24 work related to adaptation
Item 7. Discussion on PWB 2023-24 work related to adaptationItem 7. Discussion on PWB 2023-24 work related to adaptation
Item 7. Discussion on PWB 2023-24 work related to adaptation
 
Save the Environment - Environ Craft
Save the Environment -     Environ CraftSave the Environment -     Environ Craft
Save the Environment - Environ Craft
 
Third OECD-DOE Workshop Photo slide show.pdf
Third OECD-DOE Workshop Photo slide show.pdfThird OECD-DOE Workshop Photo slide show.pdf
Third OECD-DOE Workshop Photo slide show.pdf
 
Item 8. Developing EPOC's PWB related to adaptation
Item 8. Developing EPOC's PWB related to adaptationItem 8. Developing EPOC's PWB related to adaptation
Item 8. Developing EPOC's PWB related to adaptation
 
Ecosystem and their types ||Environmental Science||.pdf
Ecosystem and their types ||Environmental Science||.pdfEcosystem and their types ||Environmental Science||.pdf
Ecosystem and their types ||Environmental Science||.pdf
 
Item 2.b The transformative effects of the Paris Agreement
Item 2.b The transformative effects of the Paris AgreementItem 2.b The transformative effects of the Paris Agreement
Item 2.b The transformative effects of the Paris Agreement
 
I MSc II Semester - Characteristics of a population.ppt
I MSc II Semester - Characteristics of a population.pptI MSc II Semester - Characteristics of a population.ppt
I MSc II Semester - Characteristics of a population.ppt
 
The Dark Cloud of Global Air Pollution - Epcon
The Dark Cloud of Global Air Pollution - EpconThe Dark Cloud of Global Air Pollution - Epcon
The Dark Cloud of Global Air Pollution - Epcon
 
EC-funded Projects and CAPs Webinar slides
EC-funded Projects and CAPs Webinar slidesEC-funded Projects and CAPs Webinar slides
EC-funded Projects and CAPs Webinar slides
 
Green Giraffe Advisory: Offshore wind market today.pdf
Green Giraffe Advisory: Offshore wind market today.pdfGreen Giraffe Advisory: Offshore wind market today.pdf
Green Giraffe Advisory: Offshore wind market today.pdf
 
Best-NO1 Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
Best-NO1 Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...Best-NO1 Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
Best-NO1 Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
 
Personal Protective Equipment OSHA Regulations
Personal Protective Equipment OSHA RegulationsPersonal Protective Equipment OSHA Regulations
Personal Protective Equipment OSHA Regulations
 
International Day of Forests 2024
International Day of Forests 2024International Day of Forests 2024
International Day of Forests 2024
 
How do TOPCon Solar Cells/Solar Panel Work?
How do TOPCon Solar Cells/Solar Panel Work?How do TOPCon Solar Cells/Solar Panel Work?
How do TOPCon Solar Cells/Solar Panel Work?
 
Item 6. Revision and consolidation of energy-related legal instruments
Item 6. Revision and consolidation of energy-related legal instrumentsItem 6. Revision and consolidation of energy-related legal instruments
Item 6. Revision and consolidation of energy-related legal instruments
 
4th Earthquake Drill Narraative Report.docx
4th Earthquake Drill Narraative Report.docx4th Earthquake Drill Narraative Report.docx
4th Earthquake Drill Narraative Report.docx
 
PBL Endangered and Vulnerable Species- Presentation.pptx
PBL Endangered and Vulnerable Species- Presentation.pptxPBL Endangered and Vulnerable Species- Presentation.pptx
PBL Endangered and Vulnerable Species- Presentation.pptx
 

Post tsunami natural selection of polyembryonic mangoes from andaman islands ex situ sodium toxicity

