Instrumentation et Régulation − Normes et Applications Page 1/70
Cours de DU CII
Université du Havre, Mai 2012.
Instrument...
Instrumentation et Régulation − Normes et Applications Page 2/70
Plan
I) Introduction
♦ Contrôle des procédés
♦ Grandeurs ...
Instrumentation et Régulation − Normes et Applications Page 3/70
Plan
I) Introduction
♦ Contrôle des procédés
♦ Grandeurs ...
Instrumentation et Régulation − Normes et Applications Page 4/70
ActionRéflexion
Observation
Progression
/ Résultats
Procé...
Instrumentation et Régulation − Normes et Applications Page 5/70
♦ Le système de référence mks repose sur sept unités impo...
Instrumentation et Régulation − Normes et Applications Page 6/70
♦ Le système de référence mks repose sur sept unités impo...
Instrumentation et Régulation − Normes et Applications Page 7/70
♦ Etalonnage :
Mesurer, c’est comparer sa mesure par rapp...
Instrumentation et Régulation − Normes et Applications Page 8/70
♦ Mesurande:
La grandeur physique objet de la mesure (tem...
Instrumentation et Régulation − Normes et Applications Page 9/70
♦ Température:
Dans la notice d’un multimètre de haute pr...
Instrumentation et Régulation − Normes et Applications Page 10/70
Plan
I) Introduction
♦ Contrôle des procédés
♦ Grandeurs...
Instrumentation et Régulation − Normes et Applications Page 11/70
♦ Définition:
Un capteur est un organe de prélèvement d'...
Instrumentation et Régulation − Normes et Applications Page 12/70
Température →→→→ Caractéristiques électriques, mécanique...
Instrumentation et Régulation − Normes et Applications Page 13/70
• Capteur passif:
Il est en général associés à une sourc...
Instrumentation et Régulation − Normes et Applications Page 14/70
Mesurande Effet utilisé Grandeur de sortie
Température T...
Instrumentation et Régulation − Normes et Applications Page 15/70
Mesurande Caractéristique
électrique sensible
Matériaux
...
Instrumentation et Régulation − Normes et Applications Page 16/70
♦ Constitution:
Un capteur est le premier élément de la ...
Instrumentation et Régulation − Normes et Applications Page 17/70
♦ Définition:
D’après la norme NF C 46-303, un transmett...
Instrumentation et Régulation − Normes et Applications Page 18/70
Capteur : Organe chargé de prélever une grandeur physiqu...
Instrumentation et Régulation − Normes et Applications Page 19/70
e(t)
t
s(t)
t
Capteur
e(t)
s(t)
Courbe d’étalonnage ou c...
Instrumentation et Régulation − Normes et Applications Page 20/70
Etalonnage Validité d’un étalonnage:
s
e
s = f(e)
La rép...
Instrumentation et Régulation − Normes et Applications Page 21/70
Sensibilité d’un capteur
ee0
s
∆e
∆s
- réponse linéaire ...
Instrumentation et Régulation − Normes et Applications Page 22/70
2) Caractéristiques: Définitions
II) Capteurs
T (°C)
−20...
Instrumentation et Régulation − Normes et Applications Page 23/70
Grandeur à mesurer
Grandeurd’influence
Domaine Nominal
d...
Instrumentation et Régulation − Normes et Applications Page 24/70
Grandeur à mesurer
Grandeurd’influence
Domaine de Non Dé...
Instrumentation et Régulation − Normes et Applications Page 25/70
Domaine de Non Destruction
DNDestruction : les caractéri...
Instrumentation et Régulation − Normes et Applications Page 26/70
• Erreur de mesure: Ecart entre valeur mesurée et valeur...
Instrumentation et Régulation − Normes et Applications Page 27/70
• Fidélité: Aptitude d ’un instrument à donner des indic...
Instrumentation et Régulation − Normes et Applications Page 28/70
♦ Exemple:
Capteur-transmetteur de température à entrée ...
Instrumentation et Régulation − Normes et Applications Page 29/70
♦ Transmetteur universel: intégré ou déporté
Le capteur ...
Instrumentation et Régulation − Normes et Applications Page 30/70
♦ Signaux universels:
– Un capteur délivre un signal de ...
Instrumentation et Régulation − Normes et Applications Page 31/70
♦ Le standard 4-20 mA:
Les avantages du signal analogiqu...
Instrumentation et Régulation − Normes et Applications Page 32/70
II) Capteurs
Structure de type "Capteur et Transmetteur"...
Instrumentation et Régulation − Normes et Applications Page 33/70
II) Capteurs
Structure de type "Capteur et Transmetteur"...
Instrumentation et Régulation − Normes et Applications Page 34/70
II) Capteurs
Caractéristiques métrologiques des instrume...
Instrumentation et Régulation − Normes et Applications Page 35/70
♦ Configuration:
Un transmetteur est un élément permetta...
Instrumentation et Régulation − Normes et Applications Page 36/70
♦ Exemple:
Caractéristiques obtenues par deux réglages d...
Instrumentation et Régulation − Normes et Applications Page 37/70
♦ Exercice:
Caractéristiques obtenues par deux réglages ...
Instrumentation et Régulation − Normes et Applications Page 38/70
Sonde de température PT100 Transmetteur
II) Capteurs
3) ...
Instrumentation et Régulation − Normes et Applications Page 39/70
II) Capteurs
3) Transmetteur: Réseau bus de terrain
Stru...
Instrumentation et Régulation − Normes et Applications Page 40/70
II) Capteurs
Structure de type "Capteur et Transmetteur"...
Instrumentation et Régulation − Normes et Applications Page 41/70
Plan
I) Introduction
♦ Contrôle des procédés
♦ Grandeurs...
Instrumentation et Régulation − Normes et Applications Page 42/70
III) Normes
1) Représentations normalisées
Représentatio...
Instrumentation et Régulation − Normes et Applications Page 43/70
III) Normes
1) Représentations normalisées
Représentatio...
Instrumentation et Régulation − Normes et Applications Page 44/70
III) Normes
1) Représentations normalisées
Norme Françai...
