SlideShare une entreprise Scribd logo
1  sur  86
Department of Civil Engineering                                                            NPIC




       XII.      karsikSaKNnas<anebtugsþg;dar               AASTHO          nig    LRFD
       LRFD and Standard AASTHO Design of Concrete Bridges

12.1.    esckþIepþIm³ suvtßiPaB nigTMnukcitþ
          Introduction: Safety and Reliability
         dUc)anerobrab;enAkñúgEpñk 4.10.1/ Load-resistance factor design method (LRFD) CaviFI
mYyEdlQrelITMnukcitþ sMrab;vaytMélkarsikSaKNnaedayeRbIemKuNEdlQrelIRbU)ab‘IlIet. viFI
enHmanbMNgsMrab;kMNt;smamaRtmuxkat;rbs;eRKOgbgÁMúedayQrelIRbePTbnÞúk edayeFVIy:agNa
eGayersIusþg;Tb;Tl;FMCagbnÞúkemKuN b¤m:Um:g;emKuN.
         rUbTI 12>1 (a) nig (b) k¾dUcenAkñúgrUbTI 4>36 énCMBUk 4 bgðajBIdüaRkaménkarEbgEck
frequency dac;edayELkBIKñaénbnÞúkCak;Esþg W nigersIusþg; R CamYynwgtMélmFüm (mean) R .

rUbTI 12>1 (c) bgðajBIkarbUkcUlKñaénkarEbgEckTaMgBIr ehIyExSekagTaMgBIrkat;KñaRtg;cMnuc C .
         eKGacrMBwgfaeRKOgbgÁúMman suvtßiPaB nigGacTukcitþ)an RbsinebIbnÞúk W sßitenAxageqVgcMnuc
RbsBV C enAelIExSekagersIusþg;. pÞúymkvij eKrMBwgfaeRKOgbgÁúMnwg)ak; RbsinebIbnÞúkenAelIExSekag
ersIusþg;sßitenAkñúgépÞqUt enAkñúgrUbTI 12>1 (c). RbsinebI β CasnÞsSn_suvtßiPaB enaH
                                  R −W
                     β=                                                               (12.1)
                              σR
                               2
                                   + σW
                                      2


Edl σ R nig σ W Ca standard deviation rbs;ersIusþg; nigbnÞúk erogKña.
       karbnSMbnÞúkepSgKñaenAkñúgsmIkar 4.29 ¬CMBUk 4¦ KWQrelIPaBxusKñad¾smrmürvag R nig
W EdlBicarNanUvlkçN³esdækic©.

       dUcenH TMnukcitþénkareFVIkarrbs;eRKOgbgÁúMEdlRbkbedaysuvtßiPaBRtUv)anRKb;RKgedaykarBi-
carNarvagTMnak;TMngbnÞúk nigersIusþg;edayeRbIemKuNbnÞúk nigemKuNersIusþg;enAkñúgkarsikSaKNna.
       viFI LRFD rbs; AASTHO manbMNgGPivDÄTMnak;TMngrvagbnÞúk nigersIusþg; nUvsmIkarsMrab;
kMhUcRTg;RTay nigbnÞúk nigemKuNersIusþg;EktMrUv φ BIemKuNersIusþg;EdleRbIeday ACI 318. emKuN
φ rbs; LRFD RtUv)anbgðajenAkñúgtarag 12>1 (a).
       emeronenHnwgbgðajBIkareRbIR)as;smIkarrbs; LRFD EdlmanlkçN³xusKñaBIsmIkarrbs;
standard AASTHO nig ACI 318. ehIysmIkarEdl)aneRbIenAkñúgCMBUk 3/ 4 nig5 nigeKalkarN_

rbs;vak¾RtUv)anykmkGnuvtþ. dUcenHnisiSt nigvisVkrnwgyl;BIeRbIR)as;smIkaTaMgenHy:agRsYl.

karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                   745
T.Chhay                                               viTüasßanCatiBhubec©keTskm<úCa




LRFD and Standard AASTHO Design of Concrete Bridges                           746
Department of Civil Engineering                                                            NPIC




12.2.    lkçN³bec©keTsénbnÞúkrfynþrbs; LRFD nig AASTHO Standard (LFD)
         AASTHO Standard (LFD) and LRFD Truck Load Specification
        karsikSaKNnaBIGgát;ebtugeRbkugRtaMgrbs;s<anRtUv)aneFVIeLIgedayeKarBeTAtam AASTHO
(American Association of Highway and Transportation Officials). kñúgkarsikSaKNnaeRKOgbgÁúM

EpñkxagelI (superstructure) rbs;s<an eKRtuveRCIserIs nigdak;pøÚvcracrN_ (traffic lane) nigbnÞúky:ag
NaEdleFVIeGaymankugRtaMgGtibrmaenAkñúgGgát;eRKOgbgÁúM.
        kardak;bnÞúkGefrenAelIs<anRtUvman standard truck b¤ lane load EdlsmmUleTAnwg truck
trains. sMrab;s<anrfePøIg (railway bridge), tMrUvkarRtUv)ankMNt;eday AREA (American Railway

Engineering Association). CaTUeTA tMrUvkarsMrab;kMNt;smamaRtmuxkat;eRKOgbgÁúMrbs;Ggát;TMreRcIn

GnuvtþtambTdæan ACI nig PCI.

12.2.1.     bnÞúk                 Load
      kardak;bnÞúk highway mancMNat;fñak;bTdæan 4KW³ H20, H15, Hs20 nig HS15. kardak;bnÞúk
HS15 KWesμInwg 75%énkardak;bnÞúk HS20. RbsinebImankardak;bnÞúkepSgeRkABIenH eKRtUveFVIkarEk


karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                 747
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa

tMrUvTMgn;sMrab; standard truck nig land load EdlRtUvKñatamlkçN³smamaRt. eKsikSaKNna s<an
Highway sMrab;kardak;bnÞúk HS20-44 b¤kardak;bnÞúkEdlmanePøArfynþ (axles) BIrEdlmanKMlatBIKña

14 ft ehIy axle nImYy²manTMgn; 24,000lb edayeKRtUvdak;bnÞúky:agNaedIm,ITTYl)ankugRtaMgFM.

         rUbTI 12>2 bgðajBIbnÞúk standard H Truck ehIyrUbTI 12>3 bgðajBIbnÞúk standard HS
truck CamYynwgKMlatkg;rfynþ nigkarEbgEckbnÞúk. rUbTI 12>4 bgðajBI lane load smmUlsMrab; H

20-44, HS 20-44, H 15-44 nig HS 15-44. rUbTI 12>5 bgðajBIRbB½n§kMrals<anepSg²EdleKeRbICa

TUeTA.
     (i) T§iBlTgáic (impact): bnÞúkcl½t (movable load) TamTarnUvkarGnuBaØatPaBTgáic EdlCaEpñk

         mYyrbs;bnÞúkGefr. eKGackMNt;va)antam standard AASTHO (LFD)
                                   50
                            I=           ≤ 30%                                        (12.2)
                                 L + 125
          Edl      I= PaKryT§iBlTgáic (impact fraction)
                   L = RbEvgKitCa feet rbs;cMENkénElVgEdlkardak;bnÞúkeFVIeGaymankugRtaMgGti-

                       brmaenAkñúgGgát;enaH.




LRFD and Standard AASTHO Design of Concrete Bridges                                             748
Department of Civil Engineering                NPIC




karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD     749
T.Chhay                                               viTüasßanCatiBhubec©keTskm<úCa




LRFD and Standard AASTHO Design of Concrete Bridges                           750
Department of Civil Engineering                                                            NPIC




        RbEvgdak;bnÞúk L sMrab;Ggát;TTwg (transverse member) dUcCaFñwmkMral (floor beam) CaRb-
Evgrbs;Ggát;EdlKitBIG½kSeTAG½kS.
   (ii) kMlaMgtamTisbeNþay (Longitudinal Forces): eKRtUvdak;nUvkMlaMgtambeNþayesμInwg 5%

        énbnÞúkGefrenARKb; lane TaMgGs;EdlRTcracrN_kñúgTisedAdUcKña. épÞbnÞúk EdlKμanT§iBl
        Tgáic RtUvmanlkçN³dUcxageRkam³
                 land load + bnÞúkcMcMnuc RtUv)andak;enAelIElVgy:agNaedIm,IbegáItkugRtaMgGtibrma.

                 bnÞúkcM cMnuc nigbnÞúkBRgayRtUv)anBicarNaBRgayesμIelITTwg 10 ft enAelIExSEdl
                 EkgeTAnwgG½kSrbs; land. eKsnμt;TIRbCMuTMgn;rbs; longitudinal force manTItaMg
                 enARtg; 6 ft BIelIkMral.
          eKGnuvtþemKuNkat;bnßyenAeBl traffic lane CaeRcInRtUv)andak;bnÞúkkñúgeBlCamYyKña dUcenA
          kñúgEpñk (iv) xageRkam.
     (iii) kMlaMgcakp©itedk (Centrifugal Horizontal Force): kMlaMgenHekItBIclnarbs;rfynþenA

           elIExSekag. eKkMNt;vaCaPaKryrbs;bnÞúkGefr edayKμanT§iBlTgáic dUcxageRkam³
                                                        6.68S 2
                                  C = 0.00117 S 2 D =                                (12.3)
                                                           R

          Edl        C=kMlaMgcakp©itKitCaPaKryrbs;bnÞúkGefrEdlKμamT§iBlTgáic
                  S = el,ÓnKNna (design speed) KitCa miles kñúgmYyema:g

                  D = dWeRkrbs;kMeNag

                  R = kaMrbs;ExSekag KitCa ft

     (iv) karkat;bnßyGaMgtg;sIuetbnÞúk (Reduction in Load Intensity): enAeBlEdlkugRtaMgGti-

          brmaRtUv)anbegáIteLIgedaykardak;bnÞúkenAelI traffic lanes CaeRcInkñúgeBlCamYyKña eKRtUv
          eFVIkarkat;bnßyGaMgtg;sIuetbnÞúkdUcxageRkam³
                                                       PaKry
                  mYy b¤BIr lane                       100

                  bI lane                              90

                  bYn lane b¤eRcInCagenH               75




karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                  751
T.Chhay                                                                     viTüasßanCatiBhubec©keTskm<úCa

12.2.2.    karEbgEckbnÞúkkg;enAelIkMrals<an³ lkçN³bec©keTssþg;dar AASTHO
           Wheel Load Distribution on Bridge Decks: Standard AASHTO
           Specifications (LFD)
    (i)  kMlaMgkat; (Shear): minmankarEbgEckbnÞúkkg; (wheel load) tamTisbeNþaysMrab; wheel
         load b¤ axle load enAxagcug enAeBlKNnakMlaMgkat;xagcug nigRbtikmμenAkñúgFñwmTTwg

         (transverse beam) b¤FñwmbeNþay (longitudinal beam).

    (ii) m:Um:g;Bt;begáag³ FñwmbeNþay (Bending moment: longitudinal beam)

         kñúgkarKNnam:Um:g;begáagenAkñúg longitudinal beam b¤ stringer eKminGnuBaØateGaymankar
         BRgaybnÞúkkg;tamTisbeNþayeT. sMrab;Ggát;ebtugeRbkugRtaMg kñúgkrNI stringer xagkñúg
         m:Um:g;Bt;bnÞúkGefrsMrab; stringer nImYy²RtUv)ankMNt;edayGnuvtþcMENkén wheel load
         eTAelI stringer dUcxageRkam




    (iii) Side by Side Precast Beams in Multi-Beam Decks
          s<anBhuFñwm (multi-beam bridge) RtUv)ansagsg;eLIgCamYynwgFñwmebtugGarem: b¤Fñwmebtug
          eRbkugRtaMgcak;Rsab;Edldak;Ek,rKñaelITMr. GnþrGMeBI (interaction) rvagFñwmRtUv)anbegáIteLIg
          eday continuous longitudinal shear key EdleRbIrYmpSMCamYynwg transverse tie EdlGacrg
          b¤minrgeRbkugRtaMg dUcCab‘ULúg r)arEdk b¤kabeRbkugRtaMg b¤k¾meFüa)ayemkanicepSgeTot.
          eKRtUvkar Full-depth rigid end diaphragm edIm,IFanakarBRgaybnÞúkeGayl¥sMrab;FñwmrUbrag
          channel, single-stemmed tee beam nig multi-stemmed tee beam.

                  kñúgkarkMNt;m:Um:g;Bt;begáagenAkñúgs<anebtugBhuFñwmcak;Rsab; ¬ebtugGarem: b¤eRbkug
          RtaMg¦ eKsnμt;faminmankarBRgaybnÞúkkg;tamTisbeNþayeT. m:Um:g;Bt;begáagbnÞúkGefr
          sMrab;muxkat;nImYy²RtUv)ankMNt;edayGnuvtþcMENkén wheel load ¬TaMgmux nigeRkay¦ Edl
          kMNt;edaysmIkarxageRkameTAelIFñwm
LRFD and Standard AASTHO Design of Concrete Bridges                                                 752
Department of Civil Engineering                                                         NPIC



                                                           S
                                  Load Frcation =
                                                           D
          Edl        S=    TTwgrbs;Ggát;cak;Rsab;
                     D = (5.75 − 0.5 N L ) + 0.7 N L (1 − 0.2C )2     enAeBlEdl C ≤ 5
                     D = (5.75 − 0.5 N L )          enAeBlEdl C > 5
                     NL =    cMnYn traffic lane
                     C = K (W / L )
          Edl        W =  TTwgTaMgmUlrbs;s<anEdlvas;EkgeTAnwgr:tbeNþay
                     L = RbEvgElVgEdlvas;RsbeTAnwgr:tbeNþay. sMrab;r:tEdlman end diaphragm

                          cak;enAnwgkEnøg ykRbEvgcenøaH end diaphragms
                     K = [(1 + μ )I / J ]1 / 2
          RbsinebItMélrbs; I / J FMCag 5.0 karBRgaybnÞúkRtUv)ankMNt;edayeRbIviFIEdlsuRkitCag
          dUcCa Articulated Plate Theory b¤ Grillage Analysis.
          Edl I = mU:m:g;niclPaB
                    J = efrrmYl Saint-Venant

                    μ = pleFobB½rs‘ugrbs;r:t
          sMrab;viFIEdlkat;EtsuRkit eKkMNt;tMélrbs; J edayeRbIsmIkarxageRkam
          sMrab;FñwmctuekaNEdlKμanRbehag/ FñwmGkSr C/ Fñwm Tee
                          J = ∑{1 / 3)bt (1 − 0.630t / b )}
                                (                  3


          Edl         RbEvgrbs;FatubgÁúMctuekaNnImYy²EdlmanenAkñúgmuxkat;
                     b=

                  t = kMras;rbs;FatubgÁúMctuekaNnImYy²EdlmanenAkñúgmuxkat;

          søab nigeCIgrbs;muxkat;EdlmaneCIg b¤muxkat;GkSr C RtUv)anKitCaFatubgÁúMctuekaNdac;
          edayELkEdltMélrbs;vaRtUv)anbUkbBa©ÚlKñaedIm,IKNna J . cMNaMfa sMrab;FñwmctuekaN
          EdlmanRbehagmUl tMélrbs; J GacKitCatMélRbhak;RbEhledayeRbIsmIkarxagelIsMrab;
          muxkat;ctuekaN nigedayminKitRbehag.
          sMrab;Fñwmmuxkat;RbGb;³
                                  J=
                                                       (
                                       2tt f (b − t )2 d − t f   )2
                                        bt + dt f − t 2 − t 2
                                                            f

          Edl        b=   TTwgsrubrbs;RbGb;
karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                              753
T.Chhay                                                                      viTüasßanCatiBhubec©keTskm<úCa

                   d=  kMBs;srubrbs;RbGb;
                  t = kMras;rbs;RTnugTaMgsgçag

                  t f = kMras;rbs;søabTaMgBIr

           rUbmnþsnμt;fasøabTaMgBIrmankMras;esμIKña ehIyeKeRbIkMras;rbs;søabEtmYyeT. dUcKñasMrab;
           RTnug.
                  sMrab;karsikSaKNnabzm eKGaceRbItMélrbs; K xageRkam³




    (iv)   kugRtaMgenAkñúgebtug (Stresses in Concrete)
           krNI I³ bnÞúkTaMgGs;edayrYmbBa©ÚlTaMgeRbkugRtaMg ¬ D + L + P / S ¦
                             f c = 0.6 f 'c
                             f t = 6 f 'c

           krNI II³ eRbkugRtaMg + bnÞúkefrTaMgGs;        ¬D+ P/S ¦
                             f c = 0.4 f 'c
                             f t = 6 f 'c

           krNI III³ 12 ¬eRbkugRtaMg + bnÞúkefr¦ + bnÞúkGefr     [0.5(D + P / S ) + L]
                             f c = 0.4 f 'c
                             f t = 6 f 'c



12.2.3.     m:Um:g;Bt;begáagenAkñúgkMrals<an³ lkçN³bec©keTssþg;dar AASTHO (LFD)
            Bending Moments in Bridge Decks Slabs: Standard AASHTO
            Specifications (LFD)
       karKNnam:Um:g;Bt;manBIrRbePT³ RbePT A nigRbePT B sMrab;EdkBRgwgEdlEkg nigRsb
eTAnwgcracrN_ erogKña.
               S = RbEvgElVgRbsiT§PaB




LRFD and Standard AASTHO Design of Concrete Bridges                                                  754
Department of Civil Engineering                                                           NPIC




                      TTwgrbs;kMralEdleKEbgEck wheel load BIelIva
                     E=

                  P = bnÞúkenAelIkg;xageRkaymYyrbs; truck ¬ P15 b¤ P20 ¦

                 P15 = 12,000lb sMrab;kardak;;bnÞúk HS 15

                  P20 = 16,000lb sMrab;kardak;bnÞúk HS 20

     (a) krNI A- EdkemEkgeTAnwgcracrN_ ¬ElVgEdlmanRbEvgBI 2 eTA 24 ft ¦

         eKkMNt;m:Um:g;bnÞúkGefrsMrab;ElVgsamBaØtamsmIkarxageRkam
         sMrab;kardak;bnÞúk H 20
                                       ⎛S + 2⎞
                                  ML = ⎜     ⎟ P20                                  (12.4a)
                                       ⎝ 32 ⎠
          sMrab;kardak;bnÞúk H 15
                                       ⎛ S + 2⎞
                                  ML = ⎜      ⎟ P15                                 (12.4b)
                                       ⎝ 32 ⎠
         Edl M L KitCa ft − lb / ft énTTwgkMral
                 sMrab;kMralEdlCab;elITMrbI b¤eRcInCagenH eKRtUvGnuvtþemKuNénPaBCab; 0.80 eTAelI
         smIkar 12.4 (a) nig 12.4 (b).
     (b) krNI B- EdkemRsbeTAnwgcracrN_

         sMrab; wheel load TTwgEbgEck E KYresμInwg = 4 + 0.06S ≤ 7.0 ft . Lane loads RtUv)an
         BRgayelITTwg 2E dUcxageRkam³
         sMrab;kardak;bnÞúk H 20
                          S ≤ 50 ft ³            M L = 900 S                         (12.4c)

                          S = 50 − 100 ft ³      M L = 1000 S                        (12.4d)
         Edl M L KitCa ft − lb
                 sMrab;kardak;bnÞúk H 15 kat;bnßy 25% BItMélenAkñúgsmIkar 12.4 (c) nig 12.4(d).

12.2.4.     bnÞúkxül;                   Wind Loads
         edayKitbBa©ÚlbnÞúkxül; épÞRbQmesμInwgplbUkénépÞrbs;Ggát;TaMgGs;edayrYmbBa©ÚlTaMg
RbB½n§kMral nigbgáan; dUceXIjenAkñúgkMritnIv:U 90o eTAnwgG½kSbeNþayrbs;eRKOgbgÁúM. karsikSaKNna
KUrEp¥kelIel,Ónxül; V = 100mph(160km / h). RkLaépÞrgsMBaFRtUv)ankat;dUcerobrab;enAkñúg
AASTHO.


karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                  755
T.Chhay                                                            viTüasßanCatiBhubec©keTskm<úCa

12.2.5.    kMlaMgrBa¢ÜydI            Seismic Forces
        eKGaceRbITaMgviFIkMlaMgsþaTicsmmUl (equivalent static force method) nig response
spectrum method sMrab;karsikSaKNnaeRKOgbgÁúMEdlGgát;TMrmanPaBrwgRkajRbhak;RbEhlKña.

karlMGitmanenAkñúg AASTHO. karerobrab;bEnßmsMrab; earthquake response, fundamental period
énrMj½r nig International Building Code (IBC 2000) RtUv)anerobrab;enAkñúg Nawy. E.G.,
Reinforced Concrete.