  • 1. Journal of Applied Horticulture, 15(1): 21-25, 2013 Post-tsunami collection of polyembryonic mango diversity from Andaman islands and their ex situ reaction to high sodium in sodic soil T. Damodarana *, Shailendra Rajanb , Ram Kumarb , D.K. Sharmaa , V.K. Misraa , S.K. Jhaa and R.B. Raic a Central Soil Salinity Research Institute, RRS, Lucknow, India, b Central Institute of Sub-tropical Horticulture, Lucknow, India, c Indian Veterinary Research Institute, Bareilly, India. *E-mail: damhort2002@yahoo.com Abstract The study includes collection of polyembryonic mango types from tsunami affected areas of the South Andaman district where trees are under natural selection pressure for salt tolerance and screening of collections against high sodium in sodic soils ex situ. Forty two accessions were located and collected on the basis of phenotypic expression and indentation level in tsunami. Out of which 15 diverse polyembryony types from different locations were evaluated for survival and growth in sodic soils of pHe 9.51 and sodium (Na+ ) 21.20 meq/L at Lucknow. The mortality percentage and relationship between the salt tolerance potential of the selections and Na+ / K+ ratio, root length and shoot length were investigated. Based on mortality in ex situ screening, collected types were classified into different groups. An increase in pH and Na+ concentrations led to higher mortality (96.67 -100.00 %) in polyembronic seedlings when compared to salt tolerant types (3.33-16.678 %). Six accessions GPL-1, GPL-3, ML-3, ML-4, ML-2 and GPL-4 exhibited tolerance to high soil sodium content and pH. Accessions GPL-1 and ML-2 collected from sites affected by inundation of sea water during tsunami under acid saline soil conditions were found to have the highest tolerance level. These accessions accumulated comparatively higher amounts of K+ ions in leaves than other accessions. They also had lower Na+ / K+ ratio which was even lower than the other tolerant collections. The collections demonstrated an increase in the root and shoot length and significant negative correlation with mortality of the seedlings (r= 0.97 and 0.98, respectively). The study revealed the importance of natural selection of mango polyembryony seedlings for salt tolerance and scope of its utilization. Key words: Polyembryony, mango, natural selection, tsunami, Andaman Islands, sodium toxicity, tolerance, sodic soils, mortality Introduction Andaman and Nicobar islands are one of the most important zones of variability in mangoes offering choice of selection for wide range of economical traits (Yadav and Rajan, 1993; Ram and Rajan, 2003; Damodaran et al., 2012). These islands are situated about 1,200 km away from mainland India and form an arched string of about 572 islands and isles stretching from Burma in the north to Sumatra in the south between 6 and 14 ◦ N latitudes and 92and 94◦ E longitudes (Ahlawat, 2001). Earthquake measuring 9.4 on Richter scale struck the Andaman and Nicobar islands on 26th December 2004 at 6.40AM which triggered the tsunami killer waves causing the sea water to inundate the cultivated lands (Srivastava et al., 2008). Mango originated in the Indo-Burma region (Yonemori et al., 2002) is considered as leading economically important fruit crop of the tropical and subtropical regions of the world and was introduced in these islands by the settlers from rich diversity areas of Indo-Myanmar region (Ram and Rajan, 2003) Soil salinity / sodicity is one of the most important abiotic stress increasing steadily in many parts of the of the world, in particular, the arid and semi arid areas (Al-Karaki, 2006). Salt toxicity is also a major mango productivity constraint in arid environments (Hoult et al., 1997), limits its cultivation in soils suitable for several other fruit crops. Mango, in particular, is more sensitive to salinity, particularly at early stage of growth (Varu and Barad, 2010). Salt-affected soils may contain excess soluble salts (saline soils), excess