Instrumentation et Régulation − Normes et Applications Page 45/70
III) Normes
1) Représentations normalisées
Norme Françai...
Instrumentation et Régulation − Normes et Applications Page 46/70
III) Normes
1) Représentations normalisées
Norme Françai...
Instrumentation et Régulation − Normes et Applications Page 47/70
III) Normes
1) Représentations normalisées
Norme Françai...
Instrumentation et Régulation − Normes et Applications Page 48/70
III) Normes
1) Représentations normalisées
Norme Françai...
Instrumentation et Régulation − Normes et Applications Page 49/70
III) Normes
1) Représentations normalisées
Norme Françai...
Instrumentation et Régulation − Normes et Applications Page 50/70
III) Normes
Norme Française NF E 04-203:
Exemple: Régula...
Instrumentation et Régulation − Normes et Applications Page 51/70
III) Normes
Norme Française NF E 04-203:
Éléments de nor...
Instrumentation et Régulation − Normes et Applications Page 52/70
III) Normes
TCV
SCV
PCV
LCV
KCV
HCV
Norme Française NF E...
Instrumentation et Régulation − Normes et Applications Page 53/70
III) Normes
Norme Française NF E 04-203:
Application:
2)...
Instrumentation et Régulation − Normes et Applications Page 54/70
Plan
I) Introduction
♦ Contrôle des procédés
♦ Grandeurs...
Instrumentation et Régulation − Normes et Applications Page 55/70
IV) Régulation
Boucle Ouverte (BO): (Open Loop Control):...
Instrumentation et Régulation − Normes et Applications Page 56/70
IV) Régulation
♦ Mesure de la grandeur de sortie (capteu...
Instrumentation et Régulation − Normes et Applications Page 57/70
IV) Régulation
Contrôle de Commande Automatique
Applicat...
Instrumentation et Régulation − Normes et Applications Page 58/70
IV) Régulation
Type de Régulation
Asservissement:
Rejet ...
Instrumentation et Régulation − Normes et Applications Page 59/70
IV) Régulation
Type de Régulation
En cascade:
Imbricatio...
Instrumentation et Régulation − Normes et Applications Page 60/70
IV) Régulation
Type de Régulation
Prédictive:
Compensati...
Instrumentation et Régulation − Normes et Applications Page 61/70
IV) Régulation
Type de Régulation
Auto-adaptative:
Calcu...
Instrumentation et Régulation − Normes et Applications Page 62/7062
Etendue de mesure (range), décalage du zéro (offset), ...
Instrumentation et Régulation − Normes et Applications Page 63/70
IV) Régulation
Structure d'un régulateur industriel
Type...
Instrumentation et Régulation − Normes et Applications Page 64/70
IV) Régulation
Performance d'un régulateur industriel
Pe...
Instrumentation et Régulation − Normes et Applications Page 65/70
IV) Régulation
Performance d'un régulateur industriel
Pe...
Instrumentation et Régulation − Normes et Applications Page 66/70
Régulateur TOR
IV) Régulation
Régulation "Tout Ou Rien" ...
Instrumentation et Régulation − Normes et Applications Page 67/70
IV) Régulation
Régulation "Tout Ou Rien" (TOR)
Régulatio...
Instrumentation et Régulation − Normes et Applications Page 68/70
IV) Régulation
Régulation "Proportionnelle / Intégrale /...
Instrumentation et Régulation − Normes et Applications Page 69/70
Références
Quelques ouvrages pour approfondir
[1] "Instr...
Instrumentation et Régulation − Normes et Applications Page 70/70
Notes
Quelques notes:
………………………………………………………………………………….
…...
Prochain SlideShare
Chargement dans…5
×

2011 05-instrumentationetrgulation-120627023358-phpapp02 (1)

1 585 vues

Publié le

Instrumentation et régulation normes et théorie et applications

Publié dans : Technologie
0 commentaire
1 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

Aucun téléchargement
Vues
Nombre de vues
1 585
Sur SlideShare
0
Issues des intégrations
0
Intégrations
7
Actions
Partages
0
Téléchargements
65
Commentaires
0
J’aime
1
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

2011 05-instrumentationetrgulation-120627023358-phpapp02 (1)

  1. 1. Instrumentation et Régulation − Normes et Applications Page 1/70 Cours de DU CII Université du Havre, Mai 2012. Instrumentation et Régulation: Normes, théorie et applications Université du Havre, IUT du Havre, Département GEII (1) Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS (2) Groupe de Recherche en Electrotechnique et Automatique du Havre (GREAH), UPRES EA 3220 Pierre Maréchal(1), François Guérin(2)
  2. 2. Instrumentation et Régulation − Normes et Applications Page 2/70 Plan I) Introduction ♦ Contrôle des procédés ♦ Grandeurs physiques ♦ Métrologie II) Capteur ♦ Type de capteur: passif, actif, intégré ♦ Caractéristiques ♦ Transmetteur III) Normes ♦ Schéma fonctionnel ♦ Fonction de transfert ♦ Norme NF E 04-203 ♦ Schéma PCF ♦ Schéma TI IV) Régulation ♦ Instrumentation ♦ Contrôle ♦ Correction Instrumentation et Régulation
  3. 3. Instrumentation et Régulation − Normes et Applications Page 3/70 Plan I) Introduction ♦ Contrôle des procédés ♦ Grandeurs physiques ♦ Métrologie II) Capteur ♦ Type de capteur: passif, actif, intégré ♦ Caractéristiques ♦ Transmetteur III) Normes ♦ Schéma fonctionnel ♦ Fonction de transfert ♦ Norme NF E 04-203 ♦ Schéma PCF ♦ Schéma TI IV) Régulation ♦ Instrumentation ♦ Contrôle ♦ Correction Instrumentation et Régulation
  4. 4. Instrumentation et Régulation − Normes et Applications Page 4/70 ActionRéflexion Observation Progression / Résultats Procédé / Mesures Objectifs / Moyens Contrôle industriel I) Introduction Contrôle industriel Procédé et processus de "contrôle et régulation":
  5. 5. Instrumentation et Régulation − Normes et Applications Page 5/70 ♦ Le système de référence mks repose sur sept unités imposées, toutes les autres étant déduites de celles-ci: I) Introduction Système international d'unités mks Grandeurs et unités: Système de référence: Grandeur physique Longueur Masse Temps Courant électrique Température Quantité de matière Intensité lumineuse Unité mètre kilogramme seconde ampère kelvin mole candela Symbole m kg s A K mol cd Dimension L M T I Θ N J http://www.bipm.org/utils/common/pdf/si_brochure_8_fr.pdf ♦ Exercice: 1) Déterminer l'unité SI d'une force: ………………………………………………. 2) Déterminer l'unité SI d'une pression: ………………………………………….