12.2.6.    karbnSMbnÞúk AASTHO LFD
           AASTHO LFD Load Combination
        karsikSaKNnaKYrKitRkuménkarbnSMbnÞúkEbbNaedIm,IeGay)anlkçxNÐkugRtaMgGtibrmaenA
kñúgGgát;EdlBicarNa. eKmanRkuménkardak;bnÞúkeRkamlkçxNÐbnÞúkesvakmμ³
                 Rkum I³       D + (L + I ) + CF + E + B + SF

                 Rkum II³      D + E + B + SF + W

                 Rkum III³     D + (L + I ) + CF + E + B + SF + W + WL + LF

                 Rkum IV³      D + (L + I ) + CF + E + SF + (R + S + T )

                 Rkum V³       D + E + B + SF + W + (R + S + T )

                 Rkum VI³      D + (L + I ) + CF + E + B + SF

                 Rkum VII³ D + E + B + SF + EQ
                 Rkum VIII³ D + (L + I ) + CF + E + B + SF + ICE
                 Rkum IX³      D + E + B + SF + W + ICE

                 Rkum X³       D + (L + I ) + E

Edl D = bnÞúkefr
         L = bnÞúkGefr

         I = bnÞúkGefrTgáic

         E = sMBaFdI

         B = PaBGacGENþt (buoyancy)

        W = bgÁúMxül;enAelIGaKar

        WL = bnÞúkxül;enAelIbnÞúkGefr − 100lb / ft


LRFD and Standard AASTHO Design of Concrete Bridges                                        756
Department of Civil Engineering                                                           NPIC




             bnÞúkbeNþayEdl)anBIbnÞúkGefr
           LF =

      CF = kMlaMgcakp©it

      R = karrYjxøIrbs; rib

      S = karrYmmaD

      T = sItuNðPaB

      EQ = kMlaMgrBa¢ÜydI

      SF = sMBaFrMhUrrbs;Twk

      ICE = sMBaFTwkkk

      sMrab; load factor design eKRtUvKuN)a:ra:Em:RtelIkmunCamYynwgemKuNbnÞúkenAkñúgtarag
12>1(b).
      sMrab;bnÞúkemKuN tMélRKumKW
               elxRkum (N ) = γ [β D D + β L (L + I ) + β C CF + β E E + β B B + β S SF
                                     + βW W + βWLWL + β L LF + β R (R + S + T )
                                     + β EQ EQ + β ICE ICE ]                         (12.5)

       emKuNbnÞúkEdlRtUvGnuvtþeTAelIbnSMbnÞúkKWdUcxageRkam³
              β E = 0.7 sMrab;bnÞúkbBaÄrenAelIRbGb;ebtugGarem:
                  = 1.0 sMrab;bnÞúkxag (lateral load) enAelIRbGb;ebtugGarem:

                  = 1.0 sMrab;bnÞúkbBaÄr nigbnÞúkxagenAelIlU (culvert) déTeTot

                  = 1.0 nig 0.5 sMrab;bnÞúkxagenAelIeRKagrwg ¬RtYtBinitükardak;bnÞúkEdllub

                    sMrab;RkumCak;lak;¦
              β E = 1.3 sMrab;sMBaFxagrbs;dIenAeBlRtYtBinitüm:Um:g;viC¢manenAkñúgeRKagrwg (rigid
                    frame) lU b¤lURbGb;ebtugGarem:

              β D = 0.75 enAeBlRtYtBinitüGgát;sMrab;bnÞúktamG½kSGb,brma nigm:Um:g;Gtibrma
                    sMrab;cMNakp©itGtibrma sMrab;karsikSaKNnassr.
                  = 1.0 enAeBlRtYtBinitüsMRab;bnÞúktamG½kSGtibrma nigm:Um:g;Gb,brma

                  = 1.0 sMrab;Ggát;rgkarTaj nigkarBt;begáag.

       tarag 12>1 (b) eGaytMélénemKuN β sMrab;)a:ra:Em:RtbnÞúkepSg²enAkñúgsmIkar 12.5
sMrab;lkçN³bec©keTs standard AASTHO.

karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                  757
T.Chhay                                                               viTüasßanCatiBhubec©keTskm<úCa




12.2.7.    karbnSMbnÞúk LRFD
           LRFD Load Combinations
        karbnSMbnÞúkedayeRbIlkçN³bec©keTs LRFD xusKñaBIlkçN³bec©keTs standard AASTHO.
taragxageRkam ³ 12>2 eTAdl; 12>3 bgðajBIbnSMbnÞúktMrUvkar ehIytarag 12>4 dl; 12>7 bgðaj
BIsmIkarkMlaMgkat; nigsmIkarm:Um:g;EdlRtUveRbIenAkñúgkarsikSaKNna. Epñk 12.1.1 bgðajBIemKuNer
sIusþg; LRFD φ EdlxusKñaBIemKuNkat;bnßyersIusþg; standard AASTHO φ . eKRtUvcMNaMfa enAkñúg



LRFD and Standard AASTHO Design of Concrete Bridges                                           758
Department of Civil Engineering                                                    NPIC




lkçN³bec©keTs standard eKeRbI lane load b¤ truck load kñúgkarKNnabnÞúkGefr. lkçN³bec©keTs
LRFD TamTareGayeRbInUvbnSMrvag lane load nig truck load kñúgkarkMNt;bnÞúkGefr.




karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                         759
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa




       tMélemKuNersIusþg; LRFD φ RtUv)aneGayenAkñúgtarag 12>1 (a).
       eKGaceRbIsmIkarenAkñúgtarag 12>4 nig 12>5 edIm,IKNnam:Um:g;Bt;begáagGtibrma nigkMlaMg
kat;GtibrmaRKb;cMnucTaMgGs;kñúgmYy lane sMrab; HS 20 truck CamYynwgkarkMNt;EdlbgðajenAkñúg
tarag. eKyktMélEdlKNnaRtwmBak;kNþaledIm,ITTYl)ankMlaMgkat; nigm:Um:g;kñúgExSkg; (line of
wheel).

       smIkarenAkñúgtaragRtUv)ankMNt;RtwmElVgTMrsamBaØ nigminrYmbBa©ÚlT§iBlTgáiceT.
       eKGackMNt;m:Um:g;Bt;Gtibrma nigkMlaMgkat;GtibrmakñúgmYy lane enARtg;cMnucNamYyenAelI
ElVgsMrab; lane load 0.64kip / ft BIsmIkarEdlsMrYlehIydUcxageRkam³
                kMlaMgkat;Gtibrma VLL = 02.64 (L − x)2
                                                L
                                                                                  (12.6a)

                                               0.64( x )(L − x )
                m:Um:g;Gtibrma          M LL =
                                                      2
                                                                                  (12.6b)

Edl x = cMgayBITMrxageqVg
        L = ElVgFñwm
          LL = lane load
                          TamTarT§iBlTgáic (impact factor) FMCag standard specification. ehIy
          LEFD Specification

vak¾TamTarnUvkarBicarNaBIsßanPaBkMNt; fatigue. sMrab; fatigue eKRtUvBicarNa truck load Biess.

LRFD and Standard AASTHO Design of Concrete Bridges                                             760
Department of Civil Engineering                                                         NPIC




vapSMeLIgBI single design truck EdlmanTMgn; axle dUcKñanwgGIVEdleRbIenAkñúgsßanPaBkMNt;déTepSg
eTot b:uEnþvamanKMlatefr 30 ft cenøaH axle 32kips . tarag 12>6 bgðajBI impact factor IM sMrab;
RbePTsßanPaBkMNt;epSg².
         tarag 12>7 bgðajBIsmIkarsMrab;KNnam:Um:g;Bt;GtibrmakñúgmYy lane EdlbNþalBIkardak;
bnÞúk HL-93 fatigue truck. eKRtUvKuNtMélEdlTTYl)anBItaragedayemKuN 0.5 edIm,ITTYl)antMél
kñúgmYyExSkg;rfynþ (line of wheel).




karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                               761
T.Chhay                                                              viTüasßanCatiBhubec©keTskm<úCa

                              Ca HL-93 truck configuration EdlrYmmanbnSM³
          LRFD design live load

    (a) Design truck b¤ design tandem CamYynwg dynamic allowance. Design truck KWdUcKñanwg

        HS20 design truck EdlmankMNt;enAkñúg Standard AASTHO specification. Design

        tandem pSMeLIgeday axle 25kips mYyKUr EdlmanKMlatBIKña 4 ft .

    (b) Design lane load 0.64kip / ft edayminman dynamic allowance.




LRFD and Standard AASTHO Design of Concrete Bridges                                          762
Department of Civil Engineering                                                            NPIC




12.3. karBicarNaBIkarsikSaKNnakarBt;begáag Flexural Design Considerations
12.3.1. bMErbMrYlénbMErbMrYlrageFob ε nigemKuN φ ³ viFIbMErbMrYlrageFobkMNt;
            Strain ε and Factor φ Variations: The Strain Limits Approach
         sMrab;kareFVIkarCalkçN³sVit (ductile behavior) rbs;muxkat; PaKryEdkBRgwgRtUvmantMél
tUcCagPaKrybMErbMrYlrageFobkMNt;lMnwg (balanced limit strain) EdlrgkarBt;begáag dUcbgðajenA
kñúgEpñk 4.12.3. eKminRtUvkareRbIEdnx<s;bMputénbrimaNEdkenAkñúgFñwmeT RbsinebIbMErbMrYlrageFob
minFMCagbMErbMrYlrageFobkMNt; ehIyeKeRbIemKuN φ smrmü. bMErbMrYlrageFobrgkarTajEdnx<s;bM
put ε t = 0.005in. / in. edaysarbMErbMrYlrageFobkMNt;mantMélRbhak;RbEhlnwg 75%énPaKry
Edk balanced enAkñúg code elIkmun ehIyvaCaeKalkarN_rbs;viFIenH ¬rUbTI 12>6¦. eKKitBicarNa
bMErbMrYlrageFobkMNt;enARtg;nIv:UEdkrgkarTajxageRkAbMput mann½yfa enARtg;TIRbCMuTMgn;énRsTab;
EdkEdlenAEk,répÞrgkarTajrbs;muxkat;CageK. kan;EtCak;ElkCagenH ε t = 0.0041 EdlRtUvnwg
 f y ≅ 230,000 psi enAkñúgEdkeRbkugRtaMg.

         sMrab;viFI AASTHO LRFD tMélkMNt;rbs;pleFobkMBs;G½kSNWt c elIkMBs;RbsiT§PaB
rbs;Fñwm d t RtUv)aneKykesμInwg 0.42 enAkñúgviFIbMErbMrYlragkMNt; (strain limits approach) EdleK
GacehAmüa:geTotfa unified approach. viFIenHCaviFIEdlFana strain-compatibility edayeRbIbMEr
bMrYlFmμta nigsmIkarkugRtaMgedayminKitfaGgát;enHBRgwgedayEdk b¤edayeRbkugRtaMg b¤edayeRb
kugRtaMgedayEpñk. kMBs; d t enAkñúgpleFob c / d t køayCa d p RbsinebIeKmineRbIEdkBRgwgFmμtaeT
enaH. tarag 12>9 énEpñk 12.7 bgðajBIkareRbobeFobTUeTArvagviFIsaRsþ ACI nig LRFD sMrab;
kMNt;EdktMrUvkarenAkñúgGgát;rgkarBt;begáag.
         eKRtUveRbItMélbMErbMrYlrageFob ε t FMCag 0.005in. / in. dUcCag 0.007 eTA 0.009in. / in. .
sMrab;muxkat; beam-column bMErbMrYlrageFobénmux limit compression-controlled KW ε t = 0.002 .
karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                 763
T.Chhay                                                                  viTüasßanCatiBhubec©keTskm<úCa

eKeRbI ε t = 0.002 CaeKalsMrab; yield strain dMbUg ε y = f y / Es = 0.002 eTaHbICatMélenHGacERb
RbYledayGaRs½yeTAnwgRbePTEdkEdleRbIk¾eday. rUbTI 12>7 bgðajBIEdnkMNt;énbMErbMrYlrag
eFobsMrab;muxkat;ebtug tension-controlled nig compression-controlled sMrab;RKb;krNITaMgGs;
¬BRgwgedayEdk nigrgeRbkugRtaMg¦ Edl ε t = 0.003(dt / c − 1) .




LRFD and Standard AASTHO Design of Concrete Bridges                                              764
Department of Civil Engineering                                                         NPIC




        enAeBl net tensile strain enAkñúgEdkrgkarTajxageRkAbMputFMRKb;RKan; ¬FMCag b¤esμInwg
0.005 ¦ muxkat;RtUv)ankMNt;Ca tensioned-controlled section EdlvamankarRbkasGasnñBIkar)ak;

RKb;RKan;CamYynwgPaBdabFM nigekItmansñameRbH. enAeBlEdl net tensile strain enAkñúgEdkrgkar
TajxageRkAbMputtUc ¬tUcCag b¤esμInwg compression-controlled strain limit¦ eKrMBwgvanwgekItman
lkçxNÐ)ak;edaylkçN³RsYy CamYynwgkarRbkasGasnñBIkar)ak;d¾tictYcbMput.
        lkçxNÐ balanced strain ekItmanenARtg;muxkat;EdlbMErbMrYlrageFobGtibrmaenAsrésrgkar
sgát;xageRkAbMputmantMélesμInwg 0.003 kñúgeBldMNalKñaCamYynwg yield strain dMbUg ε y = f y / Es
enAkñúgEdkrgkarTajEdlRtUvnwg net tensile strain enAkñúgEdkrgkarTajEdlkMNt;enAkñúgviFIenH enA
eBlEdltMélrbs; ε t = 0.002in. / in. .
        eKminGaceRbIviFIenHenAkñúgkarKNnaFñwmEdlrgkarBt;begáagEdlminrgkarsgát;eT. enAkñúg
Ggát;EbbenH bMErbMrYlrageFob ε t enAkñúgEdkrgkarTajxageRkAbMputminRtUvFMCag 0.0075 sMrab;kar
Gnuvtþ.

12.3.2.     ersIusþg;m:Um:g;Bt;begáagemKuN          Factored Flexural Resistance
          m:Um:g;Tb;Tl;karBt;begáagemKuN
                     M t = φM n                                                    (12.7)
EdlemKuNersIusþg; φ = 1.0 .
        enAkñúgkarviPaK strain compatibility eKENnaMeGaykat;bnßyemKuN φ BItMél 1.0 sMrab; net
tensile strain 0.005 eTA 0.7 sMrab; net tensile strain 0.002 enAkñúgEdkrgkarTajxageRkAbMput man

n½yfa
                                           ⎡d       ⎤
                     0.7 ≤ φ = 0.50 + 0.30 ⎢ ext − 1⎥ ≤ 1.0                        (12.8)
                                           ⎣ c      ⎦
Edl dext Ca dt énRsTab;xageRkAbMputrbs;EdkBRgwg KWRsTab;EdkEdlenAEk,rsrésrgkarTajxag
eRkAbMputrbs;muxkat;ebtugeRbkugRtaMg.

12.3.3.     )a:r:aEm:RtKNnakarBt;begáag             Flexural Design Parameters
       smIkarsMrab;KNnaersIusþg;m:Um:g; nominal rbs;muxkat;eRbkugRtaMgeday LRFD method KW
Rsedonwg standard AASTHO ehIyk¾RsedogKñanwgviFIsaRsþKNnaersIusþg;rbs; ACI 318 EdlENnaM

karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                765
T.Chhay                                                                             viTüasßanCatiBhubec©keTskm<úCa

enAkñúgEpñk 4.11 énCMBUk 4. ersIusþg;KNnacugeRkay (ultimate design strength) f ps énEdkBRgwg
EdlGacKNnatamviFI strain-compatibility dUckñúg]TahrN_ 4>19 b¤edayviFIRbEhl (approximate
method) EdleRbIsmIkarxageRkam³
                               ⎛        c ⎞
                   f ps = f pu ⎜1 − k     ⎟                                                       (12.9a)
                               ⎜       dp ⎟
                               ⎝          ⎠
                         ⎛         f py ⎞
Edl                k = 2⎜1.04 −
                         ⎜
                                        ⎟
                                   f pu ⎟
                                                                                                  (12.9b)
                         ⎝              ⎠
                      = 0.28         sMrab; low relaxation steel
sMrab; unbonded tendons/
                                     ⎛ dp −c⎞
                    f ps = f pe + 900⎜
                                     ⎜ l
                                            ⎟
                                            ⎟                                                     (12.9c)
                                     ⎝ e ⎠
Edl       le = 2li / (2 + N s )

             RbEvg embedment/ li = RbEvgkabeRbkugRtaMgcenøaH anchorage/ N s = cMnYn tendon
          le =

enAkñúg standard AASTHO specification eKGac)a:n;RbmaNkugRtaMgmFümdMbUgenAkñúgEdkeRbkug
RtaMgBIsmIkarxageRkam³
                                ⎛   γ  f pu ⎞
                    f ps = f pu ⎜1 − ρ
                                ⎜ β
                                            ⎟                                                     (12.9c)
                                ⎝    1 f 'c ⎟
                                            ⎠
eKTTYl)ankMBs;rbs;G½kSNWt c BIsmIkarxageRkam³
   (a) muxkat;EdkDub (Doubly reinforced section)³

                        A ps f pu + As f y − A' s f ' y
                   c=                                                                             (12.10)
                                                f pu
                         0.85 f 'c β1 + kA ps
                                                dp

        Edl f ' y = yield strength rbs;Edkrgkarsgát;
    (b) muxkat;mansøab (Flanged section)³

                        Aps f pu + As f y − A' s f ' s −0.85 f 'c β1 (b − bw )h f
                   c=                                                                             (12.11)
                                                                f pu
                                    0.85 f 'c β1bw + kAps
                                                                dp

          Edl      bw = TTwgRTnug
                   d p = cMgayBIsrésrgkarsgát;xageRkAbMputeTATIRbCMuTMgn;rbs;EdkeRbkugRtaMg



LRFD and Standard AASTHO Design of Concrete Bridges                                                         766
Department of Civil Engineering                                                                NPIC




12.3.4.     EdnkMNt;rbs;EdkBRgwg                    Reinforcement Limits
     (a)   EdnkMNt;EdkBRgwgGtibrma (Maximum reinforcement limits)³
           brimaNGtibrmarbs;EdkrgeRbkugRtaMg b¤EdkminrgeRbkugRtaMgRtUvmantMély:agNaedIm,I
                                   c
                                     ≤ 0.42                                               (12.12a)
                                  de
                                       A ps f ps d p + As f y d s
           Edl                    de =
                                          A ps f ps + As f y
                                                                                          (12.12b)

     (b)   EdnkMNt;EdkBRgwgGb,brma (Minimum reinforcement)³
           enARKb;muxkat;TaMgGs; brimaNEdkrgeRbkugRtaMg nigEdkminrgeRbkugRtaMgRtUvRKb;RKanedIm,I
           begáItersIusþg;Tb;Tl;karBt;begáagemKuN M t y:agehacNas;RtUvesμInwg 1.2M cr EdlkMNt;
           edayEp¥kelIeKalkarN_viPaKeGLasÞic b¤esIμnwg 1.33dgénm:Um:g;emKuNEdlTamTaredaybnSM
           bnÞúk.
                                                                   ⎡S      ⎤
                                  M cr = ( f r + f ce )S b − M dnc ⎢ bc − 1⎥              (12.13)
                                                                   ⎣ Sb    ⎦
           Edl       M dnc =    m:Um:g;EdlbNþalBI non-composite dead load
                     Sb = m:UDulmuxkat; non-composite

                     S bc = m:UDulmuxkat;smas

                     f r = m:UDuldac; (modulus of rupture) = 7.5 f 'c psi = 0.24 f 'c ksi

                     f ce = kugRtaMgsgát;enAkñúgebtugedaysarEteRbkugRtaMgRbsiT§PaB ¬eRkaykMhatbg;¦

                            enARtg;srésrgkarTajxageRkAbMputrbs;muxkat;EdlkugRtaMgTajekItBIbnÞúk
                            xageRkA.

12.4.    karBicarNaBIkarsikSaKNnakMlaMgkat;                         Shear Design Considerations
12.4.1. The Modified Compression Field Theory
        RTwsþI compression field sMrab;kMlaMgkat; nigsMrab;kMlaMgkat;EdlpSMCamYynwgkarrmYlRtUv)an
erobrab;enAkñúgEpñk 5.17.3 énCMBUk 5. enAeBlEdlmankarrmYl eKsnμt;faebtugminTb;Tl;karTajeT
bnÞab;BImansñameRbH ehIyEdn (field) én compressive strut Tb;Tl;kMlaMgkat;Ggát;RTUg. mMu θ rbs;
strut enHERbRbYlGaRs½ynwgbMErbMrYlrageFobbeNþay (longitudinal strain), bMErbMrYlrageFobxag

(transverse strain) nigbMErbMrYlrageFobem (principal strain) enAkñúgRTnug³



karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                        767
T.Chhay                                                                      viTüasßanCatiBhubec©keTskm<úCa
                               ε x − ε2
                   tan 2 θ =                                                               (12.14)
                               εt − ε2
Edl       εx =bMErbMrYlrageFobbeNþayrbs;RTnug ¬rgkarTaj viC¢man¦
        ε t = bMErbMrYlrageFobTTWg ¬rgkarTaj viC¢man¦
        ε 2 = bMErbMrYlrageFobrgkarsgát;em GviC¢man
rUbTI 12>8 bgðajEdnkugRtaMg (stress field) enAkñúgRTnugrbs;FñwmEdlminrgeRbkugRtaMgmun nigeRkay
eBlmansñameRbH. muneBlFñwmeRbH kMlaMgkat;RtUv)anTb;Tl;edaykugRtaMgTajGgát;RTUg nigkugRtaMg
sgát;Ggát;RTUgesμIKña edayeFVIGMeBItammMu 45o ¬rUbTI 12>8(a)¦. eRkayeBlmansñameRbH sñameRbH
Ggát;RTUgEdlekItBIkugRtaMgTajenAkñgebtugRtUv)ankat;bnßyy:ageRcIn.
                                      ú




        enAkñúgRTwsþI compression field eKsnμt;fakugRtaMgTajem f1 = 0 dUcenAkñúgrUbTI 12>8 (b)
eRkayeBlebtugeRbH. RTwsþI modified compression field KitbBa©ÚlkarcUlrYménkugRtaMgTajenA
kñúgebtugcenøaHsñameRbH dUcenAkñúgrUbTI 12>8 (c). BIrgVg;kugRtaMgm: (Mohr’s stress circle) enAkñúgrUb
TI 5>2 (b) enAkñúgCMBUk 5 CamYynwgrUbTI 12>8 (c) eKGacTTYl)ansmIkarxageRkam
                   f 2 = (tan θ + cot θ )v − f1                                            (12.15a)
EdlkugRtaMgkMlaMgkat;Gnuvtþn_KW
                   v=
                         V
                              =
                                  (
                                Vu − θV p     )                                            (12.15b)
                        bw jd    φbw d v
      (
dv = d p − a / 2   ) nig bw = TTwgRTnugRbsiT§PaB. eKGackMNt;EdkRTnugrgkarTaj (tension web
reinforcement) Av      EdlTamTarsMrab;eFVIeGaykugRtaMgsgát;manlMnwgdUcxageRkam
                   Av f v = ( f 2 sin 2 θ − f1 cos 2 θ )bw s                               (12.16)




LRFD and Standard AASTHO Design of Concrete Bridges                                                  768
Department of Civil Engineering                                                              NPIC




Edl Av fv CabgÁúMbBaÄrén balancing tensile force edIm,IbiTP¢ab;sñameRbHeRTtEdlmanmMu θ nig f v
CakugRtaMgmFümenAkñúgEdkkgbBaÄr. edayCMnYs f 2 enAkñúgsmIkar 12.15(a) eTAkñúgsmIkar 12.16
eyIg)an³
                                            Av f v
                     V = f1bw d v cot θ +          d v cot θ                         (12.17)
                                              s
Edl V tMNageGayVn ehIyvaesμInwg (Vc + Vs ) / Edl Vs CakMlaMgkat;EdlTb;Tl;edayEdkkg
bBaÄr.