exchangeable sodium (sodic soils), or both (saline- sodic soils). Specific ions such as sodium and chloride have toxic effects on plants, reducing growth or causing damage to cells and cell membranes (Majerus, 1996). Leaf scorching due to sodium toxicity is common in mangoes (Samra, 1985). Polyembryonic graft compatible rootstock with tolerance to calacareous soils and salinity are preferred for propagation on commercial scale in few parts of the world (Litz and Gomez, 2002).Apolyembryonic type, 13-1 has been well exploited as rootstock in different parts of the world (Ram and Rajan, 2003). In India, limited efforts have been made to identify tolerant type polyembryonic mangoes (Varu and Barad, 2010). Most of the reported studies were on common polyemryonic varieties available in main land of India and may have limited tolerance to salts. Efforts for collection of diverse polyembryonic types from islands for salt tolerance and screening under ex situ conditions have not been reported so far. The major objective of the study was to collect diversity of the polyembryony types from island areas inundated with sea water during tsunami and screen out their potential against soil sodium toxicity in sodic soils of high pH > 9.40. Materials and methods Explorations: For the present experiment, an exploratory survey was first conducted in 2005 immediately after tsunami in the affected mango growing regions of SouthAndaman (Fig. 1) villages Journal Appl
  • 2. through a transect survey starting from the head quarters Port Blair. Subsequent survey was made during 2012 based on the results of the earlier collections and diverse conditions in island (Table 1). Table 1. Collection site characterstics Site Feature Location I Low lying coastal areas, permanent stagnation of sea water and the depth of impounding of sea water increases with high tide. Chouldhari, Mitakhari, Ferrarganj and Ograbrij II Low lying coastal areas, sea water reaches with every high tide and recedes with low tide (areas affected with fluctuating sea water table). Guptapara, Manglutan, Baratang III Low lying coastal areas, sea water has intruded only during Tsunami and then receded permanently Manjeri, Garacharma, Guptapara, Pothrapur and Chidyatapu Screening: The stones from the collected fruits of different accessions were sown in nursery beds after extraction from the pulp and washing thoroughly in tap water. After three months of sowing the nucellar seedlings of uniform vigour were uprooted (along with soil adhered to roots) from nursery bed and planted in polythene lined pots filled with 5 kg of sodic soil. The sodic soil used for ex situ screening was Typic Natrustalfs with pHe 9.51, electrical conductivity (ECe) 6.7 dSm-2 ; sodium (Na+ ) 21.20 meq / L and potassium (K+ ) 0.126 meq / L at the beginning of the experiment. The soil paramters like pHe, ECe, sodium and potassium contents were recorded regularly at the interval of 60 days till 240 days. Observations on mortality percentage (M) were recorded at an interval of 60, 120, 180 and 240 days after planting in sodic soil. Mortality % (M) = Number of plants died x 100 Total number of plants The leaf (3rd leaf from terminal portion of seedling) samples were collected at the end of the experiment from the plants for analyzing the content of Na+ and K+ by extracting the oven-dried (65o C) samples in 100 mmol m-3 acetic acid kept in a water bath for 2 h at 90o C. Na+ and K+ content in the extract were determined using a flame photometer. At 240 days after sodicity treatment, three samples from each accession were removed from the pots for recording the root and shoot length (cm). A set of untreated control was maintained to assess the effect of sodicity on the polyembryonic types. Statistical analysis: The experiment was laid out in completely randomized design with three replication having ten numbers of plants in each replication. The data was analyzed using analysis of variance (ANOVA) using SAS 9.2 statistical