  6. 6. Instrumentation et Régulation − Normes et Applications Page 6/70 ♦ Le système de référence mks repose sur sept unités imposées, toutes les autres étant déduites de celles-ci: I) Introduction Système international d'unités mks Grandeurs et unités: Système de référence:
  7. 7. Instrumentation et Régulation − Normes et Applications Page 7/70 ♦ Etalonnage : Mesurer, c’est comparer sa mesure par rapport à celle donnée par un appareil de référence. I) Introduction Système international d'unités mks Grandeurs et unités: Système de référence: ♦ Sachant qu’une once vaut 28,35 g, qu'une livre anglaise vaut 453,6 g, qu’un pouce (inch) vaut 2,54 mm, qu'un pied vaut 30,48 cm, qu'un mile vaut 1,609 km, qu'un cheval vapeur vaut 746 W et qu’un gallon (USA) vaut 3,785 L, compléter le tableau suivant. Nom Gallon (USA) per min Inch of water Pound-force per square inch 90 cv Grandeur ………… pression ………… ………… Conversion cm3/s Pa Pa ………… Dimension ………… ………… ………… ………… Symbole Gal(USA)/min inH2O lbf/in2 ………………
  8. 8. Instrumentation et Régulation − Normes et Applications Page 8/70 ♦ Mesurande: La grandeur physique objet de la mesure (température, pression...) est désignée comme le mesurande. L’ensemble des opérations expérimentales qui concourent à la connaissance de la valeur numérique du mesurande constitue son mesurage. I) Introduction Métrologie Chaîne de mesurage: Définitions: ♦ Chaîne de mesurage: La chaîne de mesurage est constituée de l’ensemble des dispositifs, y compris le capteur, rendant possible dans les meilleures conditions la détermination précise de la valeur du mesurande. C’est l’étalonnage de la chaîne de mesurage dans son ensemble qui permet d’attribuer à chaque indication en sortie la valeur correspondante du mesurande agissant à l’entrée. ♦ Exemple: Thermocouple Voltmètre T (°C) U (V) Mesure
  9. 9. Instrumentation et Régulation − Normes et Applications Page 9/70 ♦ Température: Dans la notice d’un multimètre de haute précision, il est recommandé de ne commencer les mesures qu’après un temps de stabilisation en température de tous ses circuits électroniques. Lorsque ce temps n’est pas respecté, il peut conduire à une ou plusieurs valeurs aberrantes, notamment en début d’étalonnage. L’appareil étalonné peut alors être déclaré non conforme à ces caractéristiques métrologiques, alors qu’il est conforme ! I) Introduction Métrologie Chaîne de mesurage: Perturbations: ♦ Temps de réponse: Dans le cas d'une perturbation en température, la mesure peut être ou compensée, ou effectuée à température de fonctionnement. ♦ Exemple: T (°C) t (s) Te (°C) Ts (°C)
  10. 10. Instrumentation et Régulation − Normes et Applications Page 10/70 Plan I) Introduction ♦ Contrôle des procédés ♦ Grandeurs physiques ♦ Métrologie II) Capteur ♦ Type de capteur: passif, actif, intégré ♦ Caractéristiques ♦ Transmetteur III) Normes ♦ Schéma fonctionnel ♦ Fonction de transfert ♦ Norme NF E 04-203 ♦ Schéma PCF ♦ Schéma TI IV) Régulation ♦ Instrumentation ♦ Contrôle ♦ Correction Instrumentation et Régulation
  11. 11. Instrumentation et Régulation − Normes et Applications Page 11/70 ♦ Définition: Un capteur est un organe de prélèvement d'information qui élabore à partir d'une grandeur physique, une autre grandeur physique de nature différente (très souvent électrique). Cette grandeur représentative de la grandeur prélevée est utilisable à des fins de mesure ou de commande. ♦ Types de capteurs: Un capteur peut être passif, actif, composite ou encore intégré. II) Capteurs 1) Définitions Structure de type "Capteur et Transmetteur":
  12. 12. Instrumentation et Régulation − Normes et Applications Page 12/70 Température →→→→ Caractéristiques électriques, mécaniques et dimensionnelles enceinte thermostatée Pression, accélération →→→→ Déformations enveloppe rigide, supports antivibratoires Humidité →→→→ Constante diélectrique, résistivité (isolation électrique ↓↓↓↓) enceinte étanche Champs magnétiques variables ou statiques →→→→ f.e.m. induites pour les premiers et augmentation de la résistivité pour les seconds (matériau magnéto-résistant) blindages magnétiques, liaison à la terre Tension d’alimentation (amplitude, fréquence) →→→→ Caractéristiques électriques alimentation régulée 1) Définitions: Grandeurs d’influence e s Variable physique Variable signal Grandeurs d’influence Capteur Déduire e de s malgré gi : Réduire l’importance: isolation, blindage… Stabiliser: enceintes, régulation… Compenser: pont de Wheatstone. ♦ Définition: Grandeurs physiques susceptibles d’entraîner un changement du signal de sortie. On cherche donc à minimiser leurs effets. II) Capteurs s = f(e) → s = f(e, g1, g2, …) Idéal: →→→→ Réel:
  13. 13. Instrumentation et Régulation − Normes et Applications Page 13/70 • Capteur passif: Il est en général associés à une source d ’alimentation et présentent une impédance variable : ex: Jauge de contrainte (capteur d ’accélération), Capteurs résistifs (photorésistance), Capacitifs (mesures de déplacement). • Capteur actif: Système dont la sortie présente une source f.e.m., courant, charge. ex : Capteur piezo-électrique  échographie, Variation de charges, Génératrice tachimétrique (induction E.M.). 1) Définitions: II) Capteurs