12.4.2.     smIkarKNna                Design Expressions
       tamkarsnμt;EdlmanlkçN³sMrYl eKGacerobcMsmIkareKalén modified compression field
theory eLIgvij dUcenHeKGackMNt;ersIusþg;kMlaMgkat; nominal Vn enAkñúgebtugeRbkugRtaMg

                     Vn = Vc + Vs + V p                                              (12.18)

Edl        Vc = ersIusþg;kMlaMgkat; nominal EdleGayedaykugRtaMgTajenAkñúgebtug
           Vs = ersIusþg;kMlaMgkat; nominal EdleGayedaykugRtaMgTajenAkñúgEdkRTnug

           V p = ersIusþg;kMlaMgkat; nominal EdleGayedaybgÁúMkugRtaMgbBaÄrénEdkeRbkugRtaMg

                 harped b¤ draped tamTisbeNþay.


12.4.2.1. AASTHO Standard Specification (LFD)
        karpþl;eGayrbs; AASTHO standard nig ACI 318 KWmanlkçN³RsedogKña edayeKyk Vc
nUv tMélEdltUcCagkñúgcMeNamsmIkarTaMgBIrxageRkamEdlbgðaj nigerobrab;y:aglMGitenAkñúgEpñk
5.5.1 nig 5.5.2 énCMBUk 5³

    (a) kMlaMgkat;Bt;begáag (Flexural shear)³

                                             Vi M cr
                     Vci = 0.6 f 'c bw d +                                           (12.19)
                                             M max
     (b)   kMlaMgkat;RTnug (Web shear)³
                  Vcw = [3.5 f 'c + 0.3 f c ]bw d + V p                              (12.20)

           sMrab; AASTHO smIkarm:Um:g;eRbH (cracking moment) KW
                                  (
                      M cr = St 6 f 'c + f pe − f d    )

karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                   769
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa

12.4.2.2. LRFD Specification
        karpþl;eGayrbs; LRFD AASTHO TTYlsÁal;viFIBIr³
    (a) Strut-and-tie model EdlGacGnuvtþ)anRKb;ragGrNImaRtrbs;muxkat;TaMgGs;Edlman

        lkçN³Fmμta nigminCab;.
    (b) Modified compression field EdlEp¥lelIm:UEdl truss EdlmanmMuERbRbYl EdlenAkñúgenaHeK

        GnuBaØateGayERbRbYlCMralrbs; diagonal compression field. vaxusBIviFI LFD Rtg;kar
        snμt;mMu θ eGayesμInwg 45o ¬EdlkñúgenHebtugsuT§k¾cUlrYmeFVIkarEdr¦ ehIy Vc RtUv)anGnuvtþ
        karTajEdlqøgkat; compression diagonal dUcerobrab;enAkñúgEpñk 12.4.1.
    eKykersIusþg; nominal nUvtMélEdltUcCageKkñúgcMeNam³
                   Vn = Vc + Vs + V p                                                 (12.21)

b¤                 Vn = 0.25 f 'c bv d v                                              (12.22)

Edl          TTwgRTnugRbsiT§PaB
          bv =

       d v = kMBs;kMlaMgkat;RbsiT§PaB ≈ (d p − a / 2 )

       a = kMBs;rbs;bøúksgát;

       muxkat;eRKaHfñaksMrab;kMlaMgkat;sßitenAcMgay dv b¤ (0.5dv cot θ ) edayykmYyNaEdlFM
Cag. eKyktMél dv BIkarKNnaersIusþg;Bt;begáagkNþalElVg.
       ersIusþg;kMlaMgkat; nominal rbs;ebtugsuT§ Vc EdlKitCa psi KW
                   Vc = β     f 'c bv d v                                             (12.23)

nigKitCa ksi
                   Vc = 0.0361β         f 'c bv d v                                   (12.24)

emKuN 0.0361 KW 1 / 1000 EdlCaemKuNsMrab;bMElgBI psi eTA ksi .
      eKykersIusþg;kMlaMgkat;énkarcUlrYmrbs;EdkRTnugbBaÄrKW
                          Av f y d v cot θ
                   Vs =                                                               (12.25)
                                   s
eKRtUvdak;Edkkg (transverse shear reinforcement) enAeBlEdlkMlaMgkat;emKuN Vu FMCaglT§PaB
Tb;kMlaMgkat;rbs;ebtugsuT§ b¤
                               (
                   Vu > 0.5φ Vc + V p        )                                        (12.26)

EdlemKuNkat;bnßyersIusþg; φ RtUv)anykBItarag 12>1(a).


LRFD and Standard AASTHO Design of Concrete Bridges                                             770
Department of Civil Engineering                                                                    NPIC




        elIsBIenH enAeBlEdlkMlaMgRbtikmμrbs;FñwmbBa¢Únkarsgát;eTAcugrbs;Ggát;dUcEdlekItman
enAkñúgkrNICaeRcIn eKykmuxkat;eRKaHfñak;enARtg;TItaMgq¶ayCag 0.5dv cot θ b¤ dv EdlvaBIépÞrbs;
TMr.
        edIm,IkMNt;ersIusþg;kMlaMgkat; nominal rbs;Ggát;eRbkugRtaMg visVkrKNnaeRKOgbgÁúMRtUvkMNt;
tMélrbs; β nig θ EdlRtUvkatsMrab;kMNt;Vc nig Vs enAkñúgsmIkar 12.21 nig 12.22. sMrab;muxkat;
ebtugminrgeRbkugRtaMg eKyk β = 2.0 nigθ = 45o . sMrab;muxkat;ebtugeRbkugRtaMg/ trial-and-
adjustment eRbItMél β tUc. tarag 12>8 bgðajBItMélrbs; β nig θ sMrab;tMélepSg²rbs; ε x .




     eKTTYl)anbMErbMrYlrageFob ε x enAkñúgEdkrgkarTajBIsmIkarxageRkam RbsinebImuxkat;y:ag
ehacNas;manEdkTTwg (transverse reinforcement) Gb,brma
                          ⎡ Mu                                   ⎤
                          ⎢ d + 0.5 N u + 0.5Vu cot θ − Aps f po ⎥
                     εx = ⎢ u                                    ⎥ ≤ 0.002
                          ⎢               (
                                   2 Es As + E ps A      )       ⎥
                                                                                             (12.27)
                          ⎢
                          ⎣                                      ⎥
                                                                 ⎦
Edl                     .
           f po ≅ 0.70 f pu

          eKRtUvKuNtMélenAkñúgsmIkar 12.27 nwgBIr RbsinebImuxkat;manEdkkgticCagEdkkgGb,-
brma.
          kugRtaMg     f po   CakugRtaMgenAkñúgkabeRbkugRtaMgenAeBlGnuvtþeRbkugRtaMg (jacking) sMrab;Ggát;
karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                           771
T.Chhay                                                                           viTüasßanCatiBhubec©keTskm<úCa

rgeRbkugRtaMgCamun (pretensioned member) ehIysMrab;suvtßiPaB vaCakugRtaMgmFümsMrab;EdkeRb
kugRtaMgenAkñúgGgát;rgeRbkugRtaMgCaeRkay (post-tensioned member). sMrab;kabeRbkugRtaMgFmμta
eKyk f po = 0.75 f pu sMrab;TaMgGgát; pretensioned nigTaMgGgát; post-tensioned.
         f ce = kugRtaMgsgát;rbs;ebtugenARtg;TIRbCMuTMgn;rbs;muxkat;smasEdlTb;Tl;nwgbnÞúkGefr

                b¤enARtg;TIRbsBVrvagRTnug nigsøab RbsinebIvasßitenAkñúgsøabEdlbNþalBIeRbkugRtaMg
                nigm:Um:g;Bt;EdlTb;Tl;edaymuxkat;cak;Rsab;EdleFVIkarEtxøÜnÉg mann½yfamunnwgeFVI
                karCamuxkat;smas.
         f pe = kugRtaMgRbsiT§PaBenAkñúgEdkeRbkugRtaMgeRkayeBlxatbg;/ CalkçN³suvtßiPaB eKyk

                 f po CaeRbkugRtaMgRbsiT§PaB f pe .

        RbsinebIbMErbMrYlrageFobenAkñúgEdkrgkarTajGviC¢man eKRtUvKuN ε x CamYynwgemKuN Fε
EdlmansmIkardUcxageRkam
                             Es As + E ps Aps
                  Fε =                                                                          (12.28)
                         Ec Ac + Es As + E ps Aps

Edl       Ac =   RkLaépÞrbs;muxkat;ebtugénEpñkrgkarTajedaykarBt;begáagrbs;Ggát; dUcbgðajenA
                  kñúgrUbTI 12>9.




          EdkbeNþayRtUvmansmamaRty:agNaedIm,IeGaymuxkat;FñwmnImYy²bMeBjsmIkarxageRkam³
                                       Mu        N    ⎛V                ⎞
                 As f s + Aps f ps ≥        + 0.5 u + ⎜ u + 0.5Vs + V p ⎟ cot θ
                                                      ⎜φ                ⎟                       (12.29)
                                       d vφ       φ ⎝                   ⎠
       BIsmIkar AASTHO elIkmun GBaØat β CaemKuNy:agsMxan;kñúgkarkMNt;ersIusþg;kMlaMgkat;
Fmμta (nominal) Vc dUcenAkñúgsmIkar 12.21. karbgðajtMélrbs; β EdlEp¥kelI compression

LRFD and Standard AASTHO Design of Concrete Bridges                                                       772
Department of Civil Engineering                                                                NPIC




field theory enAkñúgtarag 12>8 bgðajfatMélTaMgenHhak;minGaceRbI)ansMrab;pleFob (v / f 'c )
FMCag 0.125 enAeBlEdlbMErbMrYlrageFobtUcCag 0.005 . Hsu )anerobrab;nUvPaBBi)akenH EdlekIt
eLIgenAeBlkMNt;tMélkugRtaMgkMlaMgkat;sñameRbH (crack shear stress) vci mann½yfa lT§PaBén
crack interface edIm,IepÞrkugRtaMgkMlaMgkat;EdlGaRs½yelITMhMsñameRbH w enAkñúgsmIkarxageRkam
                                2.16 f 'c                           0.18 f 'c
                     vci ≤                   psi, w(in.)   vci ≤                 MPa, w(mm )
                                      24 w                                 24 w
                             0 .3 +                                0 .3 +
                                    a + 0.63                              a + 16
          HsuesñIeGayeRbI vci = 0 edIm,IrkSalMnwg nigPaBRtUvKña (compatibility). ehIy mMusñameRbH
θ enAkñúgtY Vs énsmIkar 12.25 KWCamMucenøaHkugRtaMg¬bMErbMrYlrageFob¦EdkbeNþay nigkugRtaMg ¬bMEr
bMrYlrageFob¦sgát;emrbs;ebtug. edaysarEbbenH kugRtaMgkMlaMgsgát;tambeNþayG½kSemesμInwg
sUnü. ehIy karerobrabenHGnuvtþenAkñúgkarpþl;eGayrbs; LRFD sMrab;krNIénbnSMkMlaMgkat; nigkar
rmYl.

12.4.2.3.      KMlatGtibrmarbs;EdkRTnug
               Maximum Spacing of Web Reinforcement
          KMlatGnuBaØatGtibrma s rbs;EdkRTnugKWtMélEdltUcCageKkñúgcMeNam
                 s ≤ 0.75h       b¤ 24in.
          RbsinebI Vs > 4 f 'c bwd / KMlatGnuBaØatGtibrmaRtUv)ankat;bnßy 50% .

12.5. Horizontal Interface Shear
        eKalkarN_én horizontal interface shear eRkamGMeBI service load nig ultimate load RtUv)an
erobrab;eBjeljenAkñúgCMBUk 5 Epñk 5.7 EdlrYmman]TahrN_bgðajEdlGnuelamtamtMrUvkar ACI
318 nig PCI. AASTHO standard specification tMrUveGayersIusþg;kMlaMgkat;tamTisedk nominal

Vnh dUcKñanwgersIusþg;kMlaMgkat;rbs; ACI enAeBlEdleKmineRbI dowel reinforcement mann½yfakug

RtaMgGnuBaØatGtibrmaKW 80 psi . vaxusKña enAeBleKeRbI dowel reinforcement Gb,brma Edlkñúg
enaHkugRtaMgkMlaMgkat;edkGnuBaØatGtibrmaKW 350 psi EdlCMnYseGay 500 psi EdlGnuBaØateday
ACI.

        tamkarGegát nigBiesaFn_d¾sIuCMerArbs; Nawy )anbgðajeGayeXIjfakugRtaMgGnuBaØatBitCa
tUcEmnETn. karBiesaFbgðajfa sUm,IEtersIusþg;dMbUgeRkamlkçxNÐsItuNðPaB sub-freezing/ vaGac

karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                     773
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa

TTYlersIusþg;eRkamGMeBI ultimate load FMCag 1200 psi(8.3MPa) edayeRbI dowel reinforcement
bBaÄr.
        Standard AASTHO TamTardUcxageRkam³

    (a) enAeBleKmindak; vertical ties
                   Vnh = 80bv d                                                       (12.30a)
     (b)   enAeBleKmindak; vertical ties Gb,brma
                   Vnh = 500bv d                                                      (12.30b)
     (c)   RkLaépÞtMrUvkarrbs; Avh FMCag vertical ties Gb,brma
                                                      dp
                   Vnh = 500bv d + 0.40 Avh f y                                       (12.30b)
                                                      s
           Edl kMlaMgkat;bBaÄremKuN Vu = φVnh
                  Vnh = ersIusþg;kMlaMgkat;edk nominal

                   φ = 0.90
                    Gb,brma = 50bv s / f y
                   Avh

               bv = TTwgrbs;muxkat;enARtg;épÞb:HEdlRtUvviPaKkMlaMgkat;edk

               b p = cMgayBIsrésrgkarsgát;xageRkAbMputeTATIRbCMuTMgn;rbs;EdkeRbkugRtaMg b:uEnþ

                     minRtUvyktUcCag 0.80h
               s = kMlatGtibrmarbs; dowel b:uEnþminRtUvFMCagbYndgénTTwgRTnugEdltUcCageK

                   rbs;Ggát;TMr b¤ 24in. .
        LRFD specification min)anpþl;nUveKalkarN_ENnaMsMrab;KNnakMlaMgkat;edk Vnh eT.

dUcenH eKGaceRbIsmIkarxageRkam
                            Vu
                   vuh =                                                              (12.31)
                           bv d v
Edl          kugRtaMgkMlaMgkat;edkemKuN
           vuh =

       Vu = kMlaMgkat;bBaÄremKuN

       d v = cMgaycenøaHkMlaMgpÁÜbénkMlaMgTaj nigénkMlaMgsgát; = (d − a / 2 )

       bv = TTwg interface

       LRFD kMNt;eGayKNnaersIusþg;kMlaMgkat; nominal rbs; interface surface Vn edayeRbI

smIkarxageRkam³
                                    [
                   Vn = cAcv + μ Av f y + Pc     ]                                    (12.32)


LRFD and Standard AASTHO Design of Concrete Bridges                                             774
Department of Civil Engineering                                                              NPIC




nig                  vuh Acv ≤ φVn                                                     (12.33)

Edl        c=emKuNs¥it (cohesion factor)
        μ = emKuNkkit
        Acv = RkLaépÞ interface rbs;ebtugEdlBak;B½n§nwgkarepÞrkMlaMgkat;

        Avf = RkLaépÞrbs;EdkkMlaMgkat;Edlkat;tambøg;kMlaMgkat;enAkñúgRkLaépÞ Ac

        Pc = kMlaMg net compressive Gcié®nþy_EdlEkgeTAnwgbøg;kMlaMgkat; ¬Gaclubecal eday

               lkçxNÐsuvtßiPaB¦
         f y = yield strength rbs; dowel reinforcement

        CaTUeTA eKEtgEteFVIeGayépÞxagelIbMputrbs;Ggát;cak;Rsab;manlkçN³eRKIm ¬CMerARbEhl
0.24in. ¦ edIm,Icak;ebtugTMgn;FmμtabEnßm dUcerobrab;enAkñúgEpñk 5.7. LRFD ENnaMnUvsmIkarsMrYl

12.32 nig 12.33 dUcxageRkamEdlmanxñatCa ksi ³
                             ⎛       Avf ⎞
                     vuh ≤ φ ⎜ 0.1 +
                             ⎜
                                         ⎟                                             (12.34)
                             ⎝       Acv ⎟
                                         ⎠
EdlRkLaépÞGb,brma
                              0.05bv s
                     Avf =                                                             (12.35)
                                 fy

ehIy eKRtUvykersIusþg;kMlaMgkat; nominal nUvtMéltUcCageKkñúgcMeNam
                     Vn ≤ 0.20 f 'c Acv                                                (12.36a)
b¤             Vn = 0.80 Acv                                                 (12.36b)

emKuNs¥it c nigemKuNkkit μ enAkñúgsmIkar 12.32 mantMéldUcxageRkamsMrab;lkçxNÐCak;lak;
rbs; interacting surface³
   (a) ebtugEdlcak;kñúgeBlCamYyKña

                     c = 145 psi         μ = 1.4λ
     (b)   ebtugEdlcak;elIebtugrwg nigs¥atehIyépÞrbs;vaeRKIm
                     c = 100 psi         μ = 1.0λ
     (c)   ebtugEdlcak;elIebtugrwg s¥at nigminmansarFatuehIyépÞrbs;vamineRKIm
                     c = 75 psi          μ = 0.6λ
     (d)   ebtugRtUv)ancak;f<k;eTAnwg as-rolled structural steel eday headed stud b¤eday reinforcing
           bars EdlRKb;EdkTaMgGs;P¢ab;CamYynwgebtugKWs¥atminmanlabfñaM


karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                     775
T.Chhay                                                                  viTüasßanCatiBhubec©keTskm<úCa

                      c = 25 psi      μ = 0.7λ
Edl             sMrab;ebtugdg;sIuetFmμta
           λ = 1 .0
         = 0.85 sMrab; sand-low-density concrete

         = 0.75 sMrab;ebtugEdlmandg;sIuettUcdéTTaMgGs;

       xN³Edl LRFD AASTHO specification TamTareGaydak;EdkGb,brmaedayminKittMél
rbs;kugRtaMgenARtg; interface, GñkKNnaGaceRCIserIsedIm,IkMNt;EdkenHeTAnwgkrNIEdlVuh / φ FM
Cag 100 psi(0.7MPa ) . kareFVIEbbenH edIm,IeGayRsbeTAnwg ACI 318 Code specification nig
standard AASTHO specification.



12.5.1.     KMlat Dowel Reinforcement Gtibrma
         KMlatGnuBØatGtibrmarbs; dowel KW
    (i) RbsinebI Vu < 0.1 f 'c bv d v  KMlatGtibrma s ≤ 0.8d v ≤ 24in.
    (ii) RbsinebI Vu > 0.1 f 'c bv d v KMlatGtibrma s ≤ 0.4d v ≤ 12in.

12.6.     bnSMkMlaMgkat; nigkarrmYl            Combined Shear and Torsion
        kareobrab;enAkñúgEpñk 12.4.1 GMBI compression field theory CamYynwgEpñk 5.17.3 bgðajBI
karbMErbMrYlrageFob kMlaMgkat; nigGgát;rgkarsgát;Ggát;RTUg. rUbTI 5>38/ 5>39 nig 5>40 bgðajBI
rUbragxUcRTg;RTayrbs;muxkat;eRKaHfñak;enAeBlrgm:Um:g;rmYl (torsional moment). eKsnμt;eGay
bEnßmkugRtaMgkat;EdlbNþalBIkarmYl nigkMlaMgkat;enAelIRCugmçagrbs;muxkat; nigdak;eGayRbqaMg
enAelIRCugQm. Edk transverse closed tie RtUv)ansikSaKNnasMrab;RCugEdlenAkñúgenaHeKRtUv
bEnßmbnSMénT§iBlkMlaMgkat; nigkMlaMgrmYl.
        bnÞúkxageRkAEdlbgáeGaymanm:Um:g;rmYlFMbMputmindUcKñanwgbnÞúkEdlbgáeGaymankMlaMgkat;
GtibrmaenARtg;muxkat;eRKaHfñak;eT. eKalbMNgrbs;GñksikSaKNnaKWbUkbBa©ÚltMélx<s;bMputénkar
rmYl nigtMélx<s;bMputrbs;kMlaMgkat;kñúgkarKNnaEdkRTnug. enHBitCamansuvtßiPaB. eKGaceRbIPaB
xusKñaénkMlaMgTaMgBIrenH edIm,IKNna transverse reinforcement sMrab;kMlaMgrmYlx<s;bMput CamYynwg
kMlaMgkat;EdlekIteLIgkñúgeBlCamYyKña b¤k¾KNnasMrab;kMlaMgkat;x<s;bMput CamYynwgkMlaMgrmYlEdl
ekIteLIgkñúgeBlCamYyKña edayykmYyNaEdlnaMeGaymanersIusþg;x<s;bMput. LRFD eRbIm:Um:g;Edl

LRFD and Standard AASTHO Design of Concrete Bridges                                              776
Department of Civil Engineering                                                              NPIC




Tb;Tl;karrmYl nominal dUcKñanwg ACI³
                             2 Ao At f y cot θ
                     Tn =                                                               (12.37)
                                       s
Edl           RkLaépÞmuxkat;EdlB½T§CMuvijeday shear flow path EdlrYmbBa©ÚlTaMgRbehag
           Ao =

         At = RkLaépÞrbs;eCIgmYyénEdkrgkarTajbiTCit

         θ = mMuénsñameRbHEdl)aneRCIserIseday trial-and-adjustment edayeRbItarag 12>8
edIm,IkMNt;tMélrbs; θ / eKTTYl)anbMErbMrYlrageFob ε x enAkñúgEdkrgkarTajBIsmIkar 12.27
elIkElgsMrab;karCMnYs Vu eday
                                                         2
                                     ⎛PT             ⎞
                     Vu =     Vu2   +⎜ h u
                                     ⎜ 2A            ⎟
                                                     ⎟                                  (12.38)
                                     ⎝ o             ⎠
       eKTTYlbrimaN transverse reinforcement tMrUvkarsMrab;kMlaMgkat;BIsmIkar 12.21(a) CamYy
nwgsmIkar 12.23(a) nig 12.25 mann½yfa
                                                     Av f y d v cot θ
                     Vn = β       f 'c bv d v +                         +Vp             (12.39)
                                                             s
dUcenH sMrab;kMlaMgkat;KitCa lb nigkugRtaMgKitCa psi
                Av Vn − (β f 'c bv d v + V p )
                    =                                                                   (12.40a)
                       s               f y d v cot θ

