SlideShare a Scribd company logo
1 of 46
PV SITE DESIGN FOR MAXIMUM
ENERGY PRODUCTION –
CASE STUDIES

Lior Handelsman - VP Product Strategy &
Business Development, Founder




                                          1
Part 1: Introduction




  1. Introduction
  2. Product selection
  3. Design considerations
  4. Energy loss elimination

                               2
What is the Best Design ?


     What module to choose?
     What type of inverter to choose?
     How to best connect modules to inverters?
     What are the best string lengths?
     What size wiring to use?
     How much wiring?
     How to avoid energy losses?




                                                  3
Part 2: Product selection




  1. Introduction
  2. Product selection
  3. Design considerations
  4. Energy loss elimination

                               4
Component Selection – Selecting PV module



   Technology
   Cost
   Power mismatch
   Availability
   Bankability
   Product and Power warranty
   Degradation over time




                                 ©2010 SolarEdge
                                                   5
Component Selection – Selecting PV module
  Technical Data

Basic parameters (@25deg)
        Pmpp:          190 Wdc
        Pptc:          168.8 Wdc
        Voc:           32.8 Vdc
        Vmp:           26.7 Vdc
        Isc:           8.05 Vdc
        Imp:           7.12 Vdc
Temperature coefficients
        Pmp_t:         ‐0.49 % / ⁰C
        Voc_t:         ‐0.34 % / ⁰C
        Vmp_t:         ‐0.47 % / ⁰C
        Isc_t:         0.06 % / ⁰C
        Imp_t:         0.02 % / ⁰C

American Technical Publishers, 2007    ©2010 SolarEdge
                                                         6
Component Selection – Selecting Inverter


Central inverter or String inverter?

Advantages of String Inverters:
 Higher yields in fields with high mismatch
 Negligible loss during failure in large fields
 Simple maintenance and replacement
 Outdoor installation - protection class IP65

Advantages of Centralized Inverters:
 Higher inverter efficiency
 Less wire losses through high voltage DC cabling
 Simpler AC cabling
 Lower cost per Wp


                                    ©2010 SolarEdge
                                                      7
Case 1: Utility Scale Solar Plant

                      Waldpolenz, Germany (40MW)




                             ©2010 SolarEdge
                                                   8
Large Scale Planning - Considerations


 String Inverter vs. Centralized Inverter

 Tradeoff between space and cost
    If space is not a constraint, use lower-cost/ lower capacity
     thin-film modules to reduce costs

 Cable loss and BoS reduction
    For Centralized inverters, use combiner boxes to combine
     multiple DC string cables to thicker ones. Combiner boxes
     reduce wiring costs and power losses, simplify installation and
     contribute to improved safety of the PV array. However –
     combiner boxes increase total system cost

                              ©2010 SolarEdge
                                                                   9
Large Scale Planning - Centralized Inverter (1/2)

• 10.87MW field (~145,000 modules)
• Graphical layout represents a 1.9MW section: 26,880 x First Solar 75w modules,
  connected to a 1.9 MW inverter




        20kV Transformer per
        Inverter
                                                       Each DC cabinet:
                                                       14-16 clusters




Each 1.9MW Inverter:                                   Each cluster:
16 DC cabinets (=224 clusters x 120 modules)           12 strings x 10 modules



                                     ©2010 SolarEdge
                                                                                 10
Large Scale Planning - Centralized Inverter (2/2)




                           ©2010 SolarEdge
                                                    11
Large Scale Planning - String Inverter




                                 Each string
                                 connected to
                                 7.8kW inverter




       Each string:      1 Transformer per
       104 modules       1MW field


                           ©2010 SolarEdge
                                                  12
Case 2: Commercial Site with Limited Space

 A 100kW roof has been simulated using PVsyst
 Panel rows have been placed distanced apart to minimize inter-row shading
 The roof space is 2,000 sqm




 Kyocera KD210GH-2P modules x 210w x 480 = 100.8 kW
 48 modules per row, 10 rows, 9 m between rows

                                 ©2010 SolarEdge
                                                                              13
System Design


                        100kW system
Inverters              1 X 100kW
Modules per string     24
Strings per inverter   20




                               ©2010 SolarEdge
                                                 14
PVsyst Energy Calculation – 100kW system




                        ©2010 SolarEdge
                                           15
Case 2: Commercial Site with Limited Space
Alternative Design
 On the same roof we reduce the distance between module rows to double the
  power capacity, while increasing inter-row shading
 PVsyst design and energy calculation




 Kyocera KD210GH-2P modules x 210 x 960 = 201kW
 48 modules per row, 20 rows, 4.5 m between rows

                                ©2010 SolarEdge
                                                                         16
System Design


                        100kW system       200kW system
Inverters              1 X 100kW          1 X 200kW
Modules per string     24                 20
Strings per inverter   20                 48




                               ©2010 SolarEdge
                                                          17
Site Layout                               +
                            injection point


                  A                 B

                                               Combiner Boxes: 2
                                                (24 strings per box)

              .         .                 .    Wiring:
              .         .                 .     — String-combiner
              .         .                 .       box, total: 4640m
                                                  (DC)
                                                — Combiner boxes-

                                                  inverter: 50m (DC)




                                                                  18
                  ©2010 SolarEdge
PVsyst Energy Calculation – 200kW Partially Shaded




                        ©2010 SolarEdge
                                                     19
Comparative Analysis


                       100kW system         200kW system
    Peak power         100.8 kWp           201.6 kWp
    Combiner boxes     1                   2
    Wiring             2,000m (DC)         4,000m (DC)

    Shading loss       1.5%                11.4%
    Annual AC energy   175 MWh             306 MWh
    AC energy / sqm    87.5 kWh/m2         153 kWh/m2
    System cost*       €300,000            €590,000
    IRR                12.4%               10.5%
    LCOE (€cent/kWh)   12.62               14.06



* Estimation                      ©2010 SolarEdge
                                                           20
Part 3: Design considerations




  1. Introduction
  2. Product selection
  3. Design considerations
  4. Energy loss elimination

                                21
How to Best Combine the Modules and Inverter?
Inverter Sizing


 Consider module orientation – panels will not always be at peak
 Maximize array performance NOT maximize inverter loading
 Don’t over power the inverter !

In Israel - rated DC power should be about +3-7% of rated AC power

Going above this you will have:
 Frequent inverter power limiting
 Reduced energy yields during high irradiance




                            ©2010 SolarEdge
                                                                    22
How to Best Combine the Modules and Inverter?
Inverter Sizing – Cont.

 16
 14
 12
 10
  8
  6
  4
  2
  0




      1,000
      1,050


      1,200
      1,250
      1,300
      1,100
      1,150
        100

        200
        250
        300
        350
        400
        450

        550
        600
        650
        700
        750

        850
        900
        950
        150




        500




        800
         50




                          Irradiance (W/m 2 )

                   Energy (%)          Occurrence (%)

                         ©2010 SolarEdge
                                                        23
How to Best Combine the Modules and Inverter?
String Sizing


 What is the coldest ambient Temperature? (-8)

 Calculate the maximum voltage from the module (Voc_max)
    Voc max = Voc * ( 1+((Tamb_min – Tstc) * Voc_t)
    Voc_max=32.8Vdc+(32.8Vdc *(‐8⁰C‐25⁰C)*‐0.34%/⁰C))=36.48 Vdc


- Design the maximum string length to the coldest temperature
    Inverter Vmax=550VDC
    Maximum string length = 550VDC/36.48VDC=15 modules




                              ©2010 SolarEdge
                                                                   24
How to Best Combine the Modules and Inverter?
String Sizing


 What is the hottest ambient Temperature? (45deg)

 Cell temperature can be 25-30deg above this!

 Calculate the minimum MPP voltage of the module (Vmp_min)
    Vmp min = Vmp * ( 1+((p_ p ((Tamb – Tstc +ΔT) * Vmp_t))
    Vmp_min=26.7Vdc+(26.7*((32⁰C‐25⁰C+30⁰C)*‐0.47%/⁰C))=22.06


- Design the minimum string length to the hottest temperature
    Inverter Vmax=250VDC
    Maximum string length = 250VDC/22.06VDC=12 modules


                             ©2010 SolarEdge
                                                                 25
Logical Layout of PV Field


                   XXX panels
            YYY panels in string
                 ZZZ inverters
              Total of RRR kW




              AC distribution box




     Medium voltage transformer




                                  ©2010 SolarEdge
                                                    26
Wire Dimensioning Recommendations:



 Rule of thumb - No more than 2% wire losses
    Choose correct wire as a function of current and length

 Max. voltage drop DC - cables (STC) : ∆UDC ≤ 1%
   Too much DC voltage drop will put inverter out of MPPT in
    hot days

 Max. voltage drop AC - cables (Pn) : ∆UAC ≤ 1%
   Too Much AC voltage drop and the inverter will have frequent
    AC overvoltage disconnections



                            ©2010 SolarEdge
                                                               27
Part 4: Energy loss elimination




  1. Introduction
  2. Product selection
  3. Design considerations
  4. Energy loss elimination

                                  28
Inherent Problems in Traditional Systems

Energy Loss                                    System Drawbacks

 Module mismatch (3-5% loss)                   No module level monitoring

 Partial Shading (2-25% loss)                  Limited roof utilization

 Undervoltage/Overvoltage (0-15%)              Safety Hazards

 Dynamic MPPT loss (3-10% loss)                Theft

SolarEdge solution overcomes all energy losses
providing up to 25% more energy while solving
the other system drawbacks at a comparable
price to traditional inverters

                                 ©2010 SolarEdge
                                                                              29
SolarEdge System Overview

    Module level optimization           Module level monitoring
    Fixed voltage - ideal installation  Enhanced safety solution




                              ©2010 SolarEdge
                                                                     30
Distributed DC Architecture – Flexible Design


   No string sizing
   Parallel Strings can be of unequal length



  The Result:
     Easy to Design
     Long strings  less home-runs  reduced wiring
     Installation never passes 550VDC
     Not temperature dependent




                                ©2010 SolarEdge
                                                       31
Distributed DC Architecture – Fixed String Voltage


  Fixed inverter input voltage - at optimal inverter input
     Strings of different lengths
     Modules on multiple roof facets
     Modules with different power ratings
     Modules of different technologies


  The Result:
     Maximum roof utilization
     Easily scalable
     10%-20% savings on wiring and BoS components
     15% saving in labor


                                ©2010 SolarEdge
                                                             32
Back to case 2:
System Design – 200kW field, SolarEdge Layout

                        100kW system       200kW system        200kW
                                                              SolarEdge
Inverters              1 X 100kW          1 X 200kW       17 x SE12k
Modules per string     24                 20              56 / 57
Strings per inverter   20                 48              1




                               ©2010 SolarEdge
                                                                          33
SolarEdge Site Layout               panel board +
                                   injection point




                                                          Wiring:
                                                           — String-inverter,

                                                             total: 485m (DC)
                                                           — Inverters-
                   .           .                     .
                               .                     .       transformer: 835m
                   .
                   .           .                     .       (AC)




                        ©2010 SolarEdge
                                                                          34
PVsyst Energy Calculation – 200kW SolarEdge layout




                        ©2010 SolarEdge
                                                     35
Comparative Analysis


                   100kW system         200kW system       200kW SolarEdge
Peak power         100.8 kWp           201.6 kWp       201.6 kWp
Combiner boxes     1                   2               0
Wiring             2,000m (DC)         4,000m (DC)     330m(DC)+679m(AC)

Shading loss       1.5%                11.4%           5.2%
Annual AC energy   175 MWh             306 MWh         341 MWh
                                                       (+11.4% gain over
                                                       200kW traditional system)
AC energy / sqm    87.5 kWh/m2         153 kWh/m2      170.5 kWh/m2
System cost        €300,000            €590,000        €615,000
IRR                12.4%               10.5%           12.6%
LCOE (€cent/kWh)   12.62               14.06           11.93

                              ©2010 SolarEdge
                                                                              36
Comparative Analysis – System Cost Breakdown

       Cost of 200kW and 200kW SolarEdge system components, relative to 100kW system
        components (100%)*


                                     0%      50%   100%   150%       200%   250%


                Inverter cost

       Electrical BoS cost
     Cables, fuses, combiner boxes
                                                                                   100kW system
                   Monitoring         Included                                     200kW system
          12-year warranty                                                         200kW SolarEdge
                                      Included


       Other system costs
                 Modules, racking

         Total system cost



* Estimation                                       ©2010 SolarEdge
                                                                                                     37
Comparative Analysis


                       100kW system         200kW system       200kW SolarEdge
    Peak power         100.8 kWp           201.6 kWp       201.6 kWp
    Combiner boxes     1                   2               0
    Wiring             2,000m (DC)         4,000m (DC)     330m(DC)+679m(AC)

    Shading loss       1.5%                11.4%           5.2%
    Annual AC energy   175 MWh             306 MWh         341 MWh
                                                           (+11.4% gain over
                                                           200kW traditional system)
    AC energy / sqm    87.5 kWh/m2         153 kWh/m2      170.5 kWh/m2
    System cost*       €300,000            €590,000        €615,000
    IRR                12.4%               10.5%           12.6%
    LCOE (€cent/kWh)   12.62               14.06           11.93

* Estimation                      ©2010 SolarEdge
                                                                                  38
Case 3: Distributed DC Architecture – Enabler

  Installation on 4 roof facets enables 15kW capacity
  Different types of panels connected in a string enable full roof
   utilization




  Design and
  installation by
  Solgal Energy



                               ©2010 SolarEdge
                                                                      39
3 Types of Modules, 3 Long Strings, 4 Orientations

    25 Suntech 280W modules
    34 Suntech 210W modules
    4 Suntech 185W modules
    PowerBox per module
    3 single phase SE5000 SolarEdge inverters
    2 strings of 20 modules and 1 string of 23 modules




                               ©2010 SolarEdge
                                                          40
Full Roof Utilization Proves to be Cost Efficient

 The larger the system, the lower the cost per kWp
 Efficiency decreases in non-south-facing facets
                                       South         East     West      North     System total System average
           KWp                                 4.3        3.8       2.9       3.9         14.9
                                                       KWh/KWp /day               KWh/day      KWh/KWp/day
           January                         2.82          2.26      1.50      0.98         28.9               1.9
           February                        3.38          2.88      2.11      1.54         37.6               2.5
           March                           4.15          3.76      3.06      2.49         50.7               3.4
           April                           4.77          4.59      4.07      3.64         64.0               4.3
           May                             5.33          5.40      5.10      4.79         76.9               5.2
           June                            5.70          5.92      5.76      5.54         85.3               5.7
           July                            5.67          5.82      5.58      5.31         83.4               5.6
           August                          5.63          5.53      5.01      4.55         77.5               5.2
           September                       5.33          4.90      4.05      3.40         66.5               4.5
           October                         4.52          3.87      2.89      2.15         50.9               3.4
           November                        3.53          2.86      1.90      1.24         36.4               2.4
           December                        2.76          2.17      1.38      0.86         27.5               1.8
           Year average                    4.47          4.16      3.53      3.04         57.1               3.8
           Year total                      1630          1520     1290      1110        20853              1400
           As % of maximum potential       99%           92%      78%        67%          85%
           (1650 KWh/KWp/year)

 With total system efficiency of 85% of complete-south system, the ratio
  between system cost and system throughput remains attractive
 Average production – >5kWh / kWp per day                              41
                                                      ©2010 SolarEdge
Module Level Monitoring – Physical System Layout

                                          String 3, panels 1-20:

                                          Facet   West    West     East   East
                                          Model   210w    280w     280w   210w




                        ©2010 SolarEdge
                                                                                 42
Module Level Monitoring – Power Curves

            280w West   280w East



210w West                           210w East




                                                                  280w East
                                                                               280w West


                                                                   210w East
                                                                                210w West




                                                ©2010 SolarEdge
                                                                                            43
Module Level Monitoring – Accurate Fault Detection




                 2.1.5




 Module 2.1.5 (red
  curve) is partially
  shaded by the bottom
  right corner of the
  opposite module, as
  shown in the power
  curves


                         ©2010 SolarEdge
                                                     44
Module Level Monitoring – Accurate Fault Detection

* Before module
  re-mounting



                  2.1.5




 Underperformance of
  module 2.1.5 was
  automatically alerted
  by the system, and the
  module was
  remounted to avoid
  the shading as shown
  in the power curves

                           ©2010 SolarEdge
                                                     45
Thank you
                                       Websites:
Email: info@solaredge.com              www.solaredge.com
Twitter: www.twitter.com/SolarEdgePV   www.solaredge.de
Blog:    www.solaredge.com/blog        www.solaredge.jp

                                                           46

More Related Content

What's hot

IRJET - Efficient Energy Harvesting and Reusing System
IRJET -  	  Efficient Energy Harvesting and Reusing SystemIRJET -  	  Efficient Energy Harvesting and Reusing System
IRJET - Efficient Energy Harvesting and Reusing SystemIRJET Journal
 
MEGAMAX energy storage system
MEGAMAX energy storage systemMEGAMAX energy storage system
MEGAMAX energy storage systemfaktorgmbh
 
UKPVC 2010 Thomas Wedde - New inverter developments for solar pv in the UK
UKPVC 2010 Thomas Wedde - New inverter developments for solar pv in the UKUKPVC 2010 Thomas Wedde - New inverter developments for solar pv in the UK
UKPVC 2010 Thomas Wedde - New inverter developments for solar pv in the UKPaul van der Linden
 
Mitsubishi low voltage catalog-elcb-mitsubishi dienhathe.org
Mitsubishi low voltage catalog-elcb-mitsubishi dienhathe.orgMitsubishi low voltage catalog-elcb-mitsubishi dienhathe.org
Mitsubishi low voltage catalog-elcb-mitsubishi dienhathe.orgDien Ha The
 
08.20.24 kw.ongrid datasheet usl_06.05.2012
08.20.24 kw.ongrid datasheet usl_06.05.201208.20.24 kw.ongrid datasheet usl_06.05.2012
08.20.24 kw.ongrid datasheet usl_06.05.2012logeshkumar11
 
Low Cost Utility Solar Farms Using Supersized Modules
Low Cost Utility Solar Farms Using Supersized ModulesLow Cost Utility Solar Farms Using Supersized Modules
Low Cost Utility Solar Farms Using Supersized ModulesSmithers Apex
 
Brochure pv stand-alone
Brochure pv stand-aloneBrochure pv stand-alone
Brochure pv stand-aloneorian_Argus
 
IRJET- Photovoltaic 10MW Power Plant Simulation & Design using Mathwork &...
IRJET-  	  Photovoltaic 10MW Power Plant Simulation & Design using Mathwork &...IRJET-  	  Photovoltaic 10MW Power Plant Simulation & Design using Mathwork &...
IRJET- Photovoltaic 10MW Power Plant Simulation & Design using Mathwork &...IRJET Journal
 
Problems and Disadvantages in Current Residential & Commercial On-grid PV Sys...
Problems and Disadvantages in Current Residential & Commercial On-grid PV Sys...Problems and Disadvantages in Current Residential & Commercial On-grid PV Sys...
Problems and Disadvantages in Current Residential & Commercial On-grid PV Sys...JLanka Technologies (Pvt) Limited
 
LED Lighting - Pertamina EP - Cirebon
LED Lighting - Pertamina EP - CirebonLED Lighting - Pertamina EP - Cirebon
LED Lighting - Pertamina EP - CirebonTeuku Dalin
 
IRJET- Battery Management System by using PWM Charge Controller
IRJET- Battery Management System by using PWM Charge ControllerIRJET- Battery Management System by using PWM Charge Controller
IRJET- Battery Management System by using PWM Charge ControllerIRJET Journal
 
Photovoltaic Project
Photovoltaic ProjectPhotovoltaic Project
Photovoltaic ProjectHarry Indig
 
Krannich Solar imparte cursos de formación - Ponencia de Kaco
Krannich Solar imparte cursos de formación - Ponencia de KacoKrannich Solar imparte cursos de formación - Ponencia de Kaco
Krannich Solar imparte cursos de formación - Ponencia de KacoKrannich Solar Spain
 
Avnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar InvertersAvnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar InvertersAvnet Electronics Marketing
 
DVD Player Multiple Output Di115 2
DVD Player Multiple Output Di115 2DVD Player Multiple Output Di115 2
DVD Player Multiple Output Di115 2gueste54184
 

What's hot (18)

On grid
On gridOn grid
On grid
 
JLanka-Solar-System-vs-Conventional-Systems
JLanka-Solar-System-vs-Conventional-SystemsJLanka-Solar-System-vs-Conventional-Systems
JLanka-Solar-System-vs-Conventional-Systems
 
IRJET - Efficient Energy Harvesting and Reusing System
IRJET -  	  Efficient Energy Harvesting and Reusing SystemIRJET -  	  Efficient Energy Harvesting and Reusing System
IRJET - Efficient Energy Harvesting and Reusing System
 
MEGAMAX energy storage system
MEGAMAX energy storage systemMEGAMAX energy storage system
MEGAMAX energy storage system
 
UKPVC 2010 Thomas Wedde - New inverter developments for solar pv in the UK
UKPVC 2010 Thomas Wedde - New inverter developments for solar pv in the UKUKPVC 2010 Thomas Wedde - New inverter developments for solar pv in the UK
UKPVC 2010 Thomas Wedde - New inverter developments for solar pv in the UK
 
Mitsubishi low voltage catalog-elcb-mitsubishi dienhathe.org
Mitsubishi low voltage catalog-elcb-mitsubishi dienhathe.orgMitsubishi low voltage catalog-elcb-mitsubishi dienhathe.org
Mitsubishi low voltage catalog-elcb-mitsubishi dienhathe.org
 
08.20.24 kw.ongrid datasheet usl_06.05.2012
08.20.24 kw.ongrid datasheet usl_06.05.201208.20.24 kw.ongrid datasheet usl_06.05.2012
08.20.24 kw.ongrid datasheet usl_06.05.2012
 
Low Cost Utility Solar Farms Using Supersized Modules
Low Cost Utility Solar Farms Using Supersized ModulesLow Cost Utility Solar Farms Using Supersized Modules
Low Cost Utility Solar Farms Using Supersized Modules
 
Brochure pv stand-alone
Brochure pv stand-aloneBrochure pv stand-alone
Brochure pv stand-alone
 
IRJET- Photovoltaic 10MW Power Plant Simulation & Design using Mathwork &...
IRJET-  	  Photovoltaic 10MW Power Plant Simulation & Design using Mathwork &...IRJET-  	  Photovoltaic 10MW Power Plant Simulation & Design using Mathwork &...
IRJET- Photovoltaic 10MW Power Plant Simulation & Design using Mathwork &...
 
Problems and Disadvantages in Current Residential & Commercial On-grid PV Sys...
Problems and Disadvantages in Current Residential & Commercial On-grid PV Sys...Problems and Disadvantages in Current Residential & Commercial On-grid PV Sys...
Problems and Disadvantages in Current Residential & Commercial On-grid PV Sys...
 
LED Lighting - Pertamina EP - Cirebon
LED Lighting - Pertamina EP - CirebonLED Lighting - Pertamina EP - Cirebon
LED Lighting - Pertamina EP - Cirebon
 
IRJET- Battery Management System by using PWM Charge Controller
IRJET- Battery Management System by using PWM Charge ControllerIRJET- Battery Management System by using PWM Charge Controller
IRJET- Battery Management System by using PWM Charge Controller
 
Photovoltaic Project
Photovoltaic ProjectPhotovoltaic Project
Photovoltaic Project
 
Krannich Solar imparte cursos de formación - Ponencia de Kaco
Krannich Solar imparte cursos de formación - Ponencia de KacoKrannich Solar imparte cursos de formación - Ponencia de Kaco
Krannich Solar imparte cursos de formación - Ponencia de Kaco
 
Avnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar InvertersAvnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar Inverters
 
DVD Player Multiple Output Di115 2
DVD Player Multiple Output Di115 2DVD Player Multiple Output Di115 2
DVD Player Multiple Output Di115 2
 
49.5 k w
49.5 k w49.5 k w
49.5 k w
 

Viewers also liked

4.7 complete the square
4.7 complete the square4.7 complete the square
4.7 complete the squareNorthside ISD
 
רשות החשמל -שימוע ייצור חשמל מביוגז
רשות החשמל -שימוע ייצור חשמל מביוגזרשות החשמל -שימוע ייצור חשמל מביוגז
רשות החשמל -שימוע ייצור חשמל מביוגזTashtiot media
 
5.1.1 angles and their measures
5.1.1 angles and their measures5.1.1 angles and their measures
5.1.1 angles and their measuresNorthside ISD
 
מצגת ליאור דץ
מצגת ליאור דץ מצגת ליאור דץ
מצגת ליאור דץ Tashtiot media
 
תקן טורבינות רוח
תקן טורבינות רוח תקן טורבינות רוח
תקן טורבינות רוח Tashtiot media
 
Tashtiot medium size power stations v5
Tashtiot medium size power stations v5Tashtiot medium size power stations v5
Tashtiot medium size power stations v5Tashtiot media
 
כנס אנרגיה מתחדשת ישראל צרפת 2010
כנס אנרגיה מתחדשת ישראל צרפת 2010 כנס אנרגיה מתחדשת ישראל צרפת 2010
כנס אנרגיה מתחדשת ישראל צרפת 2010 Tashtiot media
 
Week 11 Chapters 9 & 10
Week 11 Chapters 9 & 10Week 11 Chapters 9 & 10
Week 11 Chapters 9 & 10Josh Emington
 
דור כימיקלים מתנול הדלק החלופי של ישראל 123 24.12.13
דור כימיקלים מתנול הדלק החלופי של ישראל 123 24.12.13דור כימיקלים מתנול הדלק החלופי של ישראל 123 24.12.13
דור כימיקלים מתנול הדלק החלופי של ישראל 123 24.12.13Tashtiot media
 
דירוג סביבתי של חברות התעשייה הנסחרות בבורסה
דירוג סביבתי של חברות התעשייה הנסחרות בבורסהדירוג סביבתי של חברות התעשייה הנסחרות בבורסה
דירוג סביבתי של חברות התעשייה הנסחרות בבורסהTashtiot media
 
Conservatism and physical fitness
Conservatism and physical fitnessConservatism and physical fitness
Conservatism and physical fitnessJosh Emington
 
02 006.13 finding a suitable form of financial shared services
02 006.13 finding a suitable form of financial shared services02 006.13 finding a suitable form of financial shared services
02 006.13 finding a suitable form of financial shared servicesLiesbeth Bout
 

Viewers also liked (16)

China 60
China 60   China 60
China 60
 
4.7 complete the square
4.7 complete the square4.7 complete the square
4.7 complete the square
 
רשות החשמל -שימוע ייצור חשמל מביוגז
רשות החשמל -שימוע ייצור חשמל מביוגזרשות החשמל -שימוע ייצור חשמל מביוגז
רשות החשמל -שימוע ייצור חשמל מביוגז
 
Delek natural gas
Delek natural gasDelek natural gas
Delek natural gas
 
5.1.1 angles and their measures
5.1.1 angles and their measures5.1.1 angles and their measures
5.1.1 angles and their measures
 
מצגת ליאור דץ
מצגת ליאור דץ מצגת ליאור דץ
מצגת ליאור דץ
 
תקן טורבינות רוח
תקן טורבינות רוח תקן טורבינות רוח
תקן טורבינות רוח
 
Tashtiot medium size power stations v5
Tashtiot medium size power stations v5Tashtiot medium size power stations v5
Tashtiot medium size power stations v5
 
כנס אנרגיה מתחדשת ישראל צרפת 2010
כנס אנרגיה מתחדשת ישראל צרפת 2010 כנס אנרגיה מתחדשת ישראל צרפת 2010
כנס אנרגיה מתחדשת ישראל צרפת 2010
 
Week 11 Chapters 9 & 10
Week 11 Chapters 9 & 10Week 11 Chapters 9 & 10
Week 11 Chapters 9 & 10
 
דור כימיקלים מתנול הדלק החלופי של ישראל 123 24.12.13
דור כימיקלים מתנול הדלק החלופי של ישראל 123 24.12.13דור כימיקלים מתנול הדלק החלופי של ישראל 123 24.12.13
דור כימיקלים מתנול הדלק החלופי של ישראל 123 24.12.13
 
♫♫♫♫ Photo _ Mix ♫♫♫♫
♫♫♫♫  Photo _ Mix  ♫♫♫♫♫♫♫♫  Photo _ Mix  ♫♫♫♫
♫♫♫♫ Photo _ Mix ♫♫♫♫
 
דירוג סביבתי של חברות התעשייה הנסחרות בבורסה
דירוג סביבתי של חברות התעשייה הנסחרות בבורסהדירוג סביבתי של חברות התעשייה הנסחרות בבורסה
דירוג סביבתי של חברות התעשייה הנסחרות בבורסה
 
Italy
ItalyItaly
Italy
 
Conservatism and physical fitness
Conservatism and physical fitnessConservatism and physical fitness
Conservatism and physical fitness
 
02 006.13 finding a suitable form of financial shared services
02 006.13 finding a suitable form of financial shared services02 006.13 finding a suitable form of financial shared services
02 006.13 finding a suitable form of financial shared services
 

Similar to סולאראדג' - תכנון מערכות סולאריות לתשואה מירבית

Infineon-Infineon_DC_EV_Charging_Trends_and_system_solutions-ApplicationPrese...
Infineon-Infineon_DC_EV_Charging_Trends_and_system_solutions-ApplicationPrese...Infineon-Infineon_DC_EV_Charging_Trends_and_system_solutions-ApplicationPrese...
Infineon-Infineon_DC_EV_Charging_Trends_and_system_solutions-ApplicationPrese...IEABODI2SnVVnGimcEAI
 
Paineis Solares InstalaçAo
Paineis Solares InstalaçAoPaineis Solares InstalaçAo
Paineis Solares InstalaçAocentauro
 
Cs electric product information for micro grid concept power for all 24 x7 (...
Cs electric product information for micro grid concept power for all  24 x7 (...Cs electric product information for micro grid concept power for all  24 x7 (...
Cs electric product information for micro grid concept power for all 24 x7 (...Mahesh Chandra Manav
 
NORDAC Energy saving with inverter
NORDAC Energy saving with inverterNORDAC Energy saving with inverter
NORDAC Energy saving with inverterTevfik AKKUŞ
 
Photovoltaic Training Course - Module 1.2 choosing components
Photovoltaic Training Course - Module 1.2 choosing componentsPhotovoltaic Training Course - Module 1.2 choosing components
Photovoltaic Training Course - Module 1.2 choosing componentsLeonardo ENERGY
 
PV SYSTEMS, COMPONENTS DEVICES AND APPLICATIONS.ppt
PV SYSTEMS, COMPONENTS DEVICES AND APPLICATIONS.pptPV SYSTEMS, COMPONENTS DEVICES AND APPLICATIONS.ppt
PV SYSTEMS, COMPONENTS DEVICES AND APPLICATIONS.pptArpoMukherjee1
 
Optimizing Commercial Solar PV Systems : How much energy lost from Partial Sh...
Optimizing Commercial Solar PV Systems : How much energy lost from Partial Sh...Optimizing Commercial Solar PV Systems : How much energy lost from Partial Sh...
Optimizing Commercial Solar PV Systems : How much energy lost from Partial Sh...JLanka Technologies (Pvt) Limited
 
Ornate Solar x Solar Edge
Ornate Solar x Solar Edge Ornate Solar x Solar Edge
Ornate Solar x Solar Edge Ornate Solar
 
Iaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd Iaetsd
 
25 KWp SOLAR POWER PLANT IN BIET
25 KWp SOLAR POWER PLANT IN BIET25 KWp SOLAR POWER PLANT IN BIET
25 KWp SOLAR POWER PLANT IN BIETsuraj chowdhury
 
17 mse011 solar inverter
17 mse011 solar inverter17 mse011 solar inverter
17 mse011 solar inverterpaneliya sagar
 
Nidec asi wind farm applications
Nidec asi wind farm applicationsNidec asi wind farm applications
Nidec asi wind farm applicationsNidec Corporation
 
Applying Digital Isolators in Motor Control
Applying Digital Isolators in Motor ControlApplying Digital Isolators in Motor Control
Applying Digital Isolators in Motor ControlAnalog Devices, Inc.
 
RELINK - benefit of micro inverters
RELINK - benefit of micro invertersRELINK - benefit of micro inverters
RELINK - benefit of micro invertersMarco Achilli
 
Eesat 2017 Yunasko by Sergii Tychina
Eesat 2017 Yunasko by Sergii TychinaEesat 2017 Yunasko by Sergii Tychina
Eesat 2017 Yunasko by Sergii TychinaYunasko
 
presentations for the project of solar energy
presentations for the project of solar energypresentations for the project of solar energy
presentations for the project of solar energyH2SO43
 
Transformerless inverters with thin film technology-Danfoss thin film and pid...
Transformerless inverters with thin film technology-Danfoss thin film and pid...Transformerless inverters with thin film technology-Danfoss thin film and pid...
Transformerless inverters with thin film technology-Danfoss thin film and pid...Andreas ILIOU - Elektro- Solar
 

Similar to סולאראדג' - תכנון מערכות סולאריות לתשואה מירבית (20)

Infineon-Infineon_DC_EV_Charging_Trends_and_system_solutions-ApplicationPrese...
Infineon-Infineon_DC_EV_Charging_Trends_and_system_solutions-ApplicationPrese...Infineon-Infineon_DC_EV_Charging_Trends_and_system_solutions-ApplicationPrese...
Infineon-Infineon_DC_EV_Charging_Trends_and_system_solutions-ApplicationPrese...
 
Paineis Solares InstalaçAo
Paineis Solares InstalaçAoPaineis Solares InstalaçAo
Paineis Solares InstalaçAo
 
Cs electric product information for micro grid concept power for all 24 x7 (...
Cs electric product information for micro grid concept power for all  24 x7 (...Cs electric product information for micro grid concept power for all  24 x7 (...
Cs electric product information for micro grid concept power for all 24 x7 (...
 
NORDAC Energy saving with inverter
NORDAC Energy saving with inverterNORDAC Energy saving with inverter
NORDAC Energy saving with inverter
 
Solar system design
Solar system designSolar system design
Solar system design
 
Solar ppt
Solar pptSolar ppt
Solar ppt
 
Photovoltaic Training Course - Module 1.2 choosing components
Photovoltaic Training Course - Module 1.2 choosing componentsPhotovoltaic Training Course - Module 1.2 choosing components
Photovoltaic Training Course - Module 1.2 choosing components
 
PV SYSTEMS, COMPONENTS DEVICES AND APPLICATIONS.ppt
PV SYSTEMS, COMPONENTS DEVICES AND APPLICATIONS.pptPV SYSTEMS, COMPONENTS DEVICES AND APPLICATIONS.ppt
PV SYSTEMS, COMPONENTS DEVICES AND APPLICATIONS.ppt
 
Optimizing Commercial Solar PV Systems : How much energy lost from Partial Sh...
Optimizing Commercial Solar PV Systems : How much energy lost from Partial Sh...Optimizing Commercial Solar PV Systems : How much energy lost from Partial Sh...
Optimizing Commercial Solar PV Systems : How much energy lost from Partial Sh...
 
Ornate Solar x Solar Edge
Ornate Solar x Solar Edge Ornate Solar x Solar Edge
Ornate Solar x Solar Edge
 
Iaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysis
 
25 KWp SOLAR POWER PLANT IN BIET
25 KWp SOLAR POWER PLANT IN BIET25 KWp SOLAR POWER PLANT IN BIET
25 KWp SOLAR POWER PLANT IN BIET
 
17 mse011 solar inverter
17 mse011 solar inverter17 mse011 solar inverter
17 mse011 solar inverter
 
Nidec asi wind farm applications
Nidec asi wind farm applicationsNidec asi wind farm applications
Nidec asi wind farm applications
 
Solar Barge
Solar BargeSolar Barge
Solar Barge
 
Applying Digital Isolators in Motor Control
Applying Digital Isolators in Motor ControlApplying Digital Isolators in Motor Control
Applying Digital Isolators in Motor Control
 
RELINK - benefit of micro inverters
RELINK - benefit of micro invertersRELINK - benefit of micro inverters
RELINK - benefit of micro inverters
 
Eesat 2017 Yunasko by Sergii Tychina
Eesat 2017 Yunasko by Sergii TychinaEesat 2017 Yunasko by Sergii Tychina
Eesat 2017 Yunasko by Sergii Tychina
 
presentations for the project of solar energy
presentations for the project of solar energypresentations for the project of solar energy
presentations for the project of solar energy
 
Transformerless inverters with thin film technology-Danfoss thin film and pid...
Transformerless inverters with thin film technology-Danfoss thin film and pid...Transformerless inverters with thin film technology-Danfoss thin film and pid...
Transformerless inverters with thin film technology-Danfoss thin film and pid...
 

More from Tashtiot media

סקירה תקופתית - מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
סקירה תקופתית - מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראלסקירה תקופתית - מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
סקירה תקופתית - מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראלTashtiot media
 
הזמנה לכנס צרכני גז טבעי באזור ירושלים
הזמנה לכנס צרכני גז טבעי באזור ירושליםהזמנה לכנס צרכני גז טבעי באזור ירושלים
הזמנה לכנס צרכני גז טבעי באזור ירושליםTashtiot media
 
עקרונות ההליך התחרותי להקמת מתקנים סולאריים
עקרונות ההליך התחרותי להקמת מתקנים סולארייםעקרונות ההליך התחרותי להקמת מתקנים סולאריים
עקרונות ההליך התחרותי להקמת מתקנים סולארייםTashtiot media
 
סקירה תקופתית: מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
סקירה תקופתית: מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראלסקירה תקופתית: מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
סקירה תקופתית: מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראלTashtiot media
 
סופר אנ.ג'י עדכון לוחות זמנים רשת החלוקה
סופר אנ.ג'י עדכון לוחות זמנים רשת החלוקה  סופר אנ.ג'י עדכון לוחות זמנים רשת החלוקה
סופר אנ.ג'י עדכון לוחות זמנים רשת החלוקה Tashtiot media
 
כיבוי אש מתקן גז טבעי דחוס
כיבוי אש מתקן גז טבעי דחוסכיבוי אש מתקן גז טבעי דחוס
כיבוי אש מתקן גז טבעי דחוסTashtiot media
 
מצגת סיכום גיבוש יעד לאומי
מצגת סיכום   גיבוש יעד לאומימצגת סיכום   גיבוש יעד לאומי
מצגת סיכום גיבוש יעד לאומיTashtiot media
 
מכתב ראש העיר לתעשיינים מכנס טלמניה
מכתב ראש העיר לתעשיינים מכנס טלמניהמכתב ראש העיר לתעשיינים מכנס טלמניה
מכתב ראש העיר לתעשיינים מכנס טלמניהTashtiot media
 
דורון הראל היתכנות טכנו כלכלית ליישום גנרצייה עצמית במפעלים
דורון הראל   היתכנות טכנו כלכלית ליישום גנרצייה עצמית במפעליםדורון הראל   היתכנות טכנו כלכלית ליישום גנרצייה עצמית במפעלים
דורון הראל היתכנות טכנו כלכלית ליישום גנרצייה עצמית במפעליםTashtiot media
 
שניב תאור פרויקט כנס קוגנרציה מאי 2015
שניב   תאור פרויקט כנס קוגנרציה מאי 2015שניב   תאור פרויקט כנס קוגנרציה מאי 2015
שניב תאור פרויקט כנס קוגנרציה מאי 2015Tashtiot media
 
גיא זילברמן קוגנרציה ואופקים למשלוח
גיא זילברמן קוגנרציה ואופקים  למשלוחגיא זילברמן קוגנרציה ואופקים  למשלוח
גיא זילברמן קוגנרציה ואופקים למשלוחTashtiot media
 
38878 nga hdd guidelines rev. p0
38878   nga hdd guidelines rev. p0 38878   nga hdd guidelines rev. p0
38878 nga hdd guidelines rev. p0 Tashtiot media
 
סקירת השפעת עיכוב פיתוח מאגר לוויתן ותקלה בהזרמת הגז ממאגר תמר פברואר E
סקירת השפעת עיכוב פיתוח מאגר לוויתן ותקלה בהזרמת הגז ממאגר תמר   פברואר Eסקירת השפעת עיכוב פיתוח מאגר לוויתן ותקלה בהזרמת הגז ממאגר תמר   פברואר E
סקירת השפעת עיכוב פיתוח מאגר לוויתן ותקלה בהזרמת הגז ממאגר תמר פברואר ETashtiot media
 
מכתב מרשות החשמל לבקרה אצל המחלק
מכתב מרשות החשמל לבקרה אצל המחלקמכתב מרשות החשמל לבקרה אצל המחלק
מכתב מרשות החשמל לבקרה אצל המחלקTashtiot media
 
תגובה לרשות החשמל
תגובה לרשות החשמלתגובה לרשות החשמל
תגובה לרשות החשמלTashtiot media
 
Iec accessibility 2014 (1)
Iec accessibility 2014 (1)Iec accessibility 2014 (1)
Iec accessibility 2014 (1)Tashtiot media
 

More from Tashtiot media (20)

סקירה תקופתית - מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
סקירה תקופתית - מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראלסקירה תקופתית - מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
סקירה תקופתית - מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
 
הזמנה לכנס צרכני גז טבעי באזור ירושלים
הזמנה לכנס צרכני גז טבעי באזור ירושליםהזמנה לכנס צרכני גז טבעי באזור ירושלים
הזמנה לכנס צרכני גז טבעי באזור ירושלים
 
עקרונות ההליך התחרותי להקמת מתקנים סולאריים
עקרונות ההליך התחרותי להקמת מתקנים סולארייםעקרונות ההליך התחרותי להקמת מתקנים סולאריים
עקרונות ההליך התחרותי להקמת מתקנים סולאריים
 
Edison
EdisonEdison
Edison
 
סקירה תקופתית: מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
סקירה תקופתית: מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראלסקירה תקופתית: מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
סקירה תקופתית: מדיניות ורגולציה בתחומי הגז הטבעי והנפט בישראל
 
סופר אנ.ג'י עדכון לוחות זמנים רשת החלוקה
סופר אנ.ג'י עדכון לוחות זמנים רשת החלוקה  סופר אנ.ג'י עדכון לוחות זמנים רשת החלוקה
סופר אנ.ג'י עדכון לוחות זמנים רשת החלוקה
 
כיבוי אש מתקן גז טבעי דחוס
כיבוי אש מתקן גז טבעי דחוסכיבוי אש מתקן גז טבעי דחוס
כיבוי אש מתקן גז טבעי דחוס
 
מצגת סיכום גיבוש יעד לאומי
מצגת סיכום   גיבוש יעד לאומימצגת סיכום   גיבוש יעד לאומי
מצגת סיכום גיבוש יעד לאומי
 
מכתב ראש העיר לתעשיינים מכנס טלמניה
מכתב ראש העיר לתעשיינים מכנס טלמניהמכתב ראש העיר לתעשיינים מכנס טלמניה
מכתב ראש העיר לתעשיינים מכנס טלמניה
 
דורון הראל היתכנות טכנו כלכלית ליישום גנרצייה עצמית במפעלים
דורון הראל   היתכנות טכנו כלכלית ליישום גנרצייה עצמית במפעליםדורון הראל   היתכנות טכנו כלכלית ליישום גנרצייה עצמית במפעלים
דורון הראל היתכנות טכנו כלכלית ליישום גנרצייה עצמית במפעלים
 
שניב תאור פרויקט כנס קוגנרציה מאי 2015
שניב   תאור פרויקט כנס קוגנרציה מאי 2015שניב   תאור פרויקט כנס קוגנרציה מאי 2015
שניב תאור פרויקט כנס קוגנרציה מאי 2015
 
גיא זילברמן קוגנרציה ואופקים למשלוח
גיא זילברמן קוגנרציה ואופקים  למשלוחגיא זילברמן קוגנרציה ואופקים  למשלוח
גיא זילברמן קוגנרציה ואופקים למשלוח
 
38878 nga hdd guidelines rev. p0
38878   nga hdd guidelines rev. p0 38878   nga hdd guidelines rev. p0
38878 nga hdd guidelines rev. p0
 
סקירת השפעת עיכוב פיתוח מאגר לוויתן ותקלה בהזרמת הגז ממאגר תמר פברואר E
סקירת השפעת עיכוב פיתוח מאגר לוויתן ותקלה בהזרמת הגז ממאגר תמר   פברואר Eסקירת השפעת עיכוב פיתוח מאגר לוויתן ותקלה בהזרמת הגז ממאגר תמר   פברואר E
סקירת השפעת עיכוב פיתוח מאגר לוויתן ותקלה בהזרמת הגז ממאגר תמר פברואר E
 
Img 222163605
Img 222163605Img 222163605
Img 222163605
 
מכתב מרשות החשמל לבקרה אצל המחלק
מכתב מרשות החשמל לבקרה אצל המחלקמכתב מרשות החשמל לבקרה אצל המחלק
מכתב מרשות החשמל לבקרה אצל המחלק
 
תגובה לרשות החשמל
תגובה לרשות החשמלתגובה לרשות החשמל
תגובה לרשות החשמל
 
Iec accessibility 2014 (1)
Iec accessibility 2014 (1)Iec accessibility 2014 (1)
Iec accessibility 2014 (1)
 
205 ver-4
205 ver-4205 ver-4
205 ver-4
 
Fullreport 2
Fullreport 2Fullreport 2
Fullreport 2
 

סולאראדג' - תכנון מערכות סולאריות לתשואה מירבית

  • 1. PV SITE DESIGN FOR MAXIMUM ENERGY PRODUCTION – CASE STUDIES Lior Handelsman - VP Product Strategy & Business Development, Founder 1
  • 2. Part 1: Introduction 1. Introduction 2. Product selection 3. Design considerations 4. Energy loss elimination 2
  • 3. What is the Best Design ?  What module to choose?  What type of inverter to choose?  How to best connect modules to inverters?  What are the best string lengths?  What size wiring to use?  How much wiring?  How to avoid energy losses? 3
  • 4. Part 2: Product selection 1. Introduction 2. Product selection 3. Design considerations 4. Energy loss elimination 4
  • 5. Component Selection – Selecting PV module  Technology  Cost  Power mismatch  Availability  Bankability  Product and Power warranty  Degradation over time ©2010 SolarEdge 5
  • 6. Component Selection – Selecting PV module Technical Data Basic parameters (@25deg)  Pmpp: 190 Wdc  Pptc: 168.8 Wdc  Voc: 32.8 Vdc  Vmp: 26.7 Vdc  Isc: 8.05 Vdc  Imp: 7.12 Vdc Temperature coefficients  Pmp_t: ‐0.49 % / ⁰C  Voc_t: ‐0.34 % / ⁰C  Vmp_t: ‐0.47 % / ⁰C  Isc_t: 0.06 % / ⁰C  Imp_t: 0.02 % / ⁰C American Technical Publishers, 2007 ©2010 SolarEdge 6
  • 7. Component Selection – Selecting Inverter Central inverter or String inverter? Advantages of String Inverters:  Higher yields in fields with high mismatch  Negligible loss during failure in large fields  Simple maintenance and replacement  Outdoor installation - protection class IP65 Advantages of Centralized Inverters:  Higher inverter efficiency  Less wire losses through high voltage DC cabling  Simpler AC cabling  Lower cost per Wp ©2010 SolarEdge 7
  • 8. Case 1: Utility Scale Solar Plant Waldpolenz, Germany (40MW) ©2010 SolarEdge 8
  • 9. Large Scale Planning - Considerations  String Inverter vs. Centralized Inverter  Tradeoff between space and cost  If space is not a constraint, use lower-cost/ lower capacity thin-film modules to reduce costs  Cable loss and BoS reduction  For Centralized inverters, use combiner boxes to combine multiple DC string cables to thicker ones. Combiner boxes reduce wiring costs and power losses, simplify installation and contribute to improved safety of the PV array. However – combiner boxes increase total system cost ©2010 SolarEdge 9
  • 10. Large Scale Planning - Centralized Inverter (1/2) • 10.87MW field (~145,000 modules) • Graphical layout represents a 1.9MW section: 26,880 x First Solar 75w modules, connected to a 1.9 MW inverter 20kV Transformer per Inverter Each DC cabinet: 14-16 clusters Each 1.9MW Inverter: Each cluster: 16 DC cabinets (=224 clusters x 120 modules) 12 strings x 10 modules ©2010 SolarEdge 10
  • 11. Large Scale Planning - Centralized Inverter (2/2) ©2010 SolarEdge 11
  • 12. Large Scale Planning - String Inverter Each string connected to 7.8kW inverter Each string: 1 Transformer per 104 modules 1MW field ©2010 SolarEdge 12
  • 13. Case 2: Commercial Site with Limited Space  A 100kW roof has been simulated using PVsyst  Panel rows have been placed distanced apart to minimize inter-row shading  The roof space is 2,000 sqm  Kyocera KD210GH-2P modules x 210w x 480 = 100.8 kW  48 modules per row, 10 rows, 9 m between rows ©2010 SolarEdge 13
  • 14. System Design 100kW system Inverters 1 X 100kW Modules per string 24 Strings per inverter 20 ©2010 SolarEdge 14
  • 15. PVsyst Energy Calculation – 100kW system ©2010 SolarEdge 15
  • 16. Case 2: Commercial Site with Limited Space Alternative Design  On the same roof we reduce the distance between module rows to double the power capacity, while increasing inter-row shading  PVsyst design and energy calculation  Kyocera KD210GH-2P modules x 210 x 960 = 201kW  48 modules per row, 20 rows, 4.5 m between rows ©2010 SolarEdge 16
  • 17. System Design 100kW system 200kW system Inverters 1 X 100kW 1 X 200kW Modules per string 24 20 Strings per inverter 20 48 ©2010 SolarEdge 17
  • 18. Site Layout + injection point A B  Combiner Boxes: 2 (24 strings per box) . . .  Wiring: . . . — String-combiner . . . box, total: 4640m (DC) — Combiner boxes- inverter: 50m (DC) 18 ©2010 SolarEdge
  • 19. PVsyst Energy Calculation – 200kW Partially Shaded ©2010 SolarEdge 19
  • 20. Comparative Analysis 100kW system 200kW system Peak power 100.8 kWp 201.6 kWp Combiner boxes 1 2 Wiring 2,000m (DC) 4,000m (DC) Shading loss 1.5% 11.4% Annual AC energy 175 MWh 306 MWh AC energy / sqm 87.5 kWh/m2 153 kWh/m2 System cost* €300,000 €590,000 IRR 12.4% 10.5% LCOE (€cent/kWh) 12.62 14.06 * Estimation ©2010 SolarEdge 20
  • 21. Part 3: Design considerations 1. Introduction 2. Product selection 3. Design considerations 4. Energy loss elimination 21
  • 22. How to Best Combine the Modules and Inverter? Inverter Sizing  Consider module orientation – panels will not always be at peak  Maximize array performance NOT maximize inverter loading  Don’t over power the inverter ! In Israel - rated DC power should be about +3-7% of rated AC power Going above this you will have:  Frequent inverter power limiting  Reduced energy yields during high irradiance ©2010 SolarEdge 22
  • 23. How to Best Combine the Modules and Inverter? Inverter Sizing – Cont. 16 14 12 10 8 6 4 2 0 1,000 1,050 1,200 1,250 1,300 1,100 1,150 100 200 250 300 350 400 450 550 600 650 700 750 850 900 950 150 500 800 50 Irradiance (W/m 2 ) Energy (%) Occurrence (%) ©2010 SolarEdge 23
  • 24. How to Best Combine the Modules and Inverter? String Sizing  What is the coldest ambient Temperature? (-8)  Calculate the maximum voltage from the module (Voc_max)  Voc max = Voc * ( 1+((Tamb_min – Tstc) * Voc_t)  Voc_max=32.8Vdc+(32.8Vdc *(‐8⁰C‐25⁰C)*‐0.34%/⁰C))=36.48 Vdc - Design the maximum string length to the coldest temperature  Inverter Vmax=550VDC  Maximum string length = 550VDC/36.48VDC=15 modules ©2010 SolarEdge 24
  • 25. How to Best Combine the Modules and Inverter? String Sizing  What is the hottest ambient Temperature? (45deg)  Cell temperature can be 25-30deg above this!  Calculate the minimum MPP voltage of the module (Vmp_min)  Vmp min = Vmp * ( 1+((p_ p ((Tamb – Tstc +ΔT) * Vmp_t))  Vmp_min=26.7Vdc+(26.7*((32⁰C‐25⁰C+30⁰C)*‐0.47%/⁰C))=22.06 - Design the minimum string length to the hottest temperature  Inverter Vmax=250VDC  Maximum string length = 250VDC/22.06VDC=12 modules ©2010 SolarEdge 25
  • 26. Logical Layout of PV Field XXX panels YYY panels in string ZZZ inverters Total of RRR kW AC distribution box Medium voltage transformer ©2010 SolarEdge 26
  • 27. Wire Dimensioning Recommendations:  Rule of thumb - No more than 2% wire losses  Choose correct wire as a function of current and length  Max. voltage drop DC - cables (STC) : ∆UDC ≤ 1%  Too much DC voltage drop will put inverter out of MPPT in hot days  Max. voltage drop AC - cables (Pn) : ∆UAC ≤ 1%  Too Much AC voltage drop and the inverter will have frequent AC overvoltage disconnections ©2010 SolarEdge 27
  • 28. Part 4: Energy loss elimination 1. Introduction 2. Product selection 3. Design considerations 4. Energy loss elimination 28
  • 29. Inherent Problems in Traditional Systems Energy Loss System Drawbacks  Module mismatch (3-5% loss)  No module level monitoring  Partial Shading (2-25% loss)  Limited roof utilization  Undervoltage/Overvoltage (0-15%)  Safety Hazards  Dynamic MPPT loss (3-10% loss)  Theft SolarEdge solution overcomes all energy losses providing up to 25% more energy while solving the other system drawbacks at a comparable price to traditional inverters ©2010 SolarEdge 29
  • 30. SolarEdge System Overview  Module level optimization  Module level monitoring  Fixed voltage - ideal installation  Enhanced safety solution ©2010 SolarEdge 30
  • 31. Distributed DC Architecture – Flexible Design  No string sizing  Parallel Strings can be of unequal length The Result:  Easy to Design  Long strings  less home-runs  reduced wiring  Installation never passes 550VDC  Not temperature dependent ©2010 SolarEdge 31
  • 32. Distributed DC Architecture – Fixed String Voltage Fixed inverter input voltage - at optimal inverter input  Strings of different lengths  Modules on multiple roof facets  Modules with different power ratings  Modules of different technologies The Result:  Maximum roof utilization  Easily scalable  10%-20% savings on wiring and BoS components  15% saving in labor ©2010 SolarEdge 32
  • 33. Back to case 2: System Design – 200kW field, SolarEdge Layout 100kW system 200kW system 200kW SolarEdge Inverters 1 X 100kW 1 X 200kW 17 x SE12k Modules per string 24 20 56 / 57 Strings per inverter 20 48 1 ©2010 SolarEdge 33
  • 34. SolarEdge Site Layout panel board + injection point  Wiring: — String-inverter, total: 485m (DC) — Inverters- . . . . . transformer: 835m . . . . (AC) ©2010 SolarEdge 34
  • 35. PVsyst Energy Calculation – 200kW SolarEdge layout ©2010 SolarEdge 35
  • 36. Comparative Analysis 100kW system 200kW system 200kW SolarEdge Peak power 100.8 kWp 201.6 kWp 201.6 kWp Combiner boxes 1 2 0 Wiring 2,000m (DC) 4,000m (DC) 330m(DC)+679m(AC) Shading loss 1.5% 11.4% 5.2% Annual AC energy 175 MWh 306 MWh 341 MWh (+11.4% gain over 200kW traditional system) AC energy / sqm 87.5 kWh/m2 153 kWh/m2 170.5 kWh/m2 System cost €300,000 €590,000 €615,000 IRR 12.4% 10.5% 12.6% LCOE (€cent/kWh) 12.62 14.06 11.93 ©2010 SolarEdge 36
  • 37. Comparative Analysis – System Cost Breakdown  Cost of 200kW and 200kW SolarEdge system components, relative to 100kW system components (100%)* 0% 50% 100% 150% 200% 250% Inverter cost Electrical BoS cost Cables, fuses, combiner boxes 100kW system Monitoring Included 200kW system 12-year warranty 200kW SolarEdge Included Other system costs Modules, racking Total system cost * Estimation ©2010 SolarEdge 37
  • 38. Comparative Analysis 100kW system 200kW system 200kW SolarEdge Peak power 100.8 kWp 201.6 kWp 201.6 kWp Combiner boxes 1 2 0 Wiring 2,000m (DC) 4,000m (DC) 330m(DC)+679m(AC) Shading loss 1.5% 11.4% 5.2% Annual AC energy 175 MWh 306 MWh 341 MWh (+11.4% gain over 200kW traditional system) AC energy / sqm 87.5 kWh/m2 153 kWh/m2 170.5 kWh/m2 System cost* €300,000 €590,000 €615,000 IRR 12.4% 10.5% 12.6% LCOE (€cent/kWh) 12.62 14.06 11.93 * Estimation ©2010 SolarEdge 38
  • 39. Case 3: Distributed DC Architecture – Enabler  Installation on 4 roof facets enables 15kW capacity  Different types of panels connected in a string enable full roof utilization Design and installation by Solgal Energy ©2010 SolarEdge 39
  • 40. 3 Types of Modules, 3 Long Strings, 4 Orientations  25 Suntech 280W modules  34 Suntech 210W modules  4 Suntech 185W modules  PowerBox per module  3 single phase SE5000 SolarEdge inverters  2 strings of 20 modules and 1 string of 23 modules ©2010 SolarEdge 40
  • 41. Full Roof Utilization Proves to be Cost Efficient  The larger the system, the lower the cost per kWp  Efficiency decreases in non-south-facing facets South East West North System total System average KWp 4.3 3.8 2.9 3.9 14.9 KWh/KWp /day KWh/day KWh/KWp/day January 2.82 2.26 1.50 0.98 28.9 1.9 February 3.38 2.88 2.11 1.54 37.6 2.5 March 4.15 3.76 3.06 2.49 50.7 3.4 April 4.77 4.59 4.07 3.64 64.0 4.3 May 5.33 5.40 5.10 4.79 76.9 5.2 June 5.70 5.92 5.76 5.54 85.3 5.7 July 5.67 5.82 5.58 5.31 83.4 5.6 August 5.63 5.53 5.01 4.55 77.5 5.2 September 5.33 4.90 4.05 3.40 66.5 4.5 October 4.52 3.87 2.89 2.15 50.9 3.4 November 3.53 2.86 1.90 1.24 36.4 2.4 December 2.76 2.17 1.38 0.86 27.5 1.8 Year average 4.47 4.16 3.53 3.04 57.1 3.8 Year total 1630 1520 1290 1110 20853 1400 As % of maximum potential 99% 92% 78% 67% 85% (1650 KWh/KWp/year)  With total system efficiency of 85% of complete-south system, the ratio between system cost and system throughput remains attractive  Average production – >5kWh / kWp per day 41 ©2010 SolarEdge
  • 42. Module Level Monitoring – Physical System Layout String 3, panels 1-20: Facet West West East East Model 210w 280w 280w 210w ©2010 SolarEdge 42
  • 43. Module Level Monitoring – Power Curves 280w West 280w East 210w West 210w East 280w East 280w West 210w East 210w West ©2010 SolarEdge 43
  • 44. Module Level Monitoring – Accurate Fault Detection 2.1.5  Module 2.1.5 (red curve) is partially shaded by the bottom right corner of the opposite module, as shown in the power curves ©2010 SolarEdge 44
  • 45. Module Level Monitoring – Accurate Fault Detection * Before module re-mounting 2.1.5  Underperformance of module 2.1.5 was automatically alerted by the system, and the module was remounted to avoid the shading as shown in the power curves ©2010 SolarEdge 45
  • 46. Thank you Websites: Email: info@solaredge.com www.solaredge.com Twitter: www.twitter.com/SolarEdgePV www.solaredge.de Blog: www.solaredge.com/blog www.solaredge.jp 46