  14. 14. Instrumentation et Régulation − Normes et Applications Page 14/70 Mesurande Effet utilisé Grandeur de sortie Température Thermoélectricité Tension Flux de rayonne- ment optique Pyroélectricité Photoémission Effet photovoltaïque Charge Courant Tension Force Pression Accélération Piézoélectricité Charge Vitesse Induction électromagnétique Tension Position Effet Hall Tension 1) Définitions: Capteur actif Tableau de synthèse II) Capteurs
  15. 15. Instrumentation et Régulation − Normes et Applications Page 15/70 Mesurande Caractéristique électrique sensible Matériaux Température Très basse température Résistivité Cste diélectrique Métaux, semiconducteurs Verre Flux de rayonnement optique Résistivité Semi conducteur Déformation Résistivité Perméabilité électrique Alliage de Ni, SI dopé Alliages ferromagnétiques Position (aimant) Résistivité Matériaux magnéto- résistants : bismuth, … Niveau Cste diélectrique Liquides isolants Humidité Résistivité Cste diélectrique Chlorure de lithium Polymères 1) Définitions: Capteur passif Définition Impédance dont l’un des paramètres déterminants est sensible au mesurande. Tableau de synthèse II) Capteurs
  16. 16. Instrumentation et Régulation − Normes et Applications Page 16/70 ♦ Constitution: Un capteur est le premier élément de la chaîne de mesurage. Lorsque le capteur est constitué de plusieurs éléments, le corps d’épreuve est celui en contact direct avec le mesurande. Il génère une grandeur physique intermédiaire (déplacement, déformation, force…) traduite en une grandeur électrique (tension, capacité, induction…) par le transducteur. II) Capteurs 1) Définitions Structure du Capteur: Corps d'épreuve Transducteur Mesurande Grandeur physique intermédiaire Grandeur électrique Capteur Mesurande Grandeur électrique
  17. 17. Instrumentation et Régulation − Normes et Applications Page 17/70 ♦ Définition: D’après la norme NF C 46-303, un transmetteur est un appareil qui, recevant une vraie variable mesurée, produit un signal de sortie normalisé pouvant être transmis et ayant une relation continue et définie avec la valeur de la variable mesurée. ♦ Constitution: Pour élaborer un signal normalisé à partir du signal généré par le capteur, le transmetteur comprend globalement un amplificateur, un filtre, et un traitement du signal. II) Capteurs 1) Définitions Structure de type "Capteur et Transmetteur": Capteur-transmetteur de pression Corps d'épreuve Transducteur D Amplificateur Traitement du signal E3 Filtre Alimentation Alimentation E2E1P I Capteur Transmetteur
  18. 18. Instrumentation et Régulation − Normes et Applications Page 18/70 Capteur : Organe chargé de prélever une grandeur physique à mesurer et de la transformer en une grandeur exploitable. Capteur Mesurande e s Processus physique Affichage Variable physique Variable signal Mesure s = f(e)Lois physiques régissant le capteur Mesure de s Connaissance de e La grandeur physique à mesurer, souvent appelée mesurande, n'est en général pas directement utilisable. Elle constitue la variable d'entrée (ou stimulus) du capteur. 2) Caractéristiques: Mesurande II) Capteurs
  19. 19. Instrumentation et Régulation − Normes et Applications Page 19/70 e(t) t s(t) t Capteur e(t) s(t) Courbe d’étalonnage ou calibration d ’un capteur e s → Inconnu → Connu ee2e1 s2 s1 ei si s Etablissement ⇒⇒⇒⇒ étalons de m Exploitation 2) Caractéristiques: Etalonnage Correspondance entre s(t) et e(t): fonction de transfert II) Capteurs
  20. 20. Instrumentation et Régulation − Normes et Applications Page 20/70 Etalonnage Validité d’un étalonnage: s e s = f(e) La répétabilité est la qualité du capteur qui assure l’utilisateur de l’identité de la grandeur de sortie dans des limites spécifiées, chaque fois que ce même capteur est utilisé dans des conditions identiques: même mesurande et mêmes paramètres additionnels. L’interchangeabilité d’une série de capteur d’un même type est la qualité de cette série qui garantie à l’utilisateur des résultats identiques, aux tolérance près, chaque fois qu’un quelconque capteur de cette série est utilisé dans des conditions identiques. l’interchangeabilité résulte de la rigueur des procédés de fabrication et des contrôle en fin de fabrication. 2) Caractéristiques: Etalonnage II) Capteurs
  21. 21. Instrumentation et Régulation − Normes et Applications Page 21/70 Sensibilité d’un capteur ee0 s ∆e ∆s - réponse linéaire pour e < e0 - sensibilité: ds s S de e ∆ = = ∆ Domaine de mesure du capteur Contrainte: constance de la sensibilité dépend de: - la valeur de e (linéarité) - la fréquence de variation de e (bande passante) - temps (vieillissement) - grandeurs physiques parasites (grandeurs d’influence) 2) Caractéristiques: Sensibilité Domaine de saturation du capteur ds S de = 0 ds S de = → - réponse faible pour e > e0 - sensibilité: II) Capteurs
  22. 22. Instrumentation et Régulation − Normes et Applications Page 22/70 2) Caractéristiques: Définitions II) Capteurs T (°C) −200 −10 …. 70 260 340 530 610 800 R (Ω) 18,53 96,07 …. 127,07 197,7 226,18 290,87 316,86 375,61 ♦ Application: 1) Déterminer la sensibilité de la sonde sur chaque tronçon. 2) La sensibilité est-elle linéaire ? Sensibilité d'une sonde Pt100: S ( ) ………… ………… ………… ………… ………… ………… ………… ………… …………