software. Valid conclusions were drawn using Duncans Multiple Range Test at P=0.05. Disimilarity co-efficients were used to construct the dendrogram using EUCLID co-efficient in clustering using SAS for grouping the accessions based on edaphic factors. Results and discussion Atransect survey carried out from Port Blair towards the Northern part of the South Andaman district where the region depicted all the three situations of inundations created by tsunami. The survey locations included the villages of Manjeri, Guptapara, Garacharma, Pothrapur and Chidyatapu which had sea water inundation for a short period after tsunami, leaving behind a deposition of salt after recession of sea water. Further, the areas where there was inundation during the high tides like Guptapara, Manglutan, Baratang and the locations including Chouldhari, Mitakhari, Ferrarganj and Ograbrij where there was permanent inundation was surveyed (Table 2). Post tsunami survey, conducted immediately after inundation of sea water for selection of the salt tolerance in the mango, resulted in collection of 42 types which were assigned accession numbers after initial establishment at the germplasm collection centre at Central Agricultural Research Institute, Port Blair. The representation/occurrence of the polyembryonic types was more than monoembryonic ones. Most of the monoembryonic collections were of introduced type of Indian sub-continent earlier reported by Damodaran et al. (2007). Subsequent surveys were undertaken to monitor the status of collected accessions for assessing their in situ status after being subjected to sea water inundation over a period of time. This resulted in narrowing the selection to 15 polyembryonic types based on survival of seedlings under natural salinity stress created by tsunami over the period of time. The altitude of the surveyed locations range from 51 to 227 m (Table 2) and the soils Fig. 1. Location of collection sites in the South Andaman Islands 22 Post-tsunami collection of polyembryonic mangoes from Andaman Islands and their ex situ reaction
  • 3. condition are acid-saline to acid with fine texture. The soils were subjected to continuous leaching by heavy rainfall due to tropical rainforest conditions and occasional sea water ingression during high tides or disturbance in sluice gates constructed near the site for prevention of sea water ingression after tsunami. Tsunami led conversion of acid soils to saline acid soils and acid sodic soils to acid saline sodic soils in areas of SouthAndaman inundated during tsunami and permanently receded later and in the low-lying area submerged during high tides (Nayak et al., 2009). The tsunami by and large has modified some depositional layer affecting the salt accumulation to a greater extent (Srivastava, 2008). The selected 15 polyembryonic accessions (Table 2) were recollected in large numbers and evaluated for their reaction to sodium toxicity under field conditions. Monoembryonic accessions were excluded from screening because of their segregating nature and limited possibility for getting true to type material by seeds and stress tolerance. Earlier workers have substantiated that considerable variation occurs in soil salinity tolerance of both within and between mono and polyembryonic mango ecotypes. Polyembryonic cultivars appear to be greater salt tolerant than monoembryonic (Knight and Schnell, 1993; Ram and Rajan, 2003). There appears to be sufficient genetic diversity within M. indica to enable the selection and development of rootstocks for abiotic stress tolerance (Ram and Rajan, 2003). The mango seedlings exhibited significantly different mortality percentage under the same sodicity level of pHe 9.51 and sodium 9.21 meq / L. Response of accessions grown in the sodic soil over 240 days after sodicity treatment (DAST) was used for grouping, which indicated two major groups ‘A’ and ‘B’, based on their mortality percentage (Table 3). At 60th DAST group ‘A’ plants exhibited salt