RbsinebIeKeRbIxñat ksi eKRtUvKuN β eday 0.0316 . ehIysMrab;karrmYl BIsmIkar 12.31
                      At     Tn
                         =                                                              (12.40b)
                      s 2 Ao f y cot θ

RkLaépÞsrubrbs;EdkRTnug (web reinforcement) KW
                      Avt Av   A
                         =   +2 t                                                       (12.40c)
                       s   s    s
eKTTYl)anmMu θ BIrUbTI 12>9 edayeRbIkugRtaMgkMlaMgkat; v dUcxageRkam
   (a) muxkat;RbGb;³
                           Vu − φV p           T p Ph
                     V=                    +                                            (12.41)
                             φbv d v           φAoh
                                                 2


     (b)   muxkat;epSgeTot³
                                                 2               2
                        ⎛ Vu − φV p            ⎞ ⎛ Tu Ph ⎞
                     V= ⎜                      ⎟ +⎜      ⎟                              (12.42)
                        ⎜ φb d                 ⎟ ⎜ φA 2 ⎟
                        ⎝     v v              ⎠ ⎝ oh ⎠
           Edl       Ph =   brimaRtrbs;ExSG½kSén enclosed transverse torsion reinforcement

karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                      777
T.Chhay                                                                           viTüasßanCatiBhubec©keTskm<úCa

                   Aoh = RkLaépÞbiTCitedayExSG½kSén closed torsional reinforcement xageRkAeK
                       bMput
                  Ao = gross area B½T§CMuvijeday shear flow path ¬emIlrUbTI 5>45 sMrab;karbgðaj

                         Ao nig Aoh Edl Ao ≅ 0.85 Aoh ¦

                Tu = m:Um:g;rmYlemKuN

                φ = emKuNersIusþg;
eKTTYl)antMélrbs; β enAkñúgsmIkar 12.39 sMrab;kMNt;ersIusþg;kMlaMgkat; Vc énebtugsuT§enAkñúgRT-
nugBI chart enAkñúgrUbTI 12>9. edIm,IeCosvagkMueGayEdkbeNþay yield eKRtUvRtYtBinitüfaEdkrgkar
Bt;enAelIépÞrgkarTajRtUvEtsmamaRtedIm,IbMeBjlkçxNÐxageRkam³
                                                                                        2
                                                                        ⎛ 0.45Tu Po ⎞
φ (As f y + A ps f ps )                               (            )
                           M
                          ≥ u + 0.5 N u + cot θ Vu − 0.5Vs − V p   2
                                                                       +⎜
                                                                        ⎜ 2A        ⎟
                                                                                    ⎟           (12.43)
                           dv                                           ⎝      o    ⎠
Edl       Po = brimaRtrbs; shear flow path
          N u = kMlaMgtamG½kSGnuvtþn_/ ykviC¢manRbsinebICakMlaMgsgát;


12.7. AASTHO-LRFD Flexural-Strength Design Specifications vs. ACI
      Code Provisions
        vamanPaBxusKñarvagviFIrbs; AASTHO-LEFD flexural-strength design specification nig
ACI-318 code provisions. viFI LRFD KWEp¥kelItMélkMNt;rbs;bMErbMrYlrageFobEdlerobrab;enAkñúg

Epñk 12.3 nigRKb;RKgedaypleFobénkMBs;G¾kSNWt c elIkMBs;RbsiT§PaB d e . viFIenHk¾RtUv)aneK
ehA fa unified approach edaysarvaGacGnuvtþ)ansMrab;karsikSaKNnasßanPaBkMNt;cugeRkay
(ultimate) cMeBaHGgát;ebtugGarem: Ggát;ebtugeRbkugRtaMg nigGgát;ebtugeRbkugRtaMgedayEpñk.

eK)anGnuvtþ ACI 318 code strength provision sMrab;kMNt; ultimate design strength f ps enAkñúg
]TahrN_CaeRcIndUcmanenAkñúgEpñk 4.9 nig 4.10. eKGnuvtþvaenAkñúgkarsikSaKNnaGgát;ebtugeRbkug
RtaMgeBjelj nigGgát;ebtugeRbkugRtaMgedayEpñkenAkñúgeRKOgbgÁúMsMNg;. AASTHO standard
specification bc©úb,nñEdlKNnasmamaRtmuxkat;Ggát;ebtugeRbkugRtaMgEdlrgkarBt;KWGnuvtþtam

ACI code provisions. LRFD alternative EdlCaviFI rational design TamTarkarGnuvtþ strain

limits unified procedure. taragTI 12>9 bgðajBIkareRbobeFobCasegçbEdlbgðajPaBxusKñarvag

smIkarEdl)ankMNt;enAkñúgviFITaMgBIrenH.

LRFD and Standard AASTHO Design of Concrete Bridges                                                       778
Department of Civil Engineering                NPIC




karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD     779
T.Chhay                                                                       viTüasßanCatiBhubec©keTskm<úCa




12.8.     viFIsikSaKNnaCaCMhan²                 Step-by-Step Design Procedure (LRFD)
          xageRkamCakarsegçbénCMhankñúgkarsikSaKNna³
          !> kMNt;faetIeKRtUveRCIserIskMlaMgeRbkugRtaMgedayEpñk b¤Gt;
          @> eRCIserIsm:Um:g;Bt; nigkMlaMgkat;BItarag 12.2(a) nig (b) Epñk 12.7.


LRFD and Standard AASTHO Design of Concrete Bridges                                                   780
Department of Civil Engineering                                                             NPIC




          #> GnuvtþtamCMhanbnþbnÞab;sMrab;KNnaGgátr; gkarBt;begáagEdlmanerobrab;enAkñúgCMhan 2
             rhUtdl;CMhanTI 10 énEpñk 4.13 kñúgCMBUk 4 nig flowchart énrUbTI 12>10 enAeBleRbI
             LRFD method sMrab;karKNnaGgát;rgkarBt;begáag. CaTUeTA d v = (d e − a / 2) .

          $> kMNt;kMlaMgkat;emKuN Vu EdlbNþalBIbnÞúkGnuvtþn_TaMgGs;enARtg;muxkat;eRKaHEdlsßit
             enAcMgay d v b¤ 0.5d v cot θ BIépÞrbs;TMr edayykmYyNaEdlFMCageK Edl
                  d e = kMBs;RbsiT§PaBdUcbgðajenAkñúgtarag 12>9

                      = d p RbsinebIeKmineRbIEdkBRgwgFmμta

          %> KNnabgÁúMkMlaMgkat;rbs;kabeRbkugRtaMg VP . kugRtaMgkMlaMgkat;emKuNKW
                          Vu − φV p
                     v=
                            φbv d v
             kugRtaMgkMlaMgkat;EdlGacman nominal vc = v / h
          ^> KNna v / f 'c nigsnμt;tMélrbs; θ . karsnμt;dMbUgd¾l¥sMrab;FñwmrgeRbkugRtaMgKW θ = 25o
          &> KNnabMErbMrYlrageFobenAkñúgEdkrgkarTajedIm,ITTYl)antMélsakl,gθ nig β enAkñúg
             tarag 12>8
                          ⎡ Mu                                    ⎤
                          ⎢ d + 0.5 N u + 0.5Vu cot θ − A ps f po ⎥
                     εx = ⎢ v                                     ⎥ Fe ≤ 0.002
                          ⎢                (
                                  2 E s As + E ps A ps      )     ⎥
                          ⎢                                       ⎥
                          ⎣                                       ⎦
              Edl      f po ≅ 0.70 f pu

                         kugRtaMgsgát;enAkñúgebtugenARtg;TIRbCMuTMgn;rbs;EdkTajedayKitTaMgkMlaMg
                      f ce =

                         eRbkugRtaMgbnÞab;BIkMhatbg; nigbnÞúkGcié®nþTaMgGs;.
              RbsinebIbMErbMrYlrageFobenAkñúgEdkrgkarTajGviC¢man eKRtUvKuN ε x edayemKuN Fε ³
                                   E s As + E ps A ps
                     Fε =
                               Ec Ac + E s As + E ps A ps

               Ac =RkLaépÞrbs;ebtugenAEpñkrgkarTajedaysarBt;begáagrbs;Ggát;
          *> bBa©ÚleTAkñúg LRFD rUbTI 12>9 mþgeTot CamYynwgtMél v / f 'c nig ε x RbsinebImMu θ min
             mantMélEk,rnwgtMélsnμt;enAkñúgkarsakl,geLIgdMbUgeTenaH edIm,ITTYl)antMélEktMrUv
             rbs; β . ebImindUecñaHeT KNna Vc BIsmIkar 12.23 Edl Vc = β f 'c bv d v (lb) b¤ Vc =
             0.0316β f 'c bv d v (kip ) edayeRbItMél β Edl)anBI chart enAkñúgrUbTI 12>9.




karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                   781
T.Chhay                                                                                       viTüasßanCatiBhubec©keTskm<úCa

          (> KNna Vs sMrab;EdkRTnug eRkayeBlkMNt;tMélrbs; Vc rYcehIy. kMNt;KMlatrbs;Edk
             kMlaMgkat;EdlRtUvKñaBI³
                                        bv s
                   Av = 0.036 f 'c
                                         fy

          !0> enAkñúgtMbn;énkugRtaMgkat;FM FanafabrimaNrbs;EdkbeNþay As nig Aps RtUvbMeBj
              smIkarxageRkam³
                                        ⎡M       N    ⎛V                ⎞       ⎤
                   As f y + A ps f ps ≥ ⎢ u + 0.5 u + ⎜ u − 0.5Vs − V p ⎟ cot θ ⎥
                                                      ⎜φ                ⎟
                                        ⎣ d vφ    φ ⎝                   ⎠       ⎦
              eKENnaMeGayeFVIkarRtYtBinitüenARtg;épÞén bearing EdlsßitenAelIRbEvgepÞrrbs; strand
              EdlminmanekItkMlaMgeRbkugRtaMgRbsiT§PaBeBjelj.
          !!> enAeBlmankarrmYlrYmpSMCamYynwgkMlaMgkat; nigkarBt;begáag eKcaM)ac;RtUvGnuvtþtamCM
              hanxageRkam
                  kMlaMgrmYl nominal Tn = 2 Ao At sf y cot θ
              bMErbMrYlrageFobenAkñúgEdkrgkarTaj
                        ⎡M                                ⎛PT                   ⎞             ⎤
                        ⎢ u + 0.5 N u + 0.5 cot θ Vu2 + ⎜ h u
                                                          ⎜ 2A                  ⎟ − A ps f po ⎥
                                                                                ⎟
                        ⎢ dv                              ⎝ o                   ⎠             ⎥
                   εs = ⎢                                                                     ⎥ Fe ≤ 0.002
                        ⎢                      (
                                        2 E s As + E ps A ps            )                     ⎥
                        ⎢                                                                     ⎥
                        ⎣                                                                     ⎦
                  Edl f po = 0.70 f pu
             ersIusþg;kMlaMgkat; nominal
                                                                   Av f y d v cot θ
                   Vn = Vc + Vs + V p = β          f 'c bv d v +                      +Vp
                                                                            s
                Edl d v = (d p − a / 2)
             EdkkMlaMgkat;
                   Av Vn − 0.0316 β f 'c bv d v + V p
                     =
                   s           f y d v cot θ

             kMlaMgKitCa kips ehIykugRtaMgKitCa ksi . sMrab;kareRbI lb nig psi ykemKuN 0.0316
             ecj.
             EdkrmYl


LRFD and Standard AASTHO Design of Concrete Bridges                                                                   782
Department of Civil Engineering                                                                          NPIC



                      At     Tn
                         =
                      s 2 Ao f y cot θ

               EdkRTnugbiTCitsrub (total web closed ties reinforcement)
                      Avt Av   A
                         =   +2 t
                       s   s    s
               kugRtaMgkMlaMgkat; v sMrab;TTYl)anmMu θ
               (a) muxkat;RbGb;³
                          Vu − φV p          TPh
                     v=                 +
                            φbv d v         φAo h 2
               (b)   muxkat;epSgeTot
                                              2             2
                        ⎛ Vu − φV p         ⎞ ⎛ TPh ⎞
                     v= ⎜                   ⎟ +⎜     ⎟
                        ⎜ φb d              ⎟ ⎜ φA 2 ⎟
                        ⎝     v v           ⎠ ⎝ oh ⎠
               edIm,IeCosvagkMueGayEdkrgkarTajbeNþay yield³
                                                                                                             2
                                                                                             ⎛ 0.45Tu Ph ⎞
                     φ (As f s + A ps f ps )                         (                  )
                                                M
                                               ≥ u + 0.5 N u + cot θ Vn − 0.5Vt − V p   2
                                                                                            +⎜
                                                                                             ⎜ 2A        ⎟
                                                                                                         ⎟
                                                dv                                           ⎝      o    ⎠
          !@> RtYtBinitükMlaMgkat; interface edk³
                     vn Acv ≤ φVn
               Edl                                 (
                                  Vn = cAcv + μ Avf f y     )
                                          ⎛       Avf   ⎞
                                  vuh ≤ φ ⎜ 0.1 +
                                          ⎜
                                                        ⎟
                                                        ⎟
                                          ⎝       Acv   ⎠
               Edl                Avf =
                                         0.05bv s
                                             fy
                                                                 ¬ f y KitCa ksi ¦
               ykersIusþg;kMlaMgkat; nominal CatMéltUcCageKkñúgcMeNam
                     Vn ≤ 0.20 f 'c Acv
               b¤ Vn ≤ 0.80 Acv
               Edl        c = emKuNs¥it (cohesion factor)

                          μ = emKuNkkit
                          Acr = RkLaépÞ interface ebtug = bv I v

                          Avf = RkLaépÞrbs;EdkkMlaMgkat;Edlkat;tambøg;kMlaMgenAkñúgépÞ Acv

                          φ = emKuNkat;bnßyersIusþg;
               kñúgkrNIEdl vuh / φ > 100 psi eKRtUvkMritEdnkMNt;rbs; Avf .
karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                                     783
T.Chhay                                                                      viTüasßanCatiBhubec©keTskm<úCa

              rUbTI 12>10 bgðajBI flowchart sMrab;CMhanEdlRtUvGnuvtþedIm,IkMNt;ersIusþg;m:Um:g;
              nominal sMrab; bonded tendons nig unbonded tendons.

          !#> KMlatGnuBaØatGtibrmarbs;EdkkMlaMgkat;RTnug (web shear reinforcement)
                   s ≤ 0.75h          ≤ 24in.
              RbsinebI Vs > 4 f 'c bwd / kat;bnßyKMlat 50%
              sMrab;KMlat dowel reinforcement
                  RbsinebI       Vu < 0.1 f 'c bv d v / s ≤ 0.8d v ≤ 24in.

                  RbsinebI       Vu > 0.1 f 'c bv d v / s ≤ 0.4d v ≤ 12in.

              Edl bv = TTwgénépÞb:HsMrab;kMlaMgkat;edk




LRFD and Standard AASTHO Design of Concrete Bridges                                                  784
Department of Civil Engineering                                                        NPIC




12.9. LFRD Design of Bulb-Tee Bridge Deck
]TahrN_ 12>1³ sikSaKNnaFñwm AASTHO-PCI bulb-tee xagkñúgEdlmanTMrsamBaØéns<ankMral
smas EdlKμan skews. FñwmenHmanRbEvg 120 ft (36.6m) . eRKOgbgÁúMEpñkxagelI (superstructure)
pSMeLIgeday pretensioned beam cMnYn 6 EdlmanKMlatBImYyeTAmYycMgay 9 ft (2.74m) EdlKitBI
G½kSeTAG½kS dUcbgðajenAkñúgrUbTI 12>11. s<anmankMras;ebtugcak;enAnwgkEnøgkMras; 8in.(203mm)
CamYynwg wearing surface BIxagelIkMras; 2in. . bnÞúkGefrKNnaKW HL-93 AASTHO-LRFD
fatigue loading.

        snμt;fas<anenHsßitenAkñúgtMbn;rBa¢ÜydItUc. eKeGay
kugRtaMgGnuBaØatGtibrma³
kMrals<an f 'c = 4,000 psi              ebtugTMng;Fmμta
                      f c = 0.60 f 'c = 2,400 psi
Fñwm bulb-tee         f 'c = 6,500 psi                             lkçN³muxkat;³
                      f 'ci = 5,500 psi                            Ac = 767in.2
                      f c = 0.60 f 'c = 3.900 psi    Service III   h = 72in.
                      f c = 0.45 f 'c = 2,925 psi    Service I     I c = 545,894in.4

                      f ci = 0.60 f 'c = 3,480 psi                 cb = 36.60in.


karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                             785
T.Chhay                                                                      viTüasßanCatiBhubec©keTskm<úCa

                   f t = 6 f 'c = 484 psi                                ct = 35.40in.

                   f pu = 270,000 psi                                    S b = 14,915in.3

                   f py = 0.90 f pu = 243,000 psi                        S t = 15,421in.3
                                                                        I c 545,894
                   f pi = 0.75 f pu = 202,500 psi              r2 =        =        = 712in.2
                                                                        Ac    767
                   f y = 60,000 psi                                      WD = 799 plf

                   E ps = 28.5 ⋅10 6 psi

                   E s = 29.0 ⋅10 6 psi




dMeNaHRsay³
!> TTwgkMralbMElg (Transformed Deck slab controlling width)
        KNnaTTwgsøabbMElg
                   Ecs = 33w1.5 f 'c = 33 × (1.5)1.5 4,000 = 3,830ksi

          enAeBlepÞr Eci = 33(1.5)1.5 5,500 = 4,500ksi
          eRkam service Ece = 33(1.5)1.5 6,500 = 4,890ksi
          TTwgsøabRbsiT§PaBKWtMéltUcCageKkñúgcMeNam
          (i)
                1
                4
                   ElVg = 1204×12 = 360in.
          (ii) 12h f + kMras;RTnugEdlFMCageK b¤ TTwgsøabxagelI/ b = 12 × 7.5 + 0.5 × 42 = 111in.
                                                1
                                                2
          (iii) KMlatmFümrvagFñwm = 9 × 12 = 108in.

                dUcenH TTwgsøab = 108in.

LRFD and Standard AASTHO Design of Concrete Bridges                                                  786
Department of Civil Engineering                                                                     NPIC




                       pleFobm:UDul ns = Ecs = 3,,830 = 0.78
                                           Ec 4 890
            TTwgbMElg (transformed) bm = nsb = 0.78 ×108 = 84in.
@> lkçN³rbs;muxkat;smas
       eKmincaM)ac;KitBIkarcUlrYmén deck concrete haunch eTAkñúg I 'c eT edaysarPaBekag
(camber) rbs;Ggát;cak;Rsab;.

                     A'c = 1,397in.2

                     h = 80in.
                     I cc = 1,095,290in.4
                     cbc = 54.6in.   eTAsrésxageRkambMput
                     ctc = 72 − 54.6 = 17.4in.   eTAsrésxagelIbMputrbs;Fñwmcak;Rsab;
                     ctsc = 80 − 54.6 = 25.4in.  eTAsrésxagelIbMputrbs;kMral
                           1,095,290
                     S bc =           = 20,060in.3
                              54.6
                          1,095,290
                     Sc =
                      t
                                     = 62,950in.3
                             17.4
                           1,095,290
                     Sc =
                      ts
                                       = 55,284in.3
                           25.4 × 0.78
#> m:Um:g;Bt;begáag nigkMlaMgkat; (bending moments and shear forces)
                  kMral³ WSD1 = 12 × 9 × 150 = 900ib / ft
                                    8


                  TMgn;bgáan;éd (barrier weight)³ WSD2 = 2barriers(300lb / ft ) = 100lb / ft
                                                               6beams

                                                      ³
                     2in. future-wearing surface WSD3 =
                                                                     2
                                                                       ×
                                                                         48 ft
                                                                    12 6beams
                                                                               × 150 = 200lb / ft

           bnÞúkGefr (truck load) enAkñúg LRFD Ep¥kelI HL-93 truck fatigue loading.
           clear width BIrUbTI 12>12 = 48 ft (14.6cm )

           cMnYn lanes = 12 = 4 lanes
                         48


     (a)   emKuNEbgEcksMrab;m:Um:g; (Distribution factor for moment)
           sMrab; lane load 2 b¤eRcInCagenH emKuNEbgEckbnÞúksMrab;m:Um:g;Bt; (tarag 12>3b)
                                                           0.2 ⎛            0.1
                                   ⎛ S ⎞
                                               0.6
                                                     ⎛S⎞         K ⎞
                     DFM = 0.075 + ⎜     ⎟           ⎜ ⎟      ⎜ g ⎟
                                   ⎝ 9.5 ⎠           ⎝L⎠      ⎜ 12t 3 L ⎟
                                                              ⎝ s ⎠



karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                          787
T.Chhay                                                                                                   viTüasßanCatiBhubec©keTskm<úCa

          kñúgkrNIEdl
          KMlatFñwm³         3.5 ≤ S ≤ 16  Cak;Esþg S = 9.0 ft                         O.K.

          kMrals<an³        4.5 ≤ Ts ≤ 12 Cak;Esþg Ts = 7.5in.                         O.K.

          ElVg³             20 ≤ L ≤ 240 Cak;Esþg L = 120 ft                           O.K.

          cMnUnFñwm³        Nb > 4         Cak;Esþg N b = 6                            O.K.

                   e g = cMgayrvagTIRbCMuTMgn;rbs;Fñwm nigkMral
                      7.5
                        = + 0.5 + 35.4 = 39.65in.
                        2
                     E     4,890
                   n= c =          = 1.28
                     E sc 3,830
                             (
                   K g = n I c + Ac e g
                                      2
                                          )
                                 [
                        = 1.28 545,894 + 767(39.65)2 = 2,242,191in.4    ]
                                                                                                0. 1
                                 ⎛ 9 ⎞
                                                 0.6
                                                       ⎛ 9 ⎞
                                                                    0.2
                                                                            ⎡ 2,242,191 ⎤
          dUcenH   DFM = 0.075 + ⎜      ⎟              ⎜     ⎟              ⎢               ⎥          = 0.732 lanes/beam
                                 ⎝ 9 .5 ⎠              ⎝ 120 ⎠              ⎢12(7.5) (120 ) ⎥
                                                                                    3
                                                                            ⎣               ⎦
          sMrab; design lane load mYy/ BItarag 12>3b
                                                            0.3 ⎛               0.1
                                ⎛S⎞
                                              0.4
                                                     ⎛S⎞           K ⎞
                   DFM = 0.06 + ⎜ ⎟                  ⎜ ⎟        ⎜ g ⎟
                                ⎝ 14 ⎠               ⎝ L⎠       ⎜ 12t 3 L ⎟
                                                                ⎝ s ⎠
                                                               0. 3 ⎡                     0. 1
                                                                       2,242,191 ⎤
                                              0. 4
                                     ⎛9⎞             ⎛ 9 ⎞
                            = 0.06 + ⎜ ⎟             ⎜     ⎟        ⎢               ⎥            = 0.499 lanes/beam
                                     ⎝ 14 ⎠          ⎝ 120 ⎠        ⎢12(7.5) (120 ) ⎥
                                                                            3
                                                                    ⎣               ⎦
          dUcenH krNI lane load BIr b¤eRcInCagBIr eK)anemKuNEbgEcgm:Um:g;FMCag dUcenHeK)an
          DFM = 0.732 lanes/beam
          Fatigue mement
                   m:Um:g;RtUv)anKitsMrab; single design truck EdlmanTMgn;ePøA (axle) dUcKña dUcenAkñúg
          sßanPaBkMNt;déTeTot b:uEnþCamYynwgKMlatefr 30 ft cenøaH 32kips axles. eKeRbI lane
          factor 1.2 sMrab; fatigue edIm,Ikat;bnßyemKuN DFM Edllub. BItarag 12>2a/ emKuN

          bnÞúk (load factor) KW 0.75 ehIyemKuNTgáic (impact factor) (IM) sMrab; fatigue = 15% .
                   dUcenH m:Um:g;Bt; fatigue truckload køayCa³
                             M f = (bending moment per lane)(DFM / 1.2)(1 + IM )
                                                            ⎛ 0.499 ⎞
                   b¤        M f = (bending moment per lane)⎜
                                                            ⎝ 1.2 ⎠
                                                                    ⎟(1 + 0.15)




LRFD and Standard AASTHO Design of Concrete Bridges                                                                               788
Department of Civil Engineering                                                          NPIC




                                      = (bending moment per lane)(0.415)(1.15)

                                      = (0.478)(bending moment per lane)
     (b)   emKuNEbgEcksMrab;kMlaMgkat; (Distribution factor for shear)
           BItarag 12>3 (a)/
           sMrab; lane load BIr b¤eRcInCagenH
                                                     2
                                 ⎛S⎞ ⎛S ⎞
                     DFV = 0.2 + ⎜ ⎟ − ⎜ ⎟
                                 ⎝ 12 ⎠ ⎝ 36 ⎠
            kñúgkrNIEdl³
           KMlatFñwm³             3.5 ≤ S ≤ 16    Cak;Esþg S = 9.0 ft O.K.
           kMrals<an³             4.5 ≤ Ts ≤ 12   Cak;Esþg Ts = 7.5in. O.K.
           ElVg³                  20 ≤ L ≤ 240    Cak;Esþg L = 120 ft O.K.
           10,000 ≤ K g ≤ 7,000,000               Cak;Esþg K g = 2,242,191in.4   O.K.
                                                     2
                                 ⎛9⎞ ⎛ 9 ⎞
           dUcenH/   DFV = 0.2 + ⎜ ⎟ − ⎜ ⎟ = 0.887 lanes/beam
                                 ⎝ 12 ⎠ ⎝ 36 ⎠
           sMrab; design lane load mYy/ BItarag 12>3a
                                  ⎛ S ⎞          ⎛ 9.0 ⎞
                     DFV = 0.36 + ⎜      ⎟ = 0.36⎜      ⎟ = 0.720 lanes/beam
                                  ⎝ 25.0 ⎠       ⎝ 25.0 ⎠
           dUcenH krNI lane load BIr b¤eRcInCagBIr eK)anemKuNEbgEcgkMlaMgkat;FMCag dUcenHeK)an
           DFV = 0.887 lanes/beam
$> bnSMbnÞúk (Load combinations)
         bnÞúkemKuNsrub/ Q = η ∑ γ i qi
        Edl η = emKuNEdlTak;TgeTAnwgPaBsVit (ductility)/ GBaØatelIs (redundancy) nigPaB
                      sMxan;éndMeNIrkar (operational importance)
                 γ i = emKuNbnÞúk
                 qi = bnÞúk

         yk η = 1.0 sMrab;RKb;karGnuvtþTaMgGs;enAkñúg]TahrN_enH
         eFVIkarGegátRKb;bnSMbnÞúkTaMgGs;EdlmanenAkñúgtarag 12>2 (a) nig (b). krNIEdllubKW
         dUcxageRkam³
         (a) Service I sMrab;kugRtaMgsgát;enAkñúgGgát;ebtugeRbkugRtaMg



karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                               789
T.Chhay                                                                       viTüasßanCatiBhubec©keTskm<úCa

                            Q = 1.0(DC + DW ) + 1.0(LL + IM )
          (b) Service III     sMrab;kugRtaMgTajenAkñúgGgát;ebtugeRbkugRtaMg
                            Q = 1.0(DC + DW ) + 0.8(LL + IM )
          (c) Strength I  sMrab; ultimate strength:
                         tMélGtibrmarbs; Q = 1.25DC + 1.50DW + 1.75(LL + IM )
                         tMélGb,brmarbs; Q = 0.90DC + 0.65DW + 1.75(LL + IM )
          (d)   Fatigue sMrab;RtYtBinitükugRtaMgenAkñúg strands

                            Q = 0.75(LL + IM )
                  (fatigue Q  CabnSMbnÞúkBiesssMrab;RtYtBinitükugRtaMgTajenAkñúg strands EdlbNþal
                BIbnÞúkGefr nig dynamic allowance)
%> kMlaMgkat; nigm:Um:g;Bt;KμanemKuN (Unfactored shear forces and bending moments)
    (a) Truck Loads
          kMlaMgkat; truck load:
                   VLT = (shear force per lane)(DFV )(1 + IM )

                         = (shear force per line )(0.887 )(1 + 0.33)

                         = 1.180(shear force per lane)kips
          m:Um:g;Bt; truck load:
                   M LT = (moment per lane)(DFM )(1 + IM )

                          = (moment per lane)(0.732 )(1 + 0.33)


                          = 0.974(moment per lane) ft − kips
                   LT =   bnÞúkGefrrbs; truck
    (b) Lane Loads
          sMrab; lane load EdlminmanGnuvtþ dynamic allowance
                   VLL = (shear force per lane)(DFV )

                        = (shear force per lane)(0.887 )kips

                   M LL = (moment per lane)(DFM )

                          = (moment per lane)(0.732 ) ft − kips
          Lane load    BIrUbTI 12>4/ bnÞúkenAelIs<anenHdUcbgðajenAkñúgrUbTI 12>12.
LRFD and Standard AASTHO Design of Concrete Bridges                                                   790
Department of Civil Engineering                                                              NPIC




^> KNnam:Um:g; nigkMlaMgkat; (Computation of moments and shears)
    (a) Lane Loads ¬ DFV = 0.887, DFM = 0.732 ¦

           (i)    muxkat;TMr³
                      kMlaMgkat;enARtg;TMrxageqVg (x = 0) BIsmIkar 12.6(a) nigrUbTI 12>12³
                                  VLL =
                                          0.64
                                               (L − x )2 (DFV )
                                           2L
                                        =
                                           0.64
                                                  (120)2 (0.887) = 34.1kisp
                                          2 × 120
                      BIsmIkar 12.6 (b)/ nig DFM = 0.732
                                           0.64( x )(L − x )
                                  M LL =                     (DFM ) = 0 ft − kip
                                                  2
           (ii)   muxkat;enARtg; 24tf BITMr³
                  kMNt; VLL nig M LL enARtg; x = 24 ft BITMrxageqVg
                                  VLL =
                                           0.64
                                                  (120 − 24)2 (0.887) = 21.8kips
                                          2 × 120
                                           0.64(24)(120 − 24)
                                  M LL   =                      (0.732) = 539.7 ft − kip
                                                     2
                                    ¬
     (b) Truck live loads DFV = 1.180, DFM = 0.974       ¦
          eKRtUvKitbBa©Úl Impact factor IM = 33% dUcenH eyIgTTYl)antMél DFV nig DFM FMCag
          mun
           (i)    muxkat;TMr³
                  BItarag 12>4/
                                          72[(L − x ) − 9.33]
                                  VLT =                       (DFV )
                                                  L




karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                   791
T.Chhay                                                                            viTüasßanCatiBhubec©keTskm<úCa
                                      72[(120 − 0.0) − 9.33]
                                  =                          (1.180) = 78.1kips
                                              120
                 BItarag 12>5/
                                        72(x )[(L − x ) − 9.33]
                             M LT =                             (DFM )
                                                  L
                                    = 0 ft − kip   sMrab;mU:m:g;Rtg;TMr
          (ii)   muxkat;enARtg; 24 ft BITMr ³
                                       72[(120 − 24) − 9.33]
                             VLT =                           (1.180) = 61.4kips
                                               120
                                        72(24)[(120 − 24) − 9.33]
                             M LT     =                           (0.974) = 1215.0 ft − kip
                                                  120
    (c) Fatigue moment           enARtg; 24 ft ¬ DFM = 0.478 ¦
          BItarag 12>7
                                       72( x )[(L − x ) − 18.22]
                             Mf =                                (DFF )
                                                   L
        BIelIkmun/ DFF = 0.478
                              72(24)[(120 − 24) − 18.22]
        dUcenH          Mf =
                                         120
                                                         (0.478) = 535.8 ft − kip
    (d) Shears and moments EdlbNþalBIbnÞúkefr

        bnÞúkEdlRtUvBicarNaKWTMgn;Fñwm ¬WD ¦ bUknwgkMral deck nig haunches ¬WSD1 ¦ nig
        wearing surface ¬ WSD3 ¦ EdlRtUvRkalenAeBlGnaKt.

        edaysarvaCaFñwmTMrsamBaØ dUcenHkMlaMgkat; nigm:Um:g;tambeNþayElVgKW³
                     V x = WD (0.5L − x )

                     M x = 0.5WD x(L − x )
          Kitmuxkat;Rtg; 24 ft BITMrxagxageqVg ehIyKNnakMlaMgkat; nigm:Um:g;EdlbNþalBITMgn;pÞal;
          WD = 0.799kip / ft ³

                     V x = 0.799(0.5 × 120 − 24) = 28.8kips

                     M x = 0.5 × 0.799 × 24(120 − 24) = 920.4 ft − kip
          tarag 12>10 nig 12>11 bgðajBIkMlaMg nigm:Um:g;EdlRtUvkarsMrab;sikSaKNnaFñwmxagkñúg.
          eKRtUvcMNaMfakarKNnaedayédedIm,ITTYl)antaragEbbenHRtUvkarcMNayeBlevlay:ageRcIn.
          eKmankmμviFIkMuBüÚT½rEdlbegáIteLIgedayGKÁnaykdæandwkCBa¢Ún (state DOT) CaeRcIn EdlxøH
          manenAkñúg internet dUcCa Washington State DOT Program.

LRFD and Standard AASTHO Design of Concrete Bridges                                                        792
Department of Civil Engineering                                                             NPIC




&> sikSaKNnaFñwm bulb-tee eRbkugRtaMgxagkñúg (Computation of moments and shears)
     ¬!¦ kareRCIserIskabeRbkugRtaMg (Selection of Prestressing Strands)
          sMrab;bnSMbnÞúk Service-III/ kugRtaMgsrésxageRkam fb KW³
                             M D + M S M b + M WS + 0.8(M LT + M LL )
                      fb =            +
                                Sb                  S bc
          Edl        MD =  m:Um:g;TMgn;pÞal;EdlKμanemKuN/ ft − kip
                     M S = m:Um:g;EdlKμanemKuNEdlbNþalBITMgn;kMral nig haunch,   ft − kip

                     M b = m:Um:g;bgáan;édEdlKμanemKuN/ ft − kip

                     M WS = m:Um:g; wearing surface EdlKμanemKuN/ ft − kip


karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                  793
T.Chhay                                                                          viTüasßanCatiBhubec©keTskm<úCa

                   M LT = m:Um:g;bnÞúk truck EdlKμanemKuN/ ft − kip
                   M LL = m:Um:g; lane load EdlKμanemKuN/ ft − kip

      BIelIkmun/ Sb = 14,915in.3
                   S bc = 20,090in.3
          BItarag 12>10 nig 12>11/ kugRtaMgkNþalElVgxageRkamenARtg;srésxageRkameRkam
          GMeBI service load KW
                   f bc =
                            1,438.2 + 1,659.6
                                              (12) + 180 + 360 + 0.8(1,830.3 + 843.2) (12)
                                 14,915                          20,090

                        = 2.50 + 1.60 ≅ 4.10ksi(T )
          kugRtaMg 4.10ksi(T ) nwgRtUv)anlubbM)at;edaykMlaMgeRbkugRtaMg. kugRtaMgTajGnuBaØatGti-
          brma³
                   f t = 6.0 f 'c psi = 6 6,500 = 484 psi = 0.484ksi

          kugRtaMgsgát;eRbkugRtaMgtMrUvkarenARtg;srésxageRkambMput³
                   f cb = (4.1 − 0.48) = 3.62ksi
          snμt;facMgayBITIRbCMuTMgn;rbs;EdkeRbkugRtaMgeTAsrésxageRkambMput = 0.05h
                  = 0.05(72 ) = 3.6in. yk 4in. / dUcenH ec = 36.6 − 4.0 = 32.6in.

          dUcbgðajenAkñúg]TahrN_énCMBUk 4
                                                        P ×e
                  f bp EdlbNþalBIeRbkugRtaMg = e + e c
                                                   P
                                                   A    c S     b

          b¤ fbp = 767 + P14×,915.6 = 3.62ksi
                        Pe     e 32



          eyIgTTYl)an Pe = 1,037kips
          snμt;kMhateRbkugRtaMgsrub = 25%
                           1,037
                   Pi =            = 1,383kips
                          1 − 0.25
          snμt;eRbI 7-wire 270-K low-relaxation strands Ggát;p©it 0.5in. ¬ Aps = 0.153in.2 ¦
                   cMnYntMrUvkarén strands = 0.153,383 .5 = 44.6strands
                                                 1
                                                   × 202
          eRkayBIkarGnuvtþ trial and adjustment/ eyIgsakl,gmuxkat;Edlman 48 strand dUcbgðaj
          enAkñúgrUbTI 12>13. enAeBl strand ticCag 48 eFVIeGaykugRtaMgTajenARtg;srésxageRkam
          bMputeRkamGMeBI service load FMCagkugRtaMgGnuBaØatGtibrma ft = 484 psi . Strand cMnYn 20

LRFD and Standard AASTHO Design of Concrete Bridges                                                      794
Department of Civil Engineering                                                                       NPIC




          RtUv)an harp enARtg; 0.4L . dUcenH 36 strands enArkSaPaBRtg;enAkñúgFñwm ¬emIlrUbTI 12>
          13¦.




          BIsmμtikmμ/ cb = 36.60in. ehIy ct = 72 − 36.60 = 35.40in.
                     ee = cb − [2 × 70 + 2 × 68 + 2 × 66 + 2 × 64 + 2 × 62 + 2 × 60 + 4 × 8 + 8 × 6

                            + 12 × 4 + 12 × 2] / 48

                         = 36.60 − 19.42 = 17.28in.
                     ec = cb − [2 × 12 + 12 × 4 + 8 × 6 + 8 × 4 + 2 × 10 + 2 × 12 + 2 × 14 + 2 × 16

                            + 2 × 18 + 2 × 20] / 48

                         = 36.6 − 6.92 = 29.68in.

          eKeGay       f pi = 0.75 f pu = 202,500 psi

                      Pi = (48)(0.153)(202.5) = 1,488kips
          eRkayeBlGnuvtþnUvkarviPaK step-by-step rbs;kMhateRbkugRtaMg dUcenAkñúgCMBUk 3 Epñk 3.9
          kMhatbg;eRbkugRtaMgsrubRtUv)ankMNt;edaymantMélesμInwg 26.4% .
                      f pe = 202.5(1 − 0.264) = 149.0ksi

          dUcenH/ Pe = 1488(1 − 0.264) = 1095.0kips

karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD                                                            795
T.Chhay                                                                                  viTüasßanCatiBhubec©keTskm<úCa

    ¬@¦ RtYtBinitükugRtaMgEdlKμanemKuNrbs;ebtug (Check of Concrete Unfactored Stresses)
          (a)     kugRtaMgenAeBlepÞr
                  eRbkugRtaMgedIm f pi = 0.7 f pu = 0.7 × 270 = 202.5ksi . karGnuvtþFmμtasnμt;fakMhat
                  bg; relaxation edImenAeBlrgeRbkugRtaMgmanbrimaNBI 9% eTA10% . eRbIkarkat;
                  bnßy 10% enAkñúg f pi
                              Pi = 0.90 × 1,488 = 1,339kips
                  dUcenH Pi = 0.9(202.5)(0.153 × 48) = 1,338kips
                (i) muxkat;Rtg;TMr

                    BICMBUk 4/ smIkar 4.1(a)
                                        ⎛ ee ct ⎞ M D
                                       Pi
                              ft =−     ⎜1 − 2 ⎟ − t
                                        ⎝
                                       Ac     r ⎠ S
                                     1,338 ⎛ 17.28 × 35.4 ⎞
                                  =−
                                      767 ⎝
                                           ⎜1 −
                                                    712
                                                          ⎟ − 0 = −0.25ksi(C )
                                                          ⎠
                                                                                          / minrgkarTaj/         O.K.

                                     P ⎛ ec ⎞ M
                              f b = − i ⎜1 + e 2b ⎟ + D
                                     Ac ⎝     r ⎠ Sb
                                       1,339 ⎛ 17.28 × 36.3 ⎞
                                 =−          ⎜1 +           ⎟+0
                                        767 ⎝      712      ⎠
                                 = 3.29ksi(C ) <      kugRtaMgGnuBaØat   f c = 3.48ksi       O.K.

                (ii)   muxkat;kNþalElVg
                                       1,338 ⎛ 29.68 × 36.60 ⎞ 1,438 ×12
                              ft =−          ⎜1 −            ⎟−
                                        767 ⎝      712       ⎠ 15,421
                                 = 0.917 − 1.119 = −0.202ksi(C )         / minmanrgkugRtaMgTaj/ dUcenH O.K.
                                       1,339 ⎛ 29.68 × 36.6 ⎞ 1,438 ×12
                              fb = −         ⎜1 +           ⎟+
                                        767 ⎝      712      ⎠ 14,915
                                 = −4.513 + 1.157 = −3.356ksi(C ) <         kugRtaMgGnuBaØat f 'ci = 5.50ksi O.K.
          (b)     kugRtaMgenAeBl Service
                (i) muxkat;kNþalElVg

                    BICMBUk 4/ smIkar 4.3(a) nig 4.3(b):
                                       Pe ⎛ ec ct      ⎞ MT
                              ft =−       ⎜1 − 2       ⎟ − t ≤ fc
                                       Ac ⎝    r       ⎠ Sc
                                       Pe ⎛ ec cb ⎞ M T
                              fb = −      ⎜1 + 2 ⎟ +    ≤ ft
                                       Ac ⎝    r ⎠ S cb




LRFD and Standard AASTHO Design of Concrete Bridges                                                              796
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge

Contenu connexe

Tendances

Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columnsChhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic conceptsChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
1.introduction
1.introduction1.introduction
1.introductionChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loadsChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 

Tendances (20)

Xii slender column
Xii slender columnXii slender column
Xii slender column
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Xiii footings
Xiii footingsXiii footings
Xiii footings
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
1.introduction
1.introduction1.introduction
1.introduction
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
4.compression members
4.compression members4.compression members
4.compression members
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
8. deflection
8. deflection8. deflection
8. deflection
 

En vedette

Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concreteChhay Teng
 
Construction plan
Construction planConstruction plan
Construction planChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practiceChhay Teng
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force methodChhay Teng
 
Construction work
Construction work Construction work
Construction work Chhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
Carpentering work
Carpentering work Carpentering work
Carpentering work Chhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
Computer graphic
Computer graphicComputer graphic
Computer graphicChhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 

En vedette (19)

Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
Appendix
AppendixAppendix
Appendix
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
 
Construction plan
Construction planConstruction plan
Construction plan
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
5.beams
5.beams5.beams
5.beams
 
Euro upe
Euro upeEuro upe
Euro upe
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
Appendix
AppendixAppendix
Appendix
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method
 
Euron fl
Euron flEuron fl
Euron fl
 
Construction work
Construction work Construction work
Construction work
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
Carpentering work
Carpentering work Carpentering work
Carpentering work
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 

Similaire à Xii.lrfd and stan dard aastho design of concrete bridge

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slabChhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tensionChhay Teng
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trussesChhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110Chhay Teng
 

Similaire à Xii.lrfd and stan dard aastho design of concrete bridge (11)

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slab
 
3.tension members
3.tension members3.tension members
3.tension members
 
Desing slab by robot
Desing slab by robotDesing slab by robot
Desing slab by robot
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trusses
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
 

Plus de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Plus de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