  23. 23. Instrumentation et Régulation − Normes et Applications Page 23/70 Grandeur à mesurer Grandeurd’influence Domaine Nominal d’Utilisation Etendue de Mesure (EM) DNU : Répétabilité sans que les caractéristiques du capteur soient altérées 2) Caractéristiques métrologiques II) Capteurs
  24. 24. Instrumentation et Régulation − Normes et Applications Page 24/70 Grandeur à mesurer Grandeurd’influence Domaine de Non Détérioration DNDétérioration : plage de surcharge que le capteur peut supporter Domaine Nominal d’Utilisation Etendue de Mesure (EM) 2) Caractéristiques métrologiques II) Capteurs
  25. 25. Instrumentation et Régulation − Normes et Applications Page 25/70 Domaine de Non Destruction DNDestruction : les caractéristiques sont irréversiblement altérées >étalonnage Grandeur à mesurer Grandeurd’influence Domaine de Non Détérioration Domaine Nominal d’Utilisation Etendue de Mesure (EM) 2) Caractéristiques métrologiques II) Capteurs
  26. 26. Instrumentation et Régulation − Normes et Applications Page 26/70 • Erreur de mesure: Ecart entre valeur mesurée et valeur vraie: - Erreur systématique (corrigée ou non), - Incertitude de mesure (estimée). • Erreurs systématiques (causes systématiques que l’on peut calculer et éventuellement corriger): - de zéro, d’étalonnage, - provoquées par les grandeurs d’influence, - dues aux sources d ’alimentation, dérives, offset, - de linéarité. • Incertitudes (causes accidentelles non répétitives non corrigibles) liées: - indéterminations intrinsèques au système (hystérésis), - signaux parasites (nature aléatoire), - grandeurs d’influence non contrôlées. 2) Caractéristiques: Erreurs et incertitudes II) Capteurs
  27. 27. Instrumentation et Régulation − Normes et Applications Page 27/70 • Fidélité: Aptitude d ’un instrument à donner des indications exemptes d ’erreurs systématiques (faible écart-type). • Justesse: Aptitude d ’un instrument à donner des indications exemptes d ’erreurs systématiques. Pas juste Juste Pas fidèle Fidèle Le centre représente la valeur vraie 2) Caractéristiques: Fidélité, justesse et exactitude • Exactitude: Un système exact est juste et fidèle. II) Capteurs
  28. 28. Instrumentation et Régulation − Normes et Applications Page 28/70 ♦ Exemple: Capteur-transmetteur de température à entrée thermocouple type K de 500 °C à 900 °C, et sortie courant 4-20 mA . Ce capteur n’est pas linéaire, et c’est le transmetteur qui rend la relation linéaire: I = 0,04 × T − 16. II) Capteurs 3) Transmetteur Structure de type "Capteur et Transmetteur": Capteur-transmetteur de température U (mV) T (°C) 500 900 17,6 43,2 I (mA) U (mV) 17,6 43,2 4 20 I (mA) T (°C)4 20 500 900 Capteur Transmetteur Capteur-Transmetteur
  29. 29. Instrumentation et Régulation − Normes et Applications Page 29/70 ♦ Transmetteur universel: intégré ou déporté Le capteur est fixé sur le procédé et il délivre un signal de mesure de faible intensité, qui ne peut être transmis sur de grandes longueurs. Le transmetteur universel, est soit intégré dans le boîtier du capteur, soit déporté et monté sur rail dans un coffret d’instrumentation distant. II) Capteurs 3) Transmetteur Structure de type "Capteur et Transmetteur": ♦ Les transmetteurs actuels s’adaptent à un très grand nombre de capteurs industriels par configuration numérique. Elle permet notamment le réglage de la nature de l’entrée et de son étendue, du temps de réponse souhaité, de la linéarisation éventuelle, et de la nature de la sortie et de son étendue. Ils peuvent être de type universel ou bien spécifique à un capteur comme pour les thermocouples ou les sondes RTD. Transmetteur intégré Transmetteur déporté
  30. 30. Instrumentation et Régulation − Normes et Applications Page 30/70 ♦ Signaux universels: – Un capteur délivre un signal de faible intensité désigné par l’appellation « signal bas niveau ». Pour l’étendue de mesure du capteur, les signaux « bas niveau » sont : potentiomètrique, thermocouple, RTD (Resistor Thermometer Detector), tension (exemples : – 20 mV à + 20 mV, 0 à 100 mV), ou courant. – Un transmetteur délivre un signal appelé « signal haut niveau » puisque son énergie permet la transmission de la mesure à une grande distance (plusieurs centaines de mètres) du point de mesure. Ces signaux « haut niveau » sont : 0-5 V, 1-5 V, 0-10 V, 0-20 mA et 4-20 mA. ♦ Malgré un signal « bas niveau », un capteur peut être relié à l’entrée de mesure d’un dispositif de contrôle tel qu’un automate programmable industriel (API) ou un régulateur. Dans ce cas, la carte d’entrée se substitue au transmetteur absent et réalise par exemple l’amplification et le traitement de linéarisation du signal délivré par un thermocouple. II) Capteurs Structure de type "Capteur et Transmetteur": 3) Transmetteur
  31. 31. Instrumentation et Régulation − Normes et Applications Page 31/70 ♦ Le standard 4-20 mA: Les avantages du signal analogique en courant 4-20 mA: – il n’est pas affecté par les chutes ohmiques de tension; – les tensions parasites ne l’influencent pas, grâce à l’impédance interne du générateur de courant en série dans la boucle; – il autorise la transmission de la mesure sur une longue distance (>1 km); – il possède une bonne immunité aux parasites de type magnétique; – il est économique, puisque deux fils par instrument suffisent pour l’alimentation en tension et la transmission de la mesure; – la valeur 4 mA permet de différentier le zéro de mesure de la rupture de la transmission, et d’alimenter le transmetteur dans le cas d’un « 2 fils »; – il admet la superposition d’un signal de communication HART. ♦ En instrumentation industrielle, le signal 4-20 mA est maintenant un standard, et tous les fabricants d’instruments proposent ce signal. II) Capteurs Structure de type "Capteur et Transmetteur": 3) Transmetteur
  32. 32. Instrumentation et Régulation − Normes et Applications Page 32/70 II) Capteurs Structure de type "Capteur et Transmetteur": Transmetteur 2 fils Transmetteur 3 fils Transmetteur 4 fils ♦ Raccordement électrique d'un transmetteur: – Les transmetteurs 2 fils (dits passifs) ne sont pas alimentés en direct. – Les transmetteurs 3 fils sont des transmetteur 4 fils, avec les entrées moins reliées. – Les transmetteurs 4 fils (dits actifs) sont alimentés et fournissent le courant I. Leur schéma de câblage est identique à celui des régulateurs. ♦ Alimentation électrique: Elle est directement liée et dépend de la résistance interne vue par la sortie du transmetteur. 3) Transmetteur
  33. 33. Instrumentation et Régulation − Normes et Applications Page 33/70 II) Capteurs Structure de type "Capteur et Transmetteur": Transmetteur 2 fils Transmetteur 3 fils Transmetteur 4 fils ♦ Raccordement électrique d'un transmetteur: Le raccordement électrique d’un transmetteur au dispositif d’exploitation de la mesure, dépend de la nature du signal de mesure et de son alimentation. Il existe des transmetteurs à "2 fils", "3 fils" ou "4 fils". La résistance de charge Rc correspond à la résistance comprenant celle du ou des récepteurs (API, régulateur, indicateur ou bien centrale d’acquisition) et de la ligne de transmission. ♦ Standard "2fils": En instrumentation industrielle, par économie et souci de standardisation, les transmetteurs à "2 fils" en signal 4-20 mA sont les plus répandus. 3) Transmetteur
  34. 34. Instrumentation et Régulation − Normes et Applications Page 34/70 II) Capteurs Caractéristiques métrologiques des instruments de mesure: ♦ Étendue d’échelle: L’échelle de mesure (EIS=[INF; SUP]) est donnée par les limites inférieure (INF) et supérieure (SUP) de mesure de l’instrument. L’étendue d’échelle (EE) est la différence algébrique entre les valeurs extrêmes du mesurande qui peuvent être appliquées à l’instrument, et pour laquelle les caractéristiques métrologiques sont garanties. ♦ Exercice: Déterminer les échelle de mesure et étendues d’échelle : 1) Débitmètre : de 1 à 10 m3.h–1. EIS = [………; ...……] et EE = ………. 2) Sonde de température : de –100 à +300°C. EIS = [………; ...……] et EE = ………. 3) Transmetteur de pression différentielle : de –20 à +40 hPa. EIS = [………; ...……] et EE = ………. 3) Transmetteur
  35. 35. Instrumentation et Régulation − Normes et Applications Page 35/70 ♦ Configuration: Un transmetteur est un élément permettant de configurer la plage de mesure et de compenser les éventuelles non-linéarités du capteur. ♦ Équation de correspondance du transmetteur: Caractéristique de sortie (Y) en fonction de celle d'entrée (X): II) Capteurs Structure de type "Capteur et Transmetteur": Valeur maximale mesurable: MAX Valeur minimale mesurable: MIN Étendue de mesure: EM = MAX-MIN Valeur du zéro: VZ = MIN Décalage négatif si: EM < MAX Décalage positif si: EM > MAX Équation de correspondance: Pente a et ordonnée à l'origine: a = …………………. b = …………………… 3) Transmetteur .( )MAX MIN MIN X VZ Y Y Y Y EM − = − + Y X 0 MIN MAX YMIN YMAX
  36. 36. Instrumentation et Régulation − Normes et Applications Page 36/70 ♦ Exemple: Caractéristiques obtenues par deux réglages d’un transmetteur de température d’échelle –100 °C à 300 °C délivrant un signal de mesure normalisé 4-20 mA proportionnel à la température. II) Capteurs Structure de type "Capteur et Transmetteur": Étendue d'échelle: EE = …. °C Valeur maximale mesurable: MAX = …. °C Valeur minimale mesurable: MIN = …. °C Étendue de mesure: EM = …. °C Valeur du zéro: VZ = …. °C Décalage ……….. car : EM (…) …… MAX (...) Équation de correspondance: …………………………………………………………...... ……………………………………………….................... ……………………………………………….................... ……………………………………………….................... ……………………………………………….................... ……………………………………………….................... 3) Transmetteur I (mA) T (°C) 0 20 80 4 20
  37. 37. Instrumentation et Régulation − Normes et Applications Page 37/70 ♦ Exercice: Caractéristiques obtenues par deux réglages d’un transmetteur de température d’échelle –100 °C à 300 °C délivrant un signal de mesure normalisé 4-20 mA proportionnel à la température. II) Capteurs Structure de type "Capteur et Transmetteur": 3) Transmetteur I (mA) T (°C) 0−30 90 4 20 Étendue d'échelle: EE = …. °C Valeur maximale mesurable: MAX = …. °C Valeur minimale mesurable: MIN = …. °C Étendue de mesure: EM = …. °C Valeur du zéro: VZ = …. °C Décalage ……….. car : EM (…) …… MAX (...) Équation de correspondance: …………………………………………………………...... ……………………………………………….................... ……………………………………………….................... ……………………………………………….................... ……………………………………………….................... ………………………………………………....................
  38. 38. Instrumentation et Régulation − Normes et Applications Page 38/70 Sonde de température PT100 Transmetteur II) Capteurs 3) Transmetteur: Chaîne de mesure Structure de type "Capteur et Transmetteur": Exemple:
  39. 39. Instrumentation et Régulation − Normes et Applications Page 39/70 II) Capteurs 3) Transmetteur: Réseau bus de terrain Structure de type "Capteur et Transmetteur": ♦ Signal de communication HART: Le protocole HART (Highway Addressable Remote Transducer) permet la communication simultanée de données analogiques et numériques. Ce protocole de communication de type série est spécifique au contrôle industriel et compatible avec les boucles de courant analogique 4-20 mA. Le protocole est basé sur une modulation FSK (Frequency Shift Key): f = 1,2 kHz pour l’état logique 1, et f = 2,2 kHz pour l’état logique 0. Raccordement d‘un transmetteur à protocole HART
  40. 40. Instrumentation et Régulation − Normes et Applications Page 40/70 II) Capteurs Structure de type "Capteur et Transmetteur": ♦ Bus de terrain: Le principe d’un bus de terrain est de relier tous les transmetteurs, actionneurs et dispositifs de contrôle, d’un secteur industriel en un réseau où tous les instruments communiquent les uns avec les autres. – Fieldbus Fondation FF-H1, – Profibus PA, – FIP WorldFip. Ils sont reconnus par la norme internationale IEC 61158-2. La liaison unique sert au dialogue, à la configuration, et à l’alimentation. La structure en réseau permet la liaison de 32 instruments par bus linéaire. Bus de terrain FF-H1 3) Transmetteur: Réseau bus de terrain
  41. 41. Instrumentation et Régulation − Normes et Applications Page 41/70 Plan I) Introduction ♦ Contrôle des procédés ♦ Grandeurs physiques ♦ Métrologie II) Capteur ♦ Type de capteur: passif, actif, intégré ♦ Caractéristiques ♦ Transmetteur III) Normes ♦ Schéma fonctionnel ♦ Fonction de transfert ♦ Norme NF E 04-203 ♦ Schéma PCF ♦ Schéma TI IV) Régulation ♦ Instrumentation ♦ Contrôle ♦ Correction Instrumentation et Régulation
  42. 42. Instrumentation et Régulation − Normes et Applications Page 42/70 III) Normes 1) Représentations normalisées Représentation libre et personnelle d'un procédé industriel: Exemple d’application: Echangeur thermique
  43. 43. Instrumentation et Régulation − Normes et Applications Page 43/70 III) Normes 1) Représentations normalisées Représentation d'un procédé industriel: Schéma fonctionnel: Exemple général (W) (Y) (X) Régulation: Réponse Y = f(W-X). + - A B (E) (S)(E') Fonction de transfert: ………………………………………………………………………………
  44. 44. Instrumentation et Régulation − Normes et Applications Page 44/70 III) Normes 1) Représentations normalisées Norme Française NF E 04-203 (août 1987): Contexte international: ♦ "Fonction de régulation, de mesure et d'automatisme des processus industriels: Représentation symbolique". ♦ Elle a des correspondances internationales (ISO 3511/1-1977), allemande (DIN 19227 blatt 1-1973), ou encore américaine (ISA- S5.1-1984) traitant du même sujet. ♦ Elle est articulée en quatre parties : • E 04-203-1 : Principes de base, • E 04-203-2 : Capteurs, signaux, dispositifs réglants, • E 04-203-3 : Transducteurs et dispositifs de traitement des signaux, • E 04-203-4 : Symboles détaillés complémentaires pour les schémas d’interconnexion d’instruments.
  45. 45. Instrumentation et Régulation − Normes et Applications Page 45/70 III) Normes 1) Représentations normalisées Norme Française NF E 04-203 (août 1987): Objet et domaine d’application: ♦ La présente norme expérimentale présente la symbolisation des dispositifs de traitement des signaux émis par un capteur ou reçus par un organe de réglage. ♦ Elle comporte des symboles destinés à la communication des fonctions de mesure, de régulation et d’automatisme entre spécialistes des instruments et autres techniciens impliqués dans la conception (réservoirs, conduites, machines tournantes...) de leur disposition et de leur mise en oeuvre. ♦ Les symboles sont utilisés pour la représentation de l’instrumentation sur les schémas suivants : – plan de circulation des fluides (PCF) Process Flow Sheet (PFS), – plan de tuyauterie et d’instrumentation (TI) Piping and Instrument Diagram (PID)
  46. 46. Instrumentation et Régulation − Normes et Applications Page 46/70 III) Normes 1) Représentations normalisées Norme Française NF E 04-203 (août 1987): Objet et domaine d’application: ♦ Le Plan de Circulation des Fluides (PCF) est un schéma de représentation symbolique avec: – les cuves, les réacteurs chimiques, les échangeurs thermiques ; – les conduites, représentées par un trait continu épais ; – la nature, gaz ou liquide, et le sens d’écoulement des fluides ; – les organes de puissance: pompes, agitateurs, résistances de chauffage ; – l’indication des grandeurs physiques utiles: débit, pression, température... ♦ Le PCF peut aussi faire apparaître les boucles de régulation sans préciser le détail des instruments ou des stratégies de régulation complexes.
  47. 47. Instrumentation et Régulation − Normes et Applications Page 47/70 III) Normes 1) Représentations normalisées Norme Française NF E 04-203 (août 1987): Exemple d’application: Echangeur thermique PCF brut PCF avec régulations incluses
  48. 48. Instrumentation et Régulation − Normes et Applications Page 48/70 III) Normes 1) Représentations normalisées Norme Française NF E 04-203 (août 1987): Objet et domaine d’application: ♦ Le plan de Tuyauterie et d'Instrumentation (TI) complète le plan de circulation des fluides en lui ajoutant : – les appareils de mesure ; capteurs, transmetteurs, indicateurs ; – les appareils de contrôle ; régulateurs et opérateurs de calcul ; – les actionneurs comme les vannes de réglage ; – les liaisons d’information entre ces appareils. ♦ Le TI fait apparaître toutes les boucles de régulation en précisant le détail des instruments et des liaisons de régulation.
  49. 49. Instrumentation et Régulation − Normes et Applications Page 49/70 III) Normes 1) Représentations normalisées Norme Française NF E 04-203 (août 1987): Exemple d’application: Echangeur thermique TI [avec boucles de régulations]
  50. 50. Instrumentation et Régulation − Normes et Applications Page 50/70 III) Normes Norme Française NF E 04-203: Exemple: Régulation de température d'un échangeur thermique. 2) Schéma TI
  51. 51. Instrumentation et Régulation − Normes et Applications Page 51/70 III) Normes Norme Française NF E 04-203: Éléments de normalisation. 2) Schéma TI
  52. 52. Instrumentation et Régulation − Normes et Applications Page 52/70 III) Normes TCV SCV PCV LCV KCV HCV Norme Française NF E 04-203: Catalogue: 2) Schéma TI
  53. 53. Instrumentation et Régulation − Normes et Applications Page 53/70 III) Normes Norme Française NF E 04-203: Application: 2) Schéma TI
  54. 54. Instrumentation et Régulation − Normes et Applications Page 54/70 Plan I) Introduction ♦ Contrôle des procédés ♦ Grandeurs physiques ♦ Métrologie II) Capteur ♦ Type de capteur: passif, actif, intégré ♦ Caractéristiques ♦ Transmetteur III) Normes ♦ Schéma fonctionnel ♦ Fonction de transfert ♦ Norme NF E 04-203 ♦ Schéma PCF ♦ Schéma TI IV) Régulation ♦ Instrumentation ♦ Contrôle ♦ Correction Instrumentation et Régulation
  55. 55. Instrumentation et Régulation − Normes et Applications Page 55/70 IV) Régulation Boucle Ouverte (BO): (Open Loop Control): Processus de Commande: Contrôle de Commande Automatique ♦ Pas de mesure de la grandeur de sortie et absence de correction. Exemples: …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… ……
  56. 56. Instrumentation et Régulation − Normes et Applications Page 56/70 IV) Régulation ♦ Mesure de la grandeur de sortie (capteur) et correction de l'action pour que la sortie ait le comportement souhaité… ♦ Asservissement : Sortie fidèle à l’entrée de consigne (poursuite). ♦ Régulation : Pour une entrée de consigne donnée, on souhaite que la sortie reste insensible aux perturbations. Exemples: …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… Boucle Fermée (BF): (Closed Loop Control): Processus de Commande: Contrôle de Commande Automatique
  57. 57. Instrumentation et Régulation − Normes et Applications Page 57/70 IV) Régulation Contrôle de Commande Automatique Application: Régulation de niveau d'eau: Schéma fonctionnel:
  58. 58. Instrumentation et Régulation − Normes et Applications Page 58/70 IV) Régulation Type de Régulation Asservissement: Rejet des perturbations pouvant affecter la mesure. Poursuite: Suivi de trajectoire imposée à une mesure. Continue: La commande peut prendre toutes les valeurs possibles. Discontinue: Tout ou rien (TOR): • la commande ne peut prendre que deux valeurs. Modulée (discrète): • la commande prend des créneaux de largeur variable. C t (s)Cmin Cmax
  59. 59. Instrumentation et Régulation − Normes et Applications Page 59/70 IV) Régulation Type de Régulation En cascade: Imbrication d'un régulateur "esclave" dont la consigne est la sortie d'un régulateur "maître".
  60. 60. Instrumentation et Régulation − Normes et Applications Page 60/70 IV) Régulation Type de Régulation Prédictive: Compensation de perturbation principale.
  61. 61. Instrumentation et Régulation − Normes et Applications Page 61/70 IV) Régulation Type de Régulation Auto-adaptative: Calcul et application d'un modèle de processus en temps réel.
  62. 62. Instrumentation et Régulation − Normes et Applications Page 62/7062 Etendue de mesure (range), décalage du zéro (offset), temps de réponse (time response), sensibilité (sensitivity)… II) Capteurs Chaîne de mesure Performance d'une chaîne de mesure: Caractéristiques:
  63. 63. Instrumentation et Régulation − Normes et Applications Page 63/70 IV) Régulation Structure d'un régulateur industriel Type de Commande: Régulation: Consigne, Mesure, Commande: ♦ Commande "Tout Ou Rien" (TOR) ♦ Commande "Proportionnelle / Intégrale / Dérivée" (PID)
  64. 64. Instrumentation et Régulation − Normes et Applications Page 64/70 IV) Régulation Performance d'un régulateur industriel Performance d'une Commande: Dépassement, erreur statique…
  65. 65. Instrumentation et Régulation − Normes et Applications Page 65/70 IV) Régulation Performance d'un régulateur industriel Performance d'une Commande: Temps de réponse, amortissement…
  66. 66. Instrumentation et Régulation − Normes et Applications Page 66/70 Régulateur TOR IV) Régulation Régulation "Tout Ou Rien" (TOR) Régulation TOR: Réponse Y = f(W-X) à hystérésis: Capteur
  67. 67. Instrumentation et Régulation − Normes et Applications Page 67/70 IV) Régulation Régulation "Tout Ou Rien" (TOR) Régulation TOR: Réponse Y = f(W-X) à hystérésis:
  68. 68. Instrumentation et Régulation − Normes et Applications Page 68/70 IV) Régulation Régulation "Proportionnelle / Intégrale / Dérivée" (PID) Régulation PID: Structures possibles:
  69. 69. Instrumentation et Régulation − Normes et Applications Page 69/70 Références Quelques ouvrages pour approfondir [1] "Instrumentation et régulation en 30 Fiches", Patrick Prouvost, Edition Dunod. [2] "La métrologie en PME-PMI", Michel Vallès, Edition AFNOR. [3] "Les bus de terrain", Guy Farges , Editions techniques Schneider. [4] "Les capteurs en instrumentation industrielle", Georges Asch, Edition Dunod. [5] "La mesure et l'instrumentation", G.Prieur et M.Nadi, Edition Masson. [6] "Le Carnet du régleur", J.M.Valance, p.253-264, p.265-277, p.312 Edition Valance. [7] "Guide d'instrumentation contrôle commande automatique", F.M.Després, Kirk Editions Collection industries. [8] "Systèmes asservis : Commande et régulation", Collection Eyrolles Mentor Sciences, Edition Eyrolles. [9] "Aide-mémoire de régulation et automatisme des systèmes frigorifiques", P.Prigent, M.Auclerc, p.5-17, p.171-184, p.185-194, Edition Dunod. http://btscira.perso.sfr.fr/page3/page3.html
  70. 70. Instrumentation et Régulation − Normes et Applications Page 70/70 Notes Quelques notes: …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. …………………………………………………………………………………. ………………………………………………………………………………….

×