tolerance with no mortality (GPL-1, GPL-3, ML-3, ML-2 and GPL-4) except for ML-4 which showed 6.67 % seedling mortality and was also on par with the others in group ‘A’. Group ‘B’ was represented by accessions with mortality ranging from 23.33 to 86.67 %. The accessions of group ‘A’ remained unchanged at the end of 120 DAST except for ML-4 with an increased mortality of 16.67 % . All other accessions exhibited severe sodicity injury and mortality ranging from 90.00 to 100.00 %. Majority of the accessions were affected significantly by sodicity after (240 DAST). The accessions GPL-1 and ML-2 were superior than the other collections in terms of sodicity tolerance and survival percentage, followed by the accessions GPL-3, ML-3, GPL-4 and ML-4 which showed mortality percent ranging from 6.67 to 13.33 %. Earlier, increase in salinity in soil up to 12 dsm-1 increased the mortality to 67 % in Gaillardia aristata an ornamental plant (Rao and Mohammed, 2011). The lower mortality percentage was earlier reported in 13-1, one of the most successful rootstock selections from Israel for its tolerance to salinity (Gazit and Kadman, 1980). Due to the lower success rate on 13-1 under European conditions, studies on comparitative evaluation of Gomera I, II, III rootstock were conducted and Gomera I was identified as the salinity tolerant rootstock for mango (Duran-Zuazo et al., 2003). Similarly, identification of polyembronic rootstocks for salt tolerance in Indian sub-continent is essential which resulted identification of Karukkan as a moderately salt tolerant rootstock among a limited native polyembryonic population (Dubey, 2007). The dendrogram showing clustering of mango accessions based on altitude of collection location and soil salinity (ECe) are presented in Fig. 2. The dendrogram showed three major clusters A, B and C. Cluster A consisted of three selections Table 2. Polyembryony mangoes collected from tsunami affected areas of South Andaman Accession Location Latitude Longitude Altitude Soil pHe Soil ECe GPL-1 Guptapara, SA N 11o 33.62” E 92o 39.00” 67 5.58 4.1 GPL-3 Guptapara, SA N 11o 33.62” E 92o 39.00” 67 6.00 2.5 ML-3 Manjeri, SA N 11o 32.31” E 92o 39.03” 63 5.65 3.5 ML-4 Manjeri, SA N 11o 32.31” E 92o 39.03” 63 5.50 3.6 ML-2 Manjeri, SA N 11o 32.15” E 92o 39.03” 67 5.91 4.2 GPL-2 Guptapara, SA N 11o 33.62” E 92o 39.00” 67 5.55 4.0 GTP-1 Chidyatapu, SA N 110 37.31” E 920 43.28” 89 4.85 3.0 GPL-4 Guptapara, SA N 11o 33.62” E 92o 39.00” 67 5.55 4.6 GTP-3 Chidyatapu, SA N 110 37.31” E 920 43.28” 89 4.80 3.5 GCL-3 Garacharma, SA N 110 37.30” N 920 43.42” 227 6.20 2.8 BAA-1 Baratang, MA N 110 30.18” N 920 42.09” 17 4.48 2.4 GCL-2 Garacharma, SA N 110 37.30” N 920 43.43” 227 6.03 2.6 GCL-1 Garacharma, SA N 110 37.30” N 920 43.43” 227 6.12 2.0 KLA-2 Kalatang, SA N 110 32.66” N 920 39.05” 51 4.88 4.4 GTP-2 Chidyatapu, SA N 110 37.31” E 920 43.28” 89 4.75 3.0 SA= South Andaman; MA= Middle Andaman Table 3. Effect of sodicity on the mortality of the mango accessions Category Collection Mortality DAST (%) 30 60 120 240 A GPL-1 0.00a 0.00a 0.00a 3.33a GPL-3 0.00a 0.00a 0.00a 10.00ab ML-3 0.00a 0.00a 0.00a 10.00ab ML-4 6.67a 6.67a 16.67a 16.67ab ML-2 0.00a 0.00a 0.00a 6.67a GPL-4 0.00a 0.00a 0.00a 13.33ab B GTP-1 56.67c 56.67b 93.33b 100.00c GPL-2 16.67ab 23.33a 96.67b 100.00c GTP-3 60.00c 73.33b 90.00b 96.67c GCL-3 63.33c 76.67b 93.33b 100.00c BAA-1 66.67c 83.33b 100.00b 96.67c GCL-2 70.00c 86.67b 100.00b 100.00c GCL-1 56.67c 80.00b 100.00b 100.00c KLA-2 26.67ab 86.67b 93.33b 100.00c GTP-2 50.00bc 83.33b 96.67b 100.00c Values are the means of three replicates. Means in the columns followed by the same letter are not significantly different according to Duncan’s multiple range test at P=0.05. Post-tsunami collection of polyembryonic mangoes from Andaman Islands and their ex situ reaction 23
  • 4. (GCL-3, GCL-2 and GCL-1) while the Cluster B consisted of five collections (GTP-1, GTP-2, GTP-3, KLA-2 and KLA-1). All these collections showed susceptibility to salinity. The Cluster C consisted of 6 tolerant collections (GPL-1, GPL-3, ML-2, GPL-4, ML-3 and ML-4) and one susceptable collection (GPL-2) . There existed a clear grouping of selections based on their collection site altitude and soil salinity (ECe) as evident from the clustering using Euclidian distance. The collections, made at altitude range 63 to 67 m from mean sea level (MSL) and lying close to the sea and where there was ingression during tsunami, grouped together in Cluster C while the collections made at an altitude ranging from 81 to 89 m from MSL were in cluster B, which were growing on slightly higher altitude with minimum disturbance during tsunami due to ingression of sea water. The collections grouped in ClusterAwere collected from an altitude of 227 m from MSLhad not experienced any stress due to sea water ingression during tsunami.The current study on screening of polyembryonic accessions collected from tsunami affected soils fromAndaman had indicated the availability of more polyembryonic types under natural conditions for carrying out systematic ex situ screening in typically sodium (Na+ ) stressed sodic soils. Significant difference was exhibited in sodium / potassium (Na+ / K+ ) ratio in leaves of the tolerant and susceptible seedlings (Table 4). In comparison to the tolerant ones, the leaf tissues of susceptible seedlings (mortality percentage 96.67 to 100.00 %) accumulated more sodium (Na+ ) but less potassium (K+ ) resulting in higher Na+ / K+ ratio than tolerant accessions. The Na+ / K+ ratio in tolerant accessions ranged from 0.47 (GPL-1) to 0.81 (ML-4) while in susceptible accessions it was from 3.06 (GTP- 2) to 6.53 (GPL-4). The shoot length (cm) and root length (cm) had significant differences between the tolerant and susceptible accessions (Table 4). The tolerant accessions produced root length ranging from 36.0 cm (GPL-3) to 38.8 cm (ML-4) and shoot length from 80.2 cm (ML-3) to 97.3 (ML-2). The root and shoot length (cm) of the susceptible accessions which had higher mortality percentage was significantly low, ranging from 11.2 cm (BAA-1) to 21.3 (GCL-3) and 30.0 cm (GCL-3) to 45.6 cm (GTP- 3) in tolerant collection. However, the Na+ / K+ ratio, root and shoot length of all the tolerant accessions (GPL-1, GPL-3, ML-3, ML-4, ML-2 and GPL-4) were statistically on par. Studies on Na+ / K+ ratio in screening for salt tolerance was used as criterion to determine levels of salt tolerance in melon (Sivritipe et al., 1999). In conditions, where the salt concentration is higher in soil, the plant gets more sodium (Na+ ) ions than it requires thereby blocks the intake of potassium (K+ ) and calcium (Ca+ ) ions to the leaves (Turhan and Seniz, 2010). This results in more Na+ uptake by the tolerant accessions, however, the tolerant accessions partition the Na+ in their lower organs and increases the content of potassium (K+ ) uptake to reduce the toxicity of sodium (Cuartero and Fernandez-Munoz, 1999). Selections in wheat for salt tolerance was made using screening for cultivars having low Na+ uptake and high K+ / Na+ discrimination (Munns et al., 2000). It was reported by Boursier and Lauchli (1990) that under salt stress, the sensitive genotypes exhibit the lowest leaf potassium content and the highest sodium content in maize. Evaluation of various growth parameters like shoot length and root length in 13-1, Zebda and Sukkary mango rootstocks under saline conditions confirmed that the salt tolerant Zebda rootstock produced longer roots and shoots as compared to Sukkary mango (Shaban, 2010). Similar results were also described in the rootstock screening studies with Kesar mangoes (Varu and Barad, 2010). Increase in salinity resulted in decreased root length in zinnia (Zivdar et al., 2011). The decrease in root and shoot length were due to negative effects of salinity on permeability of membrane, cell division, protein synthesis and enzymatic activities, average time for germination, germination rate and length of rootlet (Hardegree and Emmerich, 1990). The differential response of the Na+ /K+ ratio, shoot length and root length exhibited significant relationship with seedling mortality as measured by Pearsons correlation co-efficient (Table 5). This revealed that significant positive correlation exists between the Na+ / K+ ratio and the mortality while there was a negative correlation between root length and shoot length with mortality of the mango accessions subjected to sodium stress. The Na+ and Table 4. Effect of sodicity on leaf sodium potassium contents, root length and shoot weight of the mango accessions Accessions Na/K ratio in leaf Root length (cm) Shoot length (cm) GPL-1 0.47d 37.5b 87.5b GPL-3 0.57d 36.0a 84.4b ML-3 0.73d 38.9a 80.2b ML-4 0.81d 37.3a 83.7b ML-2 0.49d 38.8a 97.2a GPL-2 0.53d 37.2a 85.3b GTP-1 3.80c 14.7cd 39.2de GPL-4 6.53a 20.6b 44.1cd GTP-3 3.44c 17.3bc 45.6c GCL-3 2.94c 21.3b 30.0fg BAA-1 3.74c 11.2d 38.3ef GCL-2 3.58c 16.8bc 39.7de GCL-1 6.06b 17.0bc 40.2cd KLA-2 5.30b 11.5d 36.2ef GTP-2 3.06c 14.4cd 33.5fg Values are the means of three replicates. Means in the columns followed by the same subscript letter are not significantly different according to Duncan’s multiple range test at P=0.05 Fig. 2. Dendrogram generated using unweighted pair group method with arithmetic average analysis for variation in site altitude and soil ECe at the place of collection. 24 Post-tsunami collection of polyembryonic mangoes from Andaman Islands and their ex situ reaction
  • 5. Cl- in leaves of local pummel seedlings was found closely related with the salt tolerant at 50 mM NaCl concentration after 56 days of salt treatment (El-Hammady et al., 1995). The study revealed that significant differences for sodicity tolerance were found among polyembroynic mangoes collected after tsunami in the Andaman Islands. The six accessions GPL-1, GPl-3, ML- 3, ML-4, ML-2 and GPL-4 exhibited tolerance to high sodium conditions. However, the accessions GPL-1 and ML-2 collected from the sites affected by inundation of sea water during tsunami were found to have the highest tolerance level to high pH and sodium content in sodic soils.The tolerant accessions accomplished lower Na+ / K+ ratio which facilitated the higher shoot growth and reduced the toxic scorching symptoms of Na+ . The current research proved that natural selections in polyembryonic mangoes in hot spots of diversity subjected to natural disturbances can serve as a potential tool for selecting the most adaptable rootstock with salinity tolerance. Considering the diversity and utility of the polyembryonic types of the Andaman Islands it can be suggested that intensified mining of genes from the islands will help in mango rootstock breeding programme. Acknowledgement Authors greatly acknowledge Director, Central Institute of Sub- tropical Horticulture, Lucknow and Director, CentralAgricultural Research Institute, Port Blair and National Co-ordinator- III, NAIP, ICAR, New Delhi for their support in collection and executing the above experiments. References Ahlawat, S.P.S. 2001. Biodiversity of Andaman and Nicobar Islands. J Andaman Science Association, 17: 1-2. Al-Karaki, G.N. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Hort., 109: 1-7 Boursier, P. andA. Läuchli, 1990. Growth responses and mineral nutrient relations of salt-stressed sorghum. Crop Sci., 30: 1226-1233. Cuartero, J. and R. Fernandez-Munoz, 1999.Tomato and salinity. Scientia Hort., 78: 83-125. Damodaran, T., R. Kannan, Israr Ahmed, R.C. Srivastava, R.B. Rai and S. Umamaheshwari, 2012. Assessing genetic relationships among mango (Mangifera indica L.) accessions of Andaman Islands using inter simple sequence repeat markers. New Zealand J. Crop Hort. Sci., 1175-8783: 1-12 Damodaran, T., R.P. Medhi, D.R. Singh, R.B. Rai, V. Damodaran and Kapil Dev, 2007. Identification of molecular markers linked with differential flowering behaviour of mangoes inAndaman and Nicobar islands. Curr. Sci., 92: 1053-1056 Dubey,A.K.,A.K. Singh and Manish Srivastav, 2007. Salt stress studies in mango- a review. Agric. Rev., 28(1): 75-78 Duran-Zuazo, V.H., A. Martinez-Raya and J. Aguilar Ruiz, 2003. Salt tolerance of mango rootstock. Spanish J. Agr. Res., 1: 67-78. El- Hammady,A.M., M.Abou- Rawash,A.Abou-Aziz, N.Abdel- Hamid and E. Abdel- Noneim, 1995. Impact of irrigation with salinized water on growth and mineral content of some citrus rootstock seedlings. Hort. Abstracts, 67(6): 675. Gazit, S. and A. Kadman, 1980. 13–1 mango rootstock selection. HortSci,. 15: 669. Hardegree, S.P. and W.E. Emmerich, 1990. Partitioning water potential and specific salt effect on seed germination of four grasses. Annals Botany, 65: 587-585. Hoult, M.D., M.M. Donnelly and M.W. Smith, 1997. Salt exclusion varies amongst polyembryonic mango cultivar seedlings. Acta Hort., 455: 455-458. Knight, R.J. and R.J. Schnell, 1993. Mango (Mangifera indica) Introduction and evaluation in florida and its impact on the world industry. Acta Hort., 34: 125-135. Litz, R.E. and M.A. Gomez-Lim, 2002. Genetic transformation of mango. In: Transgenic Plants and Crops. G. Khachatourians, A. McHughern, R. Scorza, W.K. Nip &Y.H. Hui (eds). Marcel Dekker, New York. p. 421-436. Majerus, M. 1996. Plant Materials for Saline-Alkaline Soils. USDA. Natural Resources Conservation Service. Bridger Plant Materials Center. Montana Technical Note No. 26. p.55. Munns, R., R.A. Hare, R.A. James and G.J. Rebetzke, 2000. Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res., 51: 69-74. Nayak, A.K., T. Damodaran, C.S. Singh, S.K. Jha, V.K. Misra, D.K. Sharma and Gurubachan Singh, 2009. Post tsunami changes in soil properties of Andaman Islands. India. Eniv. Monit. Assess.,170: 185-193. Rao, N.K. and Mohammed Shahid, 2011. Response of Gaillardia aristata Pursh to salinity. J. Applied Hort., 13(1): 65-67. Ram, S. and S. Rajan, 2003. Status Report on Genetic resoruces of mango inAsia-Pacific Region, International Plant Genetic Resource Institute, New Delhi., p196. Samara, J.S. 1985. Effect of irrigation water and soil sodicity on the performance and leaf nutrient composition of mango cultivars. Acta. Hort., 231: 306-311. Shaban,A.E.A. 2010. Comparative study on some polyembryonic Mango rootstock, Agric. Environ. Sci., 7(5): 527-534. Srivastava, R.C., T. Damodaran, N. Ravisankar, S. Jeyakumar, Prasanth Deshmukh, S.K. Zamir Ahmed, M. Balakrishnan and C.S. Chaturvedi, 2008. Rehabilitation of tsunami affected people through technological intervention in A & N islands, CARI, Port Blair, India, p.1-61. Sivritepe, H.O., A. Eris and N. Sivritepe, 1999. The effects of priming treatments on salt tolerance in melon seeds. Acta Hort,. 492: 287- 296. Turhan, A. and V. Seniz, 2010. Salt tolerance of some tomato genotypes grown in Turkey. J. Food Ag. Environ., 8(3&4): 332-339. Varu, D.K. and A.V. Barad, 2010. Standardization of mango rootstock for mitigating salt stress. Indian J. Hort., 67: 79-83. Yadav, I.S. and S. Rajan, 1993. Genetic Resources of Mangifera. In: Advances in Horticulture, Vol. 1 Part 1. K.L. Chadha and O.P. Pareek (Eds.), Malhotra Publishing House, New Delhi p 77-93. Yonemori, K., C. Honsho, S. Kanzaki, W. Eiadthong and A. Sugiura, 2002. Phylogenetic relationships of Mangifera species revealed by ITS sequences of nuclear ribosomal DNA and a possibility of their hybrid origin. Plant System. Evol., 231: 59-75. Zivdar, S., E. Khaleghi and F. Sedighi Dehkordi, 2011. Effect of salinity and temperature on seed germination indices of Zinnia elegans L. J. Applied Hort.,13(1): 48-51. Received: February, 2013; Revised: March, 2013; Accepted: April, 2013 Table 5. Relationship of seedling mortality with Na/K, root length, shoot length (Pearson Correlation Coefficients) Parameter Root length (cm) Shoot length (cm) Seedling mortality (%) Na/K -0.84* -0.83* 0.88* Root length 0.95* -0.97* Shoot length -0.98* *significant at P=0.01 Post-tsunami collection of polyembryonic mangoes from Andaman Islands and their ex situ reaction 25