Xii.lrfd and stan dard aastho design of concrete bridge

  • 1. Department of Civil Engineering NPIC XII. karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD LRFD and Standard AASTHO Design of Concrete Bridges 12.1. esckþIepþIm³ suvtßiPaB nigTMnukcitþ Introduction: Safety and Reliability dUc)anerobrab;enAkñúgEpñk 4.10.1/ Load-resistance factor design method (LRFD) CaviFI mYyEdlQrelITMnukcitþ sMrab;vaytMélkarsikSaKNnaedayeRbIemKuNEdlQrelIRbU)ab‘IlIet. viFI enHmanbMNgsMrab;kMNt;smamaRtmuxkat;rbs;eRKOgbgÁMúedayQrelIRbePTbnÞúk edayeFVIy:agNa eGayersIusþg;Tb;Tl;FMCagbnÞúkemKuN b¤m:Um:g;emKuN. rUbTI 12>1 (a) nig (b) k¾dUcenAkñúgrUbTI 4>36 énCMBUk 4 bgðajBIdüaRkaménkarEbgEck frequency dac;edayELkBIKñaénbnÞúkCak;Esþg W nigersIusþg; R CamYynwgtMélmFüm (mean) R . rUbTI 12>1 (c) bgðajBIkarbUkcUlKñaénkarEbgEckTaMgBIr ehIyExSekagTaMgBIrkat;KñaRtg;cMnuc C . eKGacrMBwgfaeRKOgbgÁúMman suvtßiPaB nigGacTukcitþ)an RbsinebIbnÞúk W sßitenAxageqVgcMnuc RbsBV C enAelIExSekagersIusþg;. pÞúymkvij eKrMBwgfaeRKOgbgÁúMnwg)ak; RbsinebIbnÞúkenAelIExSekag ersIusþg;sßitenAkñúgépÞqUt enAkñúgrUbTI 12>1 (c). RbsinebI β CasnÞsSn_suvtßiPaB enaH R −W β= (12.1) σR 2 + σW 2 Edl σ R nig σ W Ca standard deviation rbs;ersIusþg; nigbnÞúk erogKña. karbnSMbnÞúkepSgKñaenAkñúgsmIkar 4.29 ¬CMBUk 4¦ KWQrelIPaBxusKñad¾smrmürvag R nig W EdlBicarNanUvlkçN³esdækic©. dUcenH TMnukcitþénkareFVIkarrbs;eRKOgbgÁúMEdlRbkbedaysuvtßiPaBRtUv)anRKb;RKgedaykarBi- carNarvagTMnak;TMngbnÞúk nigersIusþg;edayeRbIemKuNbnÞúk nigemKuNersIusþg;enAkñúgkarsikSaKNna. viFI LRFD rbs; AASTHO manbMNgGPivDÄTMnak;TMngrvagbnÞúk nigersIusþg; nUvsmIkarsMrab; kMhUcRTg;RTay nigbnÞúk nigemKuNersIusþg;EktMrUv φ BIemKuNersIusþg;EdleRbIeday ACI 318. emKuN φ rbs; LRFD RtUv)anbgðajenAkñúgtarag 12>1 (a). emeronenHnwgbgðajBIkareRbIR)as;smIkarrbs; LRFD EdlmanlkçN³xusKñaBIsmIkarrbs; standard AASTHO nig ACI 318. ehIysmIkarEdl)aneRbIenAkñúgCMBUk 3/ 4 nig5 nigeKalkarN_ rbs;vak¾RtUv)anykmkGnuvtþ. dUcenHnisiSt nigvisVkrnwgyl;BIeRbIR)as;smIkaTaMgenHy:agRsYl. karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 745
  • 2. T.Chhay viTüasßanCatiBhubec©keTskm<úCa LRFD and Standard AASTHO Design of Concrete Bridges 746
  • 3. Department of Civil Engineering NPIC 12.2. lkçN³bec©keTsénbnÞúkrfynþrbs; LRFD nig AASTHO Standard (LFD) AASTHO Standard (LFD) and LRFD Truck Load Specification karsikSaKNnaBIGgát;ebtugeRbkugRtaMgrbs;s<anRtUv)aneFVIeLIgedayeKarBeTAtam AASTHO (American Association of Highway and Transportation Officials). kñúgkarsikSaKNnaeRKOgbgÁúM EpñkxagelI (superstructure) rbs;s<an eKRtuveRCIserIs nigdak;pøÚvcracrN_ (traffic lane) nigbnÞúky:ag NaEdleFVIeGaymankugRtaMgGtibrmaenAkñúgGgát;eRKOgbgÁúM. kardak;bnÞúkGefrenAelIs<anRtUvman standard truck b¤ lane load EdlsmmUleTAnwg truck trains. sMrab;s<anrfePøIg (railway bridge), tMrUvkarRtUv)ankMNt;eday AREA (American Railway Engineering Association). CaTUeTA tMrUvkarsMrab;kMNt;smamaRtmuxkat;eRKOgbgÁúMrbs;Ggát;TMreRcIn GnuvtþtambTdæan ACI nig PCI. 12.2.1. bnÞúk Load kardak;bnÞúk highway mancMNat;fñak;bTdæan 4KW³ H20, H15, Hs20 nig HS15. kardak;bnÞúk HS15 KWesμInwg 75%énkardak;bnÞúk HS20. RbsinebImankardak;bnÞúkepSgeRkABIenH eKRtUveFVIkarEk karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 747
  • 4. T.Chhay viTüasßanCatiBhubec©keTskm<úCa tMrUvTMgn;sMrab; standard truck nig land load EdlRtUvKñatamlkçN³smamaRt. eKsikSaKNna s<an Highway sMrab;kardak;bnÞúk HS20-44 b¤kardak;bnÞúkEdlmanePøArfynþ (axles) BIrEdlmanKMlatBIKña 14 ft ehIy axle nImYy²manTMgn; 24,000lb edayeKRtUvdak;bnÞúky:agNaedIm,ITTYl)ankugRtaMgFM. rUbTI 12>2 bgðajBIbnÞúk standard H Truck ehIyrUbTI 12>3 bgðajBIbnÞúk standard HS truck CamYynwgKMlatkg;rfynþ nigkarEbgEckbnÞúk. rUbTI 12>4 bgðajBI lane load smmUlsMrab; H 20-44, HS 20-44, H 15-44 nig HS 15-44. rUbTI 12>5 bgðajBIRbB½n§kMrals<anepSg²EdleKeRbICa TUeTA. (i) T§iBlTgáic (impact): bnÞúkcl½t (movable load) TamTarnUvkarGnuBaØatPaBTgáic EdlCaEpñk mYyrbs;bnÞúkGefr. eKGackMNt;va)antam standard AASTHO (LFD) 50 I= ≤ 30% (12.2) L + 125 Edl I= PaKryT§iBlTgáic (impact fraction) L = RbEvgKitCa feet rbs;cMENkénElVgEdlkardak;bnÞúkeFVIeGaymankugRtaMgGti- brmaenAkñúgGgát;enaH. LRFD and Standard AASTHO Design of Concrete Bridges 748
  • 5. Department of Civil Engineering NPIC karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 749
  • 6. T.Chhay viTüasßanCatiBhubec©keTskm<úCa LRFD and Standard AASTHO Design of Concrete Bridges 750
  • 7. Department of Civil Engineering NPIC RbEvgdak;bnÞúk L sMrab;Ggát;TTwg (transverse member) dUcCaFñwmkMral (floor beam) CaRb- Evgrbs;Ggát;EdlKitBIG½kSeTAG½kS. (ii) kMlaMgtamTisbeNþay (Longitudinal Forces): eKRtUvdak;nUvkMlaMgtambeNþayesμInwg 5% énbnÞúkGefrenARKb; lane TaMgGs;EdlRTcracrN_kñúgTisedAdUcKña. épÞbnÞúk EdlKμanT§iBl Tgáic RtUvmanlkçN³dUcxageRkam³ land load + bnÞúkcMcMnuc RtUv)andak;enAelIElVgy:agNaedIm,IbegáItkugRtaMgGtibrma. bnÞúkcM cMnuc nigbnÞúkBRgayRtUv)anBicarNaBRgayesμIelITTwg 10 ft enAelIExSEdl EkgeTAnwgG½kSrbs; land. eKsnμt;TIRbCMuTMgn;rbs; longitudinal force manTItaMg enARtg; 6 ft BIelIkMral. eKGnuvtþemKuNkat;bnßyenAeBl traffic lane CaeRcInRtUv)andak;bnÞúkkñúgeBlCamYyKña dUcenA kñúgEpñk (iv) xageRkam. (iii) kMlaMgcakp©itedk (Centrifugal Horizontal Force): kMlaMgenHekItBIclnarbs;rfynþenA elIExSekag. eKkMNt;vaCaPaKryrbs;bnÞúkGefr edayKμanT§iBlTgáic dUcxageRkam³ 6.68S 2 C = 0.00117 S 2 D = (12.3) R Edl C=kMlaMgcakp©itKitCaPaKryrbs;bnÞúkGefrEdlKμamT§iBlTgáic S = el,ÓnKNna (design speed) KitCa miles kñúgmYyema:g D = dWeRkrbs;kMeNag R = kaMrbs;ExSekag KitCa ft (iv) karkat;bnßyGaMgtg;sIuetbnÞúk (Reduction in Load Intensity): enAeBlEdlkugRtaMgGti- brmaRtUv)anbegáIteLIgedaykardak;bnÞúkenAelI traffic lanes CaeRcInkñúgeBlCamYyKña eKRtUv eFVIkarkat;bnßyGaMgtg;sIuetbnÞúkdUcxageRkam³ PaKry mYy b¤BIr lane 100 bI lane 90 bYn lane b¤eRcInCagenH 75 karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 751
  • 8. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 12.2.2. karEbgEckbnÞúkkg;enAelIkMrals<an³ lkçN³bec©keTssþg;dar AASTHO Wheel Load Distribution on Bridge Decks: Standard AASHTO Specifications (LFD) (i) kMlaMgkat; (Shear): minmankarEbgEckbnÞúkkg; (wheel load) tamTisbeNþaysMrab; wheel load b¤ axle load enAxagcug enAeBlKNnakMlaMgkat;xagcug nigRbtikmμenAkñúgFñwmTTwg (transverse beam) b¤FñwmbeNþay (longitudinal beam). (ii) m:Um:g;Bt;begáag³ FñwmbeNþay (Bending moment: longitudinal beam) kñúgkarKNnam:Um:g;begáagenAkñúg longitudinal beam b¤ stringer eKminGnuBaØateGaymankar BRgaybnÞúkkg;tamTisbeNþayeT. sMrab;Ggát;ebtugeRbkugRtaMg kñúgkrNI stringer xagkñúg m:Um:g;Bt;bnÞúkGefrsMrab; stringer nImYy²RtUv)ankMNt;edayGnuvtþcMENkén wheel load eTAelI stringer dUcxageRkam (iii) Side by Side Precast Beams in Multi-Beam Decks s<anBhuFñwm (multi-beam bridge) RtUv)ansagsg;eLIgCamYynwgFñwmebtugGarem: b¤Fñwmebtug eRbkugRtaMgcak;Rsab;Edldak;Ek,rKñaelITMr. GnþrGMeBI (interaction) rvagFñwmRtUv)anbegáIteLIg eday continuous longitudinal shear key EdleRbIrYmpSMCamYynwg transverse tie EdlGacrg b¤minrgeRbkugRtaMg dUcCab‘ULúg r)arEdk b¤kabeRbkugRtaMg b¤k¾meFüa)ayemkanicepSgeTot. eKRtUvkar Full-depth rigid end diaphragm edIm,IFanakarBRgaybnÞúkeGayl¥sMrab;FñwmrUbrag channel, single-stemmed tee beam nig multi-stemmed tee beam. kñúgkarkMNt;m:Um:g;Bt;begáagenAkñúgs<anebtugBhuFñwmcak;Rsab; ¬ebtugGarem: b¤eRbkug RtaMg¦ eKsnμt;faminmankarBRgaybnÞúkkg;tamTisbeNþayeT. m:Um:g;Bt;begáagbnÞúkGefr sMrab;muxkat;nImYy²RtUv)ankMNt;edayGnuvtþcMENkén wheel load ¬TaMgmux nigeRkay¦ Edl kMNt;edaysmIkarxageRkameTAelIFñwm LRFD and Standard AASTHO Design of Concrete Bridges 752
  • 9. Department of Civil Engineering NPIC S Load Frcation = D Edl S= TTwgrbs;Ggát;cak;Rsab; D = (5.75 − 0.5 N L ) + 0.7 N L (1 − 0.2C )2 enAeBlEdl C ≤ 5 D = (5.75 − 0.5 N L ) enAeBlEdl C > 5 NL = cMnYn traffic lane C = K (W / L ) Edl W = TTwgTaMgmUlrbs;s<anEdlvas;EkgeTAnwgr:tbeNþay L = RbEvgElVgEdlvas;RsbeTAnwgr:tbeNþay. sMrab;r:tEdlman end diaphragm cak;enAnwgkEnøg ykRbEvgcenøaH end diaphragms K = [(1 + μ )I / J ]1 / 2 RbsinebItMélrbs; I / J FMCag 5.0 karBRgaybnÞúkRtUv)ankMNt;edayeRbIviFIEdlsuRkitCag dUcCa Articulated Plate Theory b¤ Grillage Analysis. Edl I = mU:m:g;niclPaB J = efrrmYl Saint-Venant μ = pleFobB½rs‘ugrbs;r:t sMrab;viFIEdlkat;EtsuRkit eKkMNt;tMélrbs; J edayeRbIsmIkarxageRkam sMrab;FñwmctuekaNEdlKμanRbehag/ FñwmGkSr C/ Fñwm Tee J = ∑{1 / 3)bt (1 − 0.630t / b )} ( 3 Edl RbEvgrbs;FatubgÁúMctuekaNnImYy²EdlmanenAkñúgmuxkat; b= t = kMras;rbs;FatubgÁúMctuekaNnImYy²EdlmanenAkñúgmuxkat; søab nigeCIgrbs;muxkat;EdlmaneCIg b¤muxkat;GkSr C RtUv)anKitCaFatubgÁúMctuekaNdac; edayELkEdltMélrbs;vaRtUv)anbUkbBa©ÚlKñaedIm,IKNna J . cMNaMfa sMrab;FñwmctuekaN EdlmanRbehagmUl tMélrbs; J GacKitCatMélRbhak;RbEhledayeRbIsmIkarxagelIsMrab; muxkat;ctuekaN nigedayminKitRbehag. sMrab;Fñwmmuxkat;RbGb;³ J= ( 2tt f (b − t )2 d − t f )2 bt + dt f − t 2 − t 2 f Edl b= TTwgsrubrbs;RbGb; karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 753
  • 10. T.Chhay viTüasßanCatiBhubec©keTskm<úCa d= kMBs;srubrbs;RbGb; t = kMras;rbs;RTnugTaMgsgçag t f = kMras;rbs;søabTaMgBIr rUbmnþsnμt;fasøabTaMgBIrmankMras;esμIKña ehIyeKeRbIkMras;rbs;søabEtmYyeT. dUcKñasMrab; RTnug. sMrab;karsikSaKNnabzm eKGaceRbItMélrbs; K xageRkam³ (iv) kugRtaMgenAkñúgebtug (Stresses in Concrete) krNI I³ bnÞúkTaMgGs;edayrYmbBa©ÚlTaMgeRbkugRtaMg ¬ D + L + P / S ¦ f c = 0.6 f 'c f t = 6 f 'c krNI II³ eRbkugRtaMg + bnÞúkefrTaMgGs; ¬D+ P/S ¦ f c = 0.4 f 'c f t = 6 f 'c krNI III³ 12 ¬eRbkugRtaMg + bnÞúkefr¦ + bnÞúkGefr [0.5(D + P / S ) + L] f c = 0.4 f 'c f t = 6 f 'c 12.2.3. m:Um:g;Bt;begáagenAkñúgkMrals<an³ lkçN³bec©keTssþg;dar AASTHO (LFD) Bending Moments in Bridge Decks Slabs: Standard AASHTO Specifications (LFD) karKNnam:Um:g;Bt;manBIrRbePT³ RbePT A nigRbePT B sMrab;EdkBRgwgEdlEkg nigRsb eTAnwgcracrN_ erogKña. S = RbEvgElVgRbsiT§PaB LRFD and Standard AASTHO Design of Concrete Bridges 754
  • 11. Department of Civil Engineering NPIC TTwgrbs;kMralEdleKEbgEck wheel load BIelIva E= P = bnÞúkenAelIkg;xageRkaymYyrbs; truck ¬ P15 b¤ P20 ¦ P15 = 12,000lb sMrab;kardak;;bnÞúk HS 15 P20 = 16,000lb sMrab;kardak;bnÞúk HS 20 (a) krNI A- EdkemEkgeTAnwgcracrN_ ¬ElVgEdlmanRbEvgBI 2 eTA 24 ft ¦ eKkMNt;m:Um:g;bnÞúkGefrsMrab;ElVgsamBaØtamsmIkarxageRkam sMrab;kardak;bnÞúk H 20 ⎛S + 2⎞ ML = ⎜ ⎟ P20 (12.4a) ⎝ 32 ⎠ sMrab;kardak;bnÞúk H 15 ⎛ S + 2⎞ ML = ⎜ ⎟ P15 (12.4b) ⎝ 32 ⎠ Edl M L KitCa ft − lb / ft énTTwgkMral sMrab;kMralEdlCab;elITMrbI b¤eRcInCagenH eKRtUvGnuvtþemKuNénPaBCab; 0.80 eTAelI smIkar 12.4 (a) nig 12.4 (b). (b) krNI B- EdkemRsbeTAnwgcracrN_ sMrab; wheel load TTwgEbgEck E KYresμInwg = 4 + 0.06S ≤ 7.0 ft . Lane loads RtUv)an BRgayelITTwg 2E dUcxageRkam³ sMrab;kardak;bnÞúk H 20 S ≤ 50 ft ³ M L = 900 S (12.4c) S = 50 − 100 ft ³ M L = 1000 S (12.4d) Edl M L KitCa ft − lb sMrab;kardak;bnÞúk H 15 kat;bnßy 25% BItMélenAkñúgsmIkar 12.4 (c) nig 12.4(d). 12.2.4. bnÞúkxül; Wind Loads edayKitbBa©ÚlbnÞúkxül; épÞRbQmesμInwgplbUkénépÞrbs;Ggát;TaMgGs;edayrYmbBa©ÚlTaMg RbB½n§kMral nigbgáan; dUceXIjenAkñúgkMritnIv:U 90o eTAnwgG½kSbeNþayrbs;eRKOgbgÁúM. karsikSaKNna KUrEp¥kelIel,Ónxül; V = 100mph(160km / h). RkLaépÞrgsMBaFRtUv)ankat;dUcerobrab;enAkñúg AASTHO. karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 755
  • 12. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 12.2.5. kMlaMgrBa¢ÜydI Seismic Forces eKGaceRbITaMgviFIkMlaMgsþaTicsmmUl (equivalent static force method) nig response spectrum method sMrab;karsikSaKNnaeRKOgbgÁúMEdlGgát;TMrmanPaBrwgRkajRbhak;RbEhlKña. karlMGitmanenAkñúg AASTHO. karerobrab;bEnßmsMrab; earthquake response, fundamental period énrMj½r nig International Building Code (IBC 2000) RtUv)anerobrab;enAkñúg Nawy. E.G., Reinforced Concrete. 12.2.6. karbnSMbnÞúk AASTHO LFD AASTHO LFD Load Combination karsikSaKNnaKYrKitRkuménkarbnSMbnÞúkEbbNaedIm,IeGay)anlkçxNÐkugRtaMgGtibrmaenA kñúgGgát;EdlBicarNa. eKmanRkuménkardak;bnÞúkeRkamlkçxNÐbnÞúkesvakmμ³ Rkum I³ D + (L + I ) + CF + E + B + SF Rkum II³ D + E + B + SF + W Rkum III³ D + (L + I ) + CF + E + B + SF + W + WL + LF Rkum IV³ D + (L + I ) + CF + E + SF + (R + S + T ) Rkum V³ D + E + B + SF + W + (R + S + T ) Rkum VI³ D + (L + I ) + CF + E + B + SF Rkum VII³ D + E + B + SF + EQ Rkum VIII³ D + (L + I ) + CF + E + B + SF + ICE Rkum IX³ D + E + B + SF + W + ICE Rkum X³ D + (L + I ) + E Edl D = bnÞúkefr L = bnÞúkGefr I = bnÞúkGefrTgáic E = sMBaFdI B = PaBGacGENþt (buoyancy) W = bgÁúMxül;enAelIGaKar WL = bnÞúkxül;enAelIbnÞúkGefr − 100lb / ft LRFD and Standard AASTHO Design of Concrete Bridges 756
  • 13. Department of Civil Engineering NPIC bnÞúkbeNþayEdl)anBIbnÞúkGefr LF = CF = kMlaMgcakp©it R = karrYjxøIrbs; rib S = karrYmmaD T = sItuNðPaB EQ = kMlaMgrBa¢ÜydI SF = sMBaFrMhUrrbs;Twk ICE = sMBaFTwkkk sMrab; load factor design eKRtUvKuN)a:ra:Em:RtelIkmunCamYynwgemKuNbnÞúkenAkñúgtarag 12>1(b). sMrab;bnÞúkemKuN tMélRKumKW elxRkum (N ) = γ [β D D + β L (L + I ) + β C CF + β E E + β B B + β S SF + βW W + βWLWL + β L LF + β R (R + S + T ) + β EQ EQ + β ICE ICE ] (12.5) emKuNbnÞúkEdlRtUvGnuvtþeTAelIbnSMbnÞúkKWdUcxageRkam³ β E = 0.7 sMrab;bnÞúkbBaÄrenAelIRbGb;ebtugGarem: = 1.0 sMrab;bnÞúkxag (lateral load) enAelIRbGb;ebtugGarem: = 1.0 sMrab;bnÞúkbBaÄr nigbnÞúkxagenAelIlU (culvert) déTeTot = 1.0 nig 0.5 sMrab;bnÞúkxagenAelIeRKagrwg ¬RtYtBinitükardak;bnÞúkEdllub sMrab;RkumCak;lak;¦ β E = 1.3 sMrab;sMBaFxagrbs;dIenAeBlRtYtBinitüm:Um:g;viC¢manenAkñúgeRKagrwg (rigid frame) lU b¤lURbGb;ebtugGarem: β D = 0.75 enAeBlRtYtBinitüGgát;sMrab;bnÞúktamG½kSGb,brma nigm:Um:g;Gtibrma sMrab;cMNakp©itGtibrma sMrab;karsikSaKNnassr. = 1.0 enAeBlRtYtBinitüsMRab;bnÞúktamG½kSGtibrma nigm:Um:g;Gb,brma = 1.0 sMrab;Ggát;rgkarTaj nigkarBt;begáag. tarag 12>1 (b) eGaytMélénemKuN β sMrab;)a:ra:Em:RtbnÞúkepSg²enAkñúgsmIkar 12.5 sMrab;lkçN³bec©keTs standard AASTHO. karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 757
  • 14. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 12.2.7. karbnSMbnÞúk LRFD LRFD Load Combinations karbnSMbnÞúkedayeRbIlkçN³bec©keTs LRFD xusKñaBIlkçN³bec©keTs standard AASTHO. taragxageRkam ³ 12>2 eTAdl; 12>3 bgðajBIbnSMbnÞúktMrUvkar ehIytarag 12>4 dl; 12>7 bgðaj BIsmIkarkMlaMgkat; nigsmIkarm:Um:g;EdlRtUveRbIenAkñúgkarsikSaKNna. Epñk 12.1.1 bgðajBIemKuNer sIusþg; LRFD φ EdlxusKñaBIemKuNkat;bnßyersIusþg; standard AASTHO φ . eKRtUvcMNaMfa enAkñúg LRFD and Standard AASTHO Design of Concrete Bridges 758
  • 15. Department of Civil Engineering NPIC lkçN³bec©keTs standard eKeRbI lane load b¤ truck load kñúgkarKNnabnÞúkGefr. lkçN³bec©keTs LRFD TamTareGayeRbInUvbnSMrvag lane load nig truck load kñúgkarkMNt;bnÞúkGefr. karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 759
  • 16. T.Chhay viTüasßanCatiBhubec©keTskm<úCa tMélemKuNersIusþg; LRFD φ RtUv)aneGayenAkñúgtarag 12>1 (a). eKGaceRbIsmIkarenAkñúgtarag 12>4 nig 12>5 edIm,IKNnam:Um:g;Bt;begáagGtibrma nigkMlaMg kat;GtibrmaRKb;cMnucTaMgGs;kñúgmYy lane sMrab; HS 20 truck CamYynwgkarkMNt;EdlbgðajenAkñúg tarag. eKyktMélEdlKNnaRtwmBak;kNþaledIm,ITTYl)ankMlaMgkat; nigm:Um:g;kñúgExSkg; (line of wheel). smIkarenAkñúgtaragRtUv)ankMNt;RtwmElVgTMrsamBaØ nigminrYmbBa©ÚlT§iBlTgáiceT. eKGackMNt;m:Um:g;Bt;Gtibrma nigkMlaMgkat;GtibrmakñúgmYy lane enARtg;cMnucNamYyenAelI ElVgsMrab; lane load 0.64kip / ft BIsmIkarEdlsMrYlehIydUcxageRkam³ kMlaMgkat;Gtibrma VLL = 02.64 (L − x)2 L (12.6a) 0.64( x )(L − x ) m:Um:g;Gtibrma M LL = 2 (12.6b) Edl x = cMgayBITMrxageqVg L = ElVgFñwm LL = lane load TamTarT§iBlTgáic (impact factor) FMCag standard specification. ehIy LEFD Specification vak¾TamTarnUvkarBicarNaBIsßanPaBkMNt; fatigue. sMrab; fatigue eKRtUvBicarNa truck load Biess. LRFD and Standard AASTHO Design of Concrete Bridges 760
  • 17. Department of Civil Engineering NPIC vapSMeLIgBI single design truck EdlmanTMgn; axle dUcKñanwgGIVEdleRbIenAkñúgsßanPaBkMNt;déTepSg eTot b:uEnþvamanKMlatefr 30 ft cenøaH axle 32kips . tarag 12>6 bgðajBI impact factor IM sMrab; RbePTsßanPaBkMNt;epSg². tarag 12>7 bgðajBIsmIkarsMrab;KNnam:Um:g;Bt;GtibrmakñúgmYy lane EdlbNþalBIkardak; bnÞúk HL-93 fatigue truck. eKRtUvKuNtMélEdlTTYl)anBItaragedayemKuN 0.5 edIm,ITTYl)antMél kñúgmYyExSkg;rfynþ (line of wheel). karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 761
  • 18. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Ca HL-93 truck configuration EdlrYmmanbnSM³ LRFD design live load (a) Design truck b¤ design tandem CamYynwg dynamic allowance. Design truck KWdUcKñanwg HS20 design truck EdlmankMNt;enAkñúg Standard AASTHO specification. Design tandem pSMeLIgeday axle 25kips mYyKUr EdlmanKMlatBIKña 4 ft . (b) Design lane load 0.64kip / ft edayminman dynamic allowance. LRFD and Standard AASTHO Design of Concrete Bridges 762
  • 19. Department of Civil Engineering NPIC 12.3. karBicarNaBIkarsikSaKNnakarBt;begáag Flexural Design Considerations 12.3.1. bMErbMrYlénbMErbMrYlrageFob ε nigemKuN φ ³ viFIbMErbMrYlrageFobkMNt; Strain ε and Factor φ Variations: The Strain Limits Approach sMrab;kareFVIkarCalkçN³sVit (ductile behavior) rbs;muxkat; PaKryEdkBRgwgRtUvmantMél tUcCagPaKrybMErbMrYlrageFobkMNt;lMnwg (balanced limit strain) EdlrgkarBt;begáag dUcbgðajenA kñúgEpñk 4.12.3. eKminRtUvkareRbIEdnx<s;bMputénbrimaNEdkenAkñúgFñwmeT RbsinebIbMErbMrYlrageFob minFMCagbMErbMrYlrageFobkMNt; ehIyeKeRbIemKuN φ smrmü. bMErbMrYlrageFobrgkarTajEdnx<s;bM put ε t = 0.005in. / in. edaysarbMErbMrYlrageFobkMNt;mantMélRbhak;RbEhlnwg 75%énPaKry Edk balanced enAkñúg code elIkmun ehIyvaCaeKalkarN_rbs;viFIenH ¬rUbTI 12>6¦. eKKitBicarNa bMErbMrYlrageFobkMNt;enARtg;nIv:UEdkrgkarTajxageRkAbMput mann½yfa enARtg;TIRbCMuTMgn;énRsTab; EdkEdlenAEk,répÞrgkarTajrbs;muxkat;CageK. kan;EtCak;ElkCagenH ε t = 0.0041 EdlRtUvnwg f y ≅ 230,000 psi enAkñúgEdkeRbkugRtaMg. sMrab;viFI AASTHO LRFD tMélkMNt;rbs;pleFobkMBs;G½kSNWt c elIkMBs;RbsiT§PaB rbs;Fñwm d t RtUv)aneKykesμInwg 0.42 enAkñúgviFIbMErbMrYlragkMNt; (strain limits approach) EdleK GacehAmüa:geTotfa unified approach. viFIenHCaviFIEdlFana strain-compatibility edayeRbIbMEr bMrYlFmμta nigsmIkarkugRtaMgedayminKitfaGgát;enHBRgwgedayEdk b¤edayeRbkugRtaMg b¤edayeRb kugRtaMgedayEpñk. kMBs; d t enAkñúgpleFob c / d t køayCa d p RbsinebIeKmineRbIEdkBRgwgFmμtaeT enaH. tarag 12>9 énEpñk 12.7 bgðajBIkareRbobeFobTUeTArvagviFIsaRsþ ACI nig LRFD sMrab; kMNt;EdktMrUvkarenAkñúgGgát;rgkarBt;begáag. eKRtUveRbItMélbMErbMrYlrageFob ε t FMCag 0.005in. / in. dUcCag 0.007 eTA 0.009in. / in. . sMrab;muxkat; beam-column bMErbMrYlrageFobénmux limit compression-controlled KW ε t = 0.002 . karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 763
  • 20. T.Chhay viTüasßanCatiBhubec©keTskm<úCa eKeRbI ε t = 0.002 CaeKalsMrab; yield strain dMbUg ε y = f y / Es = 0.002 eTaHbICatMélenHGacERb RbYledayGaRs½yeTAnwgRbePTEdkEdleRbIk¾eday. rUbTI 12>7 bgðajBIEdnkMNt;énbMErbMrYlrag eFobsMrab;muxkat;ebtug tension-controlled nig compression-controlled sMrab;RKb;krNITaMgGs; ¬BRgwgedayEdk nigrgeRbkugRtaMg¦ Edl ε t = 0.003(dt / c − 1) . LRFD and Standard AASTHO Design of Concrete Bridges 764
  • 21. Department of Civil Engineering NPIC enAeBl net tensile strain enAkñúgEdkrgkarTajxageRkAbMputFMRKb;RKan; ¬FMCag b¤esμInwg 0.005 ¦ muxkat;RtUv)ankMNt;Ca tensioned-controlled section EdlvamankarRbkasGasnñBIkar)ak; RKb;RKan;CamYynwgPaBdabFM nigekItmansñameRbH. enAeBlEdl net tensile strain enAkñúgEdkrgkar TajxageRkAbMputtUc ¬tUcCag b¤esμInwg compression-controlled strain limit¦ eKrMBwgvanwgekItman lkçxNÐ)ak;edaylkçN³RsYy CamYynwgkarRbkasGasnñBIkar)ak;d¾tictYcbMput. lkçxNÐ balanced strain ekItmanenARtg;muxkat;EdlbMErbMrYlrageFobGtibrmaenAsrésrgkar sgát;xageRkAbMputmantMélesμInwg 0.003 kñúgeBldMNalKñaCamYynwg yield strain dMbUg ε y = f y / Es enAkñúgEdkrgkarTajEdlRtUvnwg net tensile strain enAkñúgEdkrgkarTajEdlkMNt;enAkñúgviFIenH enA eBlEdltMélrbs; ε t = 0.002in. / in. . eKminGaceRbIviFIenHenAkñúgkarKNnaFñwmEdlrgkarBt;begáagEdlminrgkarsgát;eT. enAkñúg Ggát;EbbenH bMErbMrYlrageFob ε t enAkñúgEdkrgkarTajxageRkAbMputminRtUvFMCag 0.0075 sMrab;kar Gnuvtþ. 12.3.2. ersIusþg;m:Um:g;Bt;begáagemKuN Factored Flexural Resistance m:Um:g;Tb;Tl;karBt;begáagemKuN M t = φM n (12.7) EdlemKuNersIusþg; φ = 1.0 . enAkñúgkarviPaK strain compatibility eKENnaMeGaykat;bnßyemKuN φ BItMél 1.0 sMrab; net tensile strain 0.005 eTA 0.7 sMrab; net tensile strain 0.002 enAkñúgEdkrgkarTajxageRkAbMput man n½yfa ⎡d ⎤ 0.7 ≤ φ = 0.50 + 0.30 ⎢ ext − 1⎥ ≤ 1.0 (12.8) ⎣ c ⎦ Edl dext Ca dt énRsTab;xageRkAbMputrbs;EdkBRgwg KWRsTab;EdkEdlenAEk,rsrésrgkarTajxag eRkAbMputrbs;muxkat;ebtugeRbkugRtaMg. 12.3.3. )a:r:aEm:RtKNnakarBt;begáag Flexural Design Parameters smIkarsMrab;KNnaersIusþg;m:Um:g; nominal rbs;muxkat;eRbkugRtaMgeday LRFD method KW Rsedonwg standard AASTHO ehIyk¾RsedogKñanwgviFIsaRsþKNnaersIusþg;rbs; ACI 318 EdlENnaM karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 765
  • 22. T.Chhay viTüasßanCatiBhubec©keTskm<úCa enAkñúgEpñk 4.11 énCMBUk 4. ersIusþg;KNnacugeRkay (ultimate design strength) f ps énEdkBRgwg EdlGacKNnatamviFI strain-compatibility dUckñúg]TahrN_ 4>19 b¤edayviFIRbEhl (approximate method) EdleRbIsmIkarxageRkam³ ⎛ c ⎞ f ps = f pu ⎜1 − k ⎟ (12.9a) ⎜ dp ⎟ ⎝ ⎠ ⎛ f py ⎞ Edl k = 2⎜1.04 − ⎜ ⎟ f pu ⎟ (12.9b) ⎝ ⎠ = 0.28 sMrab; low relaxation steel sMrab; unbonded tendons/ ⎛ dp −c⎞ f ps = f pe + 900⎜ ⎜ l ⎟ ⎟ (12.9c) ⎝ e ⎠ Edl le = 2li / (2 + N s ) RbEvg embedment/ li = RbEvgkabeRbkugRtaMgcenøaH anchorage/ N s = cMnYn tendon le = enAkñúg standard AASTHO specification eKGac)a:n;RbmaNkugRtaMgmFümdMbUgenAkñúgEdkeRbkug RtaMgBIsmIkarxageRkam³ ⎛ γ f pu ⎞ f ps = f pu ⎜1 − ρ ⎜ β ⎟ (12.9c) ⎝ 1 f 'c ⎟ ⎠ eKTTYl)ankMBs;rbs;G½kSNWt c BIsmIkarxageRkam³ (a) muxkat;EdkDub (Doubly reinforced section)³ A ps f pu + As f y − A' s f ' y c= (12.10) f pu 0.85 f 'c β1 + kA ps dp Edl f ' y = yield strength rbs;Edkrgkarsgát; (b) muxkat;mansøab (Flanged section)³ Aps f pu + As f y − A' s f ' s −0.85 f 'c β1 (b − bw )h f c= (12.11) f pu 0.85 f 'c β1bw + kAps dp Edl bw = TTwgRTnug d p = cMgayBIsrésrgkarsgát;xageRkAbMputeTATIRbCMuTMgn;rbs;EdkeRbkugRtaMg LRFD and Standard AASTHO Design of Concrete Bridges 766
  • 23. Department of Civil Engineering NPIC 12.3.4. EdnkMNt;rbs;EdkBRgwg Reinforcement Limits (a) EdnkMNt;EdkBRgwgGtibrma (Maximum reinforcement limits)³ brimaNGtibrmarbs;EdkrgeRbkugRtaMg b¤EdkminrgeRbkugRtaMgRtUvmantMély:agNaedIm,I c ≤ 0.42 (12.12a) de A ps f ps d p + As f y d s Edl de = A ps f ps + As f y (12.12b) (b) EdnkMNt;EdkBRgwgGb,brma (Minimum reinforcement)³ enARKb;muxkat;TaMgGs; brimaNEdkrgeRbkugRtaMg nigEdkminrgeRbkugRtaMgRtUvRKb;RKanedIm,I begáItersIusþg;Tb;Tl;karBt;begáagemKuN M t y:agehacNas;RtUvesμInwg 1.2M cr EdlkMNt; edayEp¥kelIeKalkarN_viPaKeGLasÞic b¤esIμnwg 1.33dgénm:Um:g;emKuNEdlTamTaredaybnSM bnÞúk. ⎡S ⎤ M cr = ( f r + f ce )S b − M dnc ⎢ bc − 1⎥ (12.13) ⎣ Sb ⎦ Edl M dnc = m:Um:g;EdlbNþalBI non-composite dead load Sb = m:UDulmuxkat; non-composite S bc = m:UDulmuxkat;smas f r = m:UDuldac; (modulus of rupture) = 7.5 f 'c psi = 0.24 f 'c ksi f ce = kugRtaMgsgát;enAkñúgebtugedaysarEteRbkugRtaMgRbsiT§PaB ¬eRkaykMhatbg;¦ enARtg;srésrgkarTajxageRkAbMputrbs;muxkat;EdlkugRtaMgTajekItBIbnÞúk xageRkA. 12.4. karBicarNaBIkarsikSaKNnakMlaMgkat; Shear Design Considerations 12.4.1. The Modified Compression Field Theory RTwsþI compression field sMrab;kMlaMgkat; nigsMrab;kMlaMgkat;EdlpSMCamYynwgkarrmYlRtUv)an erobrab;enAkñúgEpñk 5.17.3 énCMBUk 5. enAeBlEdlmankarrmYl eKsnμt;faebtugminTb;Tl;karTajeT bnÞab;BImansñameRbH ehIyEdn (field) én compressive strut Tb;Tl;kMlaMgkat;Ggát;RTUg. mMu θ rbs; strut enHERbRbYlGaRs½ynwgbMErbMrYlrageFobbeNþay (longitudinal strain), bMErbMrYlrageFobxag (transverse strain) nigbMErbMrYlrageFobem (principal strain) enAkñúgRTnug³ karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 767
  • 24. T.Chhay viTüasßanCatiBhubec©keTskm<úCa ε x − ε2 tan 2 θ = (12.14) εt − ε2 Edl εx =bMErbMrYlrageFobbeNþayrbs;RTnug ¬rgkarTaj viC¢man¦ ε t = bMErbMrYlrageFobTTWg ¬rgkarTaj viC¢man¦ ε 2 = bMErbMrYlrageFobrgkarsgát;em GviC¢man rUbTI 12>8 bgðajEdnkugRtaMg (stress field) enAkñúgRTnugrbs;FñwmEdlminrgeRbkugRtaMgmun nigeRkay eBlmansñameRbH. muneBlFñwmeRbH kMlaMgkat;RtUv)anTb;Tl;edaykugRtaMgTajGgát;RTUg nigkugRtaMg sgát;Ggát;RTUgesμIKña edayeFVIGMeBItammMu 45o ¬rUbTI 12>8(a)¦. eRkayeBlmansñameRbH sñameRbH Ggát;RTUgEdlekItBIkugRtaMgTajenAkñgebtugRtUv)ankat;bnßyy:ageRcIn. ú enAkñúgRTwsþI compression field eKsnμt;fakugRtaMgTajem f1 = 0 dUcenAkñúgrUbTI 12>8 (b) eRkayeBlebtugeRbH. RTwsþI modified compression field KitbBa©ÚlkarcUlrYménkugRtaMgTajenA kñúgebtugcenøaHsñameRbH dUcenAkñúgrUbTI 12>8 (c). BIrgVg;kugRtaMgm: (Mohr’s stress circle) enAkñúgrUb TI 5>2 (b) enAkñúgCMBUk 5 CamYynwgrUbTI 12>8 (c) eKGacTTYl)ansmIkarxageRkam f 2 = (tan θ + cot θ )v − f1 (12.15a) EdlkugRtaMgkMlaMgkat;Gnuvtþn_KW v= V = ( Vu − θV p ) (12.15b) bw jd φbw d v ( dv = d p − a / 2 ) nig bw = TTwgRTnugRbsiT§PaB. eKGackMNt;EdkRTnugrgkarTaj (tension web reinforcement) Av EdlTamTarsMrab;eFVIeGaykugRtaMgsgát;manlMnwgdUcxageRkam Av f v = ( f 2 sin 2 θ − f1 cos 2 θ )bw s (12.16) LRFD and Standard AASTHO Design of Concrete Bridges 768
  • 25. Department of Civil Engineering NPIC Edl Av fv CabgÁúMbBaÄrén balancing tensile force edIm,IbiTP¢ab;sñameRbHeRTtEdlmanmMu θ nig f v CakugRtaMgmFümenAkñúgEdkkgbBaÄr. edayCMnYs f 2 enAkñúgsmIkar 12.15(a) eTAkñúgsmIkar 12.16 eyIg)an³ Av f v V = f1bw d v cot θ + d v cot θ (12.17) s Edl V tMNageGayVn ehIyvaesμInwg (Vc + Vs ) / Edl Vs CakMlaMgkat;EdlTb;Tl;edayEdkkg bBaÄr. 12.4.2. smIkarKNna Design Expressions tamkarsnμt;EdlmanlkçN³sMrYl eKGacerobcMsmIkareKalén modified compression field theory eLIgvij dUcenHeKGackMNt;ersIusþg;kMlaMgkat; nominal Vn enAkñúgebtugeRbkugRtaMg Vn = Vc + Vs + V p (12.18) Edl Vc = ersIusþg;kMlaMgkat; nominal EdleGayedaykugRtaMgTajenAkñúgebtug Vs = ersIusþg;kMlaMgkat; nominal EdleGayedaykugRtaMgTajenAkñúgEdkRTnug V p = ersIusþg;kMlaMgkat; nominal EdleGayedaybgÁúMkugRtaMgbBaÄrénEdkeRbkugRtaMg harped b¤ draped tamTisbeNþay. 12.4.2.1. AASTHO Standard Specification (LFD) karpþl;eGayrbs; AASTHO standard nig ACI 318 KWmanlkçN³RsedogKña edayeKyk Vc nUv tMélEdltUcCagkñúgcMeNamsmIkarTaMgBIrxageRkamEdlbgðaj nigerobrab;y:aglMGitenAkñúgEpñk 5.5.1 nig 5.5.2 énCMBUk 5³ (a) kMlaMgkat;Bt;begáag (Flexural shear)³ Vi M cr Vci = 0.6 f 'c bw d + (12.19) M max (b) kMlaMgkat;RTnug (Web shear)³ Vcw = [3.5 f 'c + 0.3 f c ]bw d + V p (12.20) sMrab; AASTHO smIkarm:Um:g;eRbH (cracking moment) KW ( M cr = St 6 f 'c + f pe − f d ) karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 769
  • 26. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 12.4.2.2. LRFD Specification karpþl;eGayrbs; LRFD AASTHO TTYlsÁal;viFIBIr³ (a) Strut-and-tie model EdlGacGnuvtþ)anRKb;ragGrNImaRtrbs;muxkat;TaMgGs;Edlman lkçN³Fmμta nigminCab;. (b) Modified compression field EdlEp¥lelIm:UEdl truss EdlmanmMuERbRbYl EdlenAkñúgenaHeK GnuBaØateGayERbRbYlCMralrbs; diagonal compression field. vaxusBIviFI LFD Rtg;kar snμt;mMu θ eGayesμInwg 45o ¬EdlkñúgenHebtugsuT§k¾cUlrYmeFVIkarEdr¦ ehIy Vc RtUv)anGnuvtþ karTajEdlqøgkat; compression diagonal dUcerobrab;enAkñúgEpñk 12.4.1. eKykersIusþg; nominal nUvtMélEdltUcCageKkñúgcMeNam³ Vn = Vc + Vs + V p (12.21) b¤ Vn = 0.25 f 'c bv d v (12.22) Edl TTwgRTnugRbsiT§PaB bv = d v = kMBs;kMlaMgkat;RbsiT§PaB ≈ (d p − a / 2 ) a = kMBs;rbs;bøúksgát; muxkat;eRKaHfñaksMrab;kMlaMgkat;sßitenAcMgay dv b¤ (0.5dv cot θ ) edayykmYyNaEdlFM Cag. eKyktMél dv BIkarKNnaersIusþg;Bt;begáagkNþalElVg. ersIusþg;kMlaMgkat; nominal rbs;ebtugsuT§ Vc EdlKitCa psi KW Vc = β f 'c bv d v (12.23) nigKitCa ksi Vc = 0.0361β f 'c bv d v (12.24) emKuN 0.0361 KW 1 / 1000 EdlCaemKuNsMrab;bMElgBI psi eTA ksi . eKykersIusþg;kMlaMgkat;énkarcUlrYmrbs;EdkRTnugbBaÄrKW Av f y d v cot θ Vs = (12.25) s eKRtUvdak;Edkkg (transverse shear reinforcement) enAeBlEdlkMlaMgkat;emKuN Vu FMCaglT§PaB Tb;kMlaMgkat;rbs;ebtugsuT§ b¤ ( Vu > 0.5φ Vc + V p ) (12.26) EdlemKuNkat;bnßyersIusþg; φ RtUv)anykBItarag 12>1(a). LRFD and Standard AASTHO Design of Concrete Bridges 770
  • 27. Department of Civil Engineering NPIC elIsBIenH enAeBlEdlkMlaMgRbtikmμrbs;FñwmbBa¢Únkarsgát;eTAcugrbs;Ggát;dUcEdlekItman enAkñúgkrNICaeRcIn eKykmuxkat;eRKaHfñak;enARtg;TItaMgq¶ayCag 0.5dv cot θ b¤ dv EdlvaBIépÞrbs; TMr. edIm,IkMNt;ersIusþg;kMlaMgkat; nominal rbs;Ggát;eRbkugRtaMg visVkrKNnaeRKOgbgÁúMRtUvkMNt; tMélrbs; β nig θ EdlRtUvkatsMrab;kMNt;Vc nig Vs enAkñúgsmIkar 12.21 nig 12.22. sMrab;muxkat; ebtugminrgeRbkugRtaMg eKyk β = 2.0 nigθ = 45o . sMrab;muxkat;ebtugeRbkugRtaMg/ trial-and- adjustment eRbItMél β tUc. tarag 12>8 bgðajBItMélrbs; β nig θ sMrab;tMélepSg²rbs; ε x . eKTTYl)anbMErbMrYlrageFob ε x enAkñúgEdkrgkarTajBIsmIkarxageRkam RbsinebImuxkat;y:ag ehacNas;manEdkTTwg (transverse reinforcement) Gb,brma ⎡ Mu ⎤ ⎢ d + 0.5 N u + 0.5Vu cot θ − Aps f po ⎥ εx = ⎢ u ⎥ ≤ 0.002 ⎢ ( 2 Es As + E ps A ) ⎥ (12.27) ⎢ ⎣ ⎥ ⎦ Edl . f po ≅ 0.70 f pu eKRtUvKuNtMélenAkñúgsmIkar 12.27 nwgBIr RbsinebImuxkat;manEdkkgticCagEdkkgGb,- brma. kugRtaMg f po CakugRtaMgenAkñúgkabeRbkugRtaMgenAeBlGnuvtþeRbkugRtaMg (jacking) sMrab;Ggát; karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 771
  • 28. T.Chhay viTüasßanCatiBhubec©keTskm<úCa rgeRbkugRtaMgCamun (pretensioned member) ehIysMrab;suvtßiPaB vaCakugRtaMgmFümsMrab;EdkeRb kugRtaMgenAkñúgGgát;rgeRbkugRtaMgCaeRkay (post-tensioned member). sMrab;kabeRbkugRtaMgFmμta eKyk f po = 0.75 f pu sMrab;TaMgGgát; pretensioned nigTaMgGgát; post-tensioned. f ce = kugRtaMgsgát;rbs;ebtugenARtg;TIRbCMuTMgn;rbs;muxkat;smasEdlTb;Tl;nwgbnÞúkGefr b¤enARtg;TIRbsBVrvagRTnug nigsøab RbsinebIvasßitenAkñúgsøabEdlbNþalBIeRbkugRtaMg nigm:Um:g;Bt;EdlTb;Tl;edaymuxkat;cak;Rsab;EdleFVIkarEtxøÜnÉg mann½yfamunnwgeFVI karCamuxkat;smas. f pe = kugRtaMgRbsiT§PaBenAkñúgEdkeRbkugRtaMgeRkayeBlxatbg;/ CalkçN³suvtßiPaB eKyk f po CaeRbkugRtaMgRbsiT§PaB f pe . RbsinebIbMErbMrYlrageFobenAkñúgEdkrgkarTajGviC¢man eKRtUvKuN ε x CamYynwgemKuN Fε EdlmansmIkardUcxageRkam Es As + E ps Aps Fε = (12.28) Ec Ac + Es As + E ps Aps Edl Ac = RkLaépÞrbs;muxkat;ebtugénEpñkrgkarTajedaykarBt;begáagrbs;Ggát; dUcbgðajenA kñúgrUbTI 12>9. EdkbeNþayRtUvmansmamaRty:agNaedIm,IeGaymuxkat;FñwmnImYy²bMeBjsmIkarxageRkam³ Mu N ⎛V ⎞ As f s + Aps f ps ≥ + 0.5 u + ⎜ u + 0.5Vs + V p ⎟ cot θ ⎜φ ⎟ (12.29) d vφ φ ⎝ ⎠ BIsmIkar AASTHO elIkmun GBaØat β CaemKuNy:agsMxan;kñúgkarkMNt;ersIusþg;kMlaMgkat; Fmμta (nominal) Vc dUcenAkñúgsmIkar 12.21. karbgðajtMélrbs; β EdlEp¥kelI compression LRFD and Standard AASTHO Design of Concrete Bridges 772
  • 29. Department of Civil Engineering NPIC field theory enAkñúgtarag 12>8 bgðajfatMélTaMgenHhak;minGaceRbI)ansMrab;pleFob (v / f 'c ) FMCag 0.125 enAeBlEdlbMErbMrYlrageFobtUcCag 0.005 . Hsu )anerobrab;nUvPaBBi)akenH EdlekIt eLIgenAeBlkMNt;tMélkugRtaMgkMlaMgkat;sñameRbH (crack shear stress) vci mann½yfa lT§PaBén crack interface edIm,IepÞrkugRtaMgkMlaMgkat;EdlGaRs½yelITMhMsñameRbH w enAkñúgsmIkarxageRkam 2.16 f 'c 0.18 f 'c vci ≤ psi, w(in.) vci ≤ MPa, w(mm ) 24 w 24 w 0 .3 + 0 .3 + a + 0.63 a + 16 HsuesñIeGayeRbI vci = 0 edIm,IrkSalMnwg nigPaBRtUvKña (compatibility). ehIy mMusñameRbH θ enAkñúgtY Vs énsmIkar 12.25 KWCamMucenøaHkugRtaMg¬bMErbMrYlrageFob¦EdkbeNþay nigkugRtaMg ¬bMEr bMrYlrageFob¦sgát;emrbs;ebtug. edaysarEbbenH kugRtaMgkMlaMgsgát;tambeNþayG½kSemesμInwg sUnü. ehIy karerobrabenHGnuvtþenAkñúgkarpþl;eGayrbs; LRFD sMrab;krNIénbnSMkMlaMgkat; nigkar rmYl. 12.4.2.3. KMlatGtibrmarbs;EdkRTnug Maximum Spacing of Web Reinforcement KMlatGnuBaØatGtibrma s rbs;EdkRTnugKWtMélEdltUcCageKkñúgcMeNam s ≤ 0.75h b¤ 24in. RbsinebI Vs > 4 f 'c bwd / KMlatGnuBaØatGtibrmaRtUv)ankat;bnßy 50% . 12.5. Horizontal Interface Shear eKalkarN_én horizontal interface shear eRkamGMeBI service load nig ultimate load RtUv)an erobrab;eBjeljenAkñúgCMBUk 5 Epñk 5.7 EdlrYmman]TahrN_bgðajEdlGnuelamtamtMrUvkar ACI 318 nig PCI. AASTHO standard specification tMrUveGayersIusþg;kMlaMgkat;tamTisedk nominal Vnh dUcKñanwgersIusþg;kMlaMgkat;rbs; ACI enAeBlEdleKmineRbI dowel reinforcement mann½yfakug RtaMgGnuBaØatGtibrmaKW 80 psi . vaxusKña enAeBleKeRbI dowel reinforcement Gb,brma Edlkñúg enaHkugRtaMgkMlaMgkat;edkGnuBaØatGtibrmaKW 350 psi EdlCMnYseGay 500 psi EdlGnuBaØateday ACI. tamkarGegát nigBiesaFn_d¾sIuCMerArbs; Nawy )anbgðajeGayeXIjfakugRtaMgGnuBaØatBitCa tUcEmnETn. karBiesaFbgðajfa sUm,IEtersIusþg;dMbUgeRkamlkçxNÐsItuNðPaB sub-freezing/ vaGac karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 773
  • 30. T.Chhay viTüasßanCatiBhubec©keTskm<úCa TTYlersIusþg;eRkamGMeBI ultimate load FMCag 1200 psi(8.3MPa) edayeRbI dowel reinforcement bBaÄr. Standard AASTHO TamTardUcxageRkam³ (a) enAeBleKmindak; vertical ties Vnh = 80bv d (12.30a) (b) enAeBleKmindak; vertical ties Gb,brma Vnh = 500bv d (12.30b) (c) RkLaépÞtMrUvkarrbs; Avh FMCag vertical ties Gb,brma dp Vnh = 500bv d + 0.40 Avh f y (12.30b) s Edl kMlaMgkat;bBaÄremKuN Vu = φVnh Vnh = ersIusþg;kMlaMgkat;edk nominal φ = 0.90 Gb,brma = 50bv s / f y Avh bv = TTwgrbs;muxkat;enARtg;épÞb:HEdlRtUvviPaKkMlaMgkat;edk b p = cMgayBIsrésrgkarsgát;xageRkAbMputeTATIRbCMuTMgn;rbs;EdkeRbkugRtaMg b:uEnþ minRtUvyktUcCag 0.80h s = kMlatGtibrmarbs; dowel b:uEnþminRtUvFMCagbYndgénTTwgRTnugEdltUcCageK rbs;Ggát;TMr b¤ 24in. . LRFD specification min)anpþl;nUveKalkarN_ENnaMsMrab;KNnakMlaMgkat;edk Vnh eT. dUcenH eKGaceRbIsmIkarxageRkam Vu vuh = (12.31) bv d v Edl kugRtaMgkMlaMgkat;edkemKuN vuh = Vu = kMlaMgkat;bBaÄremKuN d v = cMgaycenøaHkMlaMgpÁÜbénkMlaMgTaj nigénkMlaMgsgát; = (d − a / 2 ) bv = TTwg interface LRFD kMNt;eGayKNnaersIusþg;kMlaMgkat; nominal rbs; interface surface Vn edayeRbI smIkarxageRkam³ [ Vn = cAcv + μ Av f y + Pc ] (12.32) LRFD and Standard AASTHO Design of Concrete Bridges 774
  • 31. Department of Civil Engineering NPIC nig vuh Acv ≤ φVn (12.33) Edl c=emKuNs¥it (cohesion factor) μ = emKuNkkit Acv = RkLaépÞ interface rbs;ebtugEdlBak;B½n§nwgkarepÞrkMlaMgkat; Avf = RkLaépÞrbs;EdkkMlaMgkat;Edlkat;tambøg;kMlaMgkat;enAkñúgRkLaépÞ Ac Pc = kMlaMg net compressive Gcié®nþy_EdlEkgeTAnwgbøg;kMlaMgkat; ¬Gaclubecal eday lkçxNÐsuvtßiPaB¦ f y = yield strength rbs; dowel reinforcement CaTUeTA eKEtgEteFVIeGayépÞxagelIbMputrbs;Ggát;cak;Rsab;manlkçN³eRKIm ¬CMerARbEhl 0.24in. ¦ edIm,Icak;ebtugTMgn;FmμtabEnßm dUcerobrab;enAkñúgEpñk 5.7. LRFD ENnaMnUvsmIkarsMrYl 12.32 nig 12.33 dUcxageRkamEdlmanxñatCa ksi ³ ⎛ Avf ⎞ vuh ≤ φ ⎜ 0.1 + ⎜ ⎟ (12.34) ⎝ Acv ⎟ ⎠ EdlRkLaépÞGb,brma 0.05bv s Avf = (12.35) fy ehIy eKRtUvykersIusþg;kMlaMgkat; nominal nUvtMéltUcCageKkñúgcMeNam Vn ≤ 0.20 f 'c Acv (12.36a) b¤ Vn = 0.80 Acv (12.36b) emKuNs¥it c nigemKuNkkit μ enAkñúgsmIkar 12.32 mantMéldUcxageRkamsMrab;lkçxNÐCak;lak; rbs; interacting surface³ (a) ebtugEdlcak;kñúgeBlCamYyKña c = 145 psi μ = 1.4λ (b) ebtugEdlcak;elIebtugrwg nigs¥atehIyépÞrbs;vaeRKIm c = 100 psi μ = 1.0λ (c) ebtugEdlcak;elIebtugrwg s¥at nigminmansarFatuehIyépÞrbs;vamineRKIm c = 75 psi μ = 0.6λ (d) ebtugRtUv)ancak;f<k;eTAnwg as-rolled structural steel eday headed stud b¤eday reinforcing bars EdlRKb;EdkTaMgGs;P¢ab;CamYynwgebtugKWs¥atminmanlabfñaM karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 775
  • 32. T.Chhay viTüasßanCatiBhubec©keTskm<úCa c = 25 psi μ = 0.7λ Edl sMrab;ebtugdg;sIuetFmμta λ = 1 .0 = 0.85 sMrab; sand-low-density concrete = 0.75 sMrab;ebtugEdlmandg;sIuettUcdéTTaMgGs; xN³Edl LRFD AASTHO specification TamTareGaydak;EdkGb,brmaedayminKittMél rbs;kugRtaMgenARtg; interface, GñkKNnaGaceRCIserIsedIm,IkMNt;EdkenHeTAnwgkrNIEdlVuh / φ FM Cag 100 psi(0.7MPa ) . kareFVIEbbenH edIm,IeGayRsbeTAnwg ACI 318 Code specification nig standard AASTHO specification. 12.5.1. KMlat Dowel Reinforcement Gtibrma KMlatGnuBØatGtibrmarbs; dowel KW (i) RbsinebI Vu < 0.1 f 'c bv d v KMlatGtibrma s ≤ 0.8d v ≤ 24in. (ii) RbsinebI Vu > 0.1 f 'c bv d v KMlatGtibrma s ≤ 0.4d v ≤ 12in. 12.6. bnSMkMlaMgkat; nigkarrmYl Combined Shear and Torsion kareobrab;enAkñúgEpñk 12.4.1 GMBI compression field theory CamYynwgEpñk 5.17.3 bgðajBI karbMErbMrYlrageFob kMlaMgkat; nigGgát;rgkarsgát;Ggát;RTUg. rUbTI 5>38/ 5>39 nig 5>40 bgðajBI rUbragxUcRTg;RTayrbs;muxkat;eRKaHfñak;enAeBlrgm:Um:g;rmYl (torsional moment). eKsnμt;eGay bEnßmkugRtaMgkat;EdlbNþalBIkarmYl nigkMlaMgkat;enAelIRCugmçagrbs;muxkat; nigdak;eGayRbqaMg enAelIRCugQm. Edk transverse closed tie RtUv)ansikSaKNnasMrab;RCugEdlenAkñúgenaHeKRtUv bEnßmbnSMénT§iBlkMlaMgkat; nigkMlaMgrmYl. bnÞúkxageRkAEdlbgáeGaymanm:Um:g;rmYlFMbMputmindUcKñanwgbnÞúkEdlbgáeGaymankMlaMgkat; GtibrmaenARtg;muxkat;eRKaHfñak;eT. eKalbMNgrbs;GñksikSaKNnaKWbUkbBa©ÚltMélx<s;bMputénkar rmYl nigtMélx<s;bMputrbs;kMlaMgkat;kñúgkarKNnaEdkRTnug. enHBitCamansuvtßiPaB. eKGaceRbIPaB xusKñaénkMlaMgTaMgBIrenH edIm,IKNna transverse reinforcement sMrab;kMlaMgrmYlx<s;bMput CamYynwg kMlaMgkat;EdlekIteLIgkñúgeBlCamYyKña b¤k¾KNnasMrab;kMlaMgkat;x<s;bMput CamYynwgkMlaMgrmYlEdl ekIteLIgkñúgeBlCamYyKña edayykmYyNaEdlnaMeGaymanersIusþg;x<s;bMput. LRFD eRbIm:Um:g;Edl LRFD and Standard AASTHO Design of Concrete Bridges 776
  • 33. Department of Civil Engineering NPIC Tb;Tl;karrmYl nominal dUcKñanwg ACI³ 2 Ao At f y cot θ Tn = (12.37) s Edl RkLaépÞmuxkat;EdlB½T§CMuvijeday shear flow path EdlrYmbBa©ÚlTaMgRbehag Ao = At = RkLaépÞrbs;eCIgmYyénEdkrgkarTajbiTCit θ = mMuénsñameRbHEdl)aneRCIserIseday trial-and-adjustment edayeRbItarag 12>8 edIm,IkMNt;tMélrbs; θ / eKTTYl)anbMErbMrYlrageFob ε x enAkñúgEdkrgkarTajBIsmIkar 12.27 elIkElgsMrab;karCMnYs Vu eday 2 ⎛PT ⎞ Vu = Vu2 +⎜ h u ⎜ 2A ⎟ ⎟ (12.38) ⎝ o ⎠ eKTTYlbrimaN transverse reinforcement tMrUvkarsMrab;kMlaMgkat;BIsmIkar 12.21(a) CamYy nwgsmIkar 12.23(a) nig 12.25 mann½yfa Av f y d v cot θ Vn = β f 'c bv d v + +Vp (12.39) s dUcenH sMrab;kMlaMgkat;KitCa lb nigkugRtaMgKitCa psi Av Vn − (β f 'c bv d v + V p ) = (12.40a) s f y d v cot θ RbsinebIeKeRbIxñat ksi eKRtUvKuN β eday 0.0316 . ehIysMrab;karrmYl BIsmIkar 12.31 At Tn = (12.40b) s 2 Ao f y cot θ RkLaépÞsrubrbs;EdkRTnug (web reinforcement) KW Avt Av A = +2 t (12.40c) s s s eKTTYl)anmMu θ BIrUbTI 12>9 edayeRbIkugRtaMgkMlaMgkat; v dUcxageRkam (a) muxkat;RbGb;³ Vu − φV p T p Ph V= + (12.41) φbv d v φAoh 2 (b) muxkat;epSgeTot³ 2 2 ⎛ Vu − φV p ⎞ ⎛ Tu Ph ⎞ V= ⎜ ⎟ +⎜ ⎟ (12.42) ⎜ φb d ⎟ ⎜ φA 2 ⎟ ⎝ v v ⎠ ⎝ oh ⎠ Edl Ph = brimaRtrbs;ExSG½kSén enclosed transverse torsion reinforcement karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 777
  • 34. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Aoh = RkLaépÞbiTCitedayExSG½kSén closed torsional reinforcement xageRkAeK bMput Ao = gross area B½T§CMuvijeday shear flow path ¬emIlrUbTI 5>45 sMrab;karbgðaj Ao nig Aoh Edl Ao ≅ 0.85 Aoh ¦ Tu = m:Um:g;rmYlemKuN φ = emKuNersIusþg; eKTTYl)antMélrbs; β enAkñúgsmIkar 12.39 sMrab;kMNt;ersIusþg;kMlaMgkat; Vc énebtugsuT§enAkñúgRT- nugBI chart enAkñúgrUbTI 12>9. edIm,IeCosvagkMueGayEdkbeNþay yield eKRtUvRtYtBinitüfaEdkrgkar Bt;enAelIépÞrgkarTajRtUvEtsmamaRtedIm,IbMeBjlkçxNÐxageRkam³ 2 ⎛ 0.45Tu Po ⎞ φ (As f y + A ps f ps ) ( ) M ≥ u + 0.5 N u + cot θ Vu − 0.5Vs − V p 2 +⎜ ⎜ 2A ⎟ ⎟ (12.43) dv ⎝ o ⎠ Edl Po = brimaRtrbs; shear flow path N u = kMlaMgtamG½kSGnuvtþn_/ ykviC¢manRbsinebICakMlaMgsgát; 12.7. AASTHO-LRFD Flexural-Strength Design Specifications vs. ACI Code Provisions vamanPaBxusKñarvagviFIrbs; AASTHO-LEFD flexural-strength design specification nig ACI-318 code provisions. viFI LRFD KWEp¥kelItMélkMNt;rbs;bMErbMrYlrageFobEdlerobrab;enAkñúg Epñk 12.3 nigRKb;RKgedaypleFobénkMBs;G¾kSNWt c elIkMBs;RbsiT§PaB d e . viFIenHk¾RtUv)aneK ehA fa unified approach edaysarvaGacGnuvtþ)ansMrab;karsikSaKNnasßanPaBkMNt;cugeRkay (ultimate) cMeBaHGgát;ebtugGarem: Ggát;ebtugeRbkugRtaMg nigGgát;ebtugeRbkugRtaMgedayEpñk. eK)anGnuvtþ ACI 318 code strength provision sMrab;kMNt; ultimate design strength f ps enAkñúg ]TahrN_CaeRcIndUcmanenAkñúgEpñk 4.9 nig 4.10. eKGnuvtþvaenAkñúgkarsikSaKNnaGgát;ebtugeRbkug RtaMgeBjelj nigGgát;ebtugeRbkugRtaMgedayEpñkenAkñúgeRKOgbgÁúMsMNg;. AASTHO standard specification bc©úb,nñEdlKNnasmamaRtmuxkat;Ggát;ebtugeRbkugRtaMgEdlrgkarBt;KWGnuvtþtam ACI code provisions. LRFD alternative EdlCaviFI rational design TamTarkarGnuvtþ strain limits unified procedure. taragTI 12>9 bgðajBIkareRbobeFobCasegçbEdlbgðajPaBxusKñarvag smIkarEdl)ankMNt;enAkñúgviFITaMgBIrenH. LRFD and Standard AASTHO Design of Concrete Bridges 778
  • 35. Department of Civil Engineering NPIC karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 779
  • 36. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 12.8. viFIsikSaKNnaCaCMhan² Step-by-Step Design Procedure (LRFD) xageRkamCakarsegçbénCMhankñúgkarsikSaKNna³ !> kMNt;faetIeKRtUveRCIserIskMlaMgeRbkugRtaMgedayEpñk b¤Gt; @> eRCIserIsm:Um:g;Bt; nigkMlaMgkat;BItarag 12.2(a) nig (b) Epñk 12.7. LRFD and Standard AASTHO Design of Concrete Bridges 780
  • 37. Department of Civil Engineering NPIC #> GnuvtþtamCMhanbnþbnÞab;sMrab;KNnaGgátr; gkarBt;begáagEdlmanerobrab;enAkñúgCMhan 2 rhUtdl;CMhanTI 10 énEpñk 4.13 kñúgCMBUk 4 nig flowchart énrUbTI 12>10 enAeBleRbI LRFD method sMrab;karKNnaGgát;rgkarBt;begáag. CaTUeTA d v = (d e − a / 2) . $> kMNt;kMlaMgkat;emKuN Vu EdlbNþalBIbnÞúkGnuvtþn_TaMgGs;enARtg;muxkat;eRKaHEdlsßit enAcMgay d v b¤ 0.5d v cot θ BIépÞrbs;TMr edayykmYyNaEdlFMCageK Edl d e = kMBs;RbsiT§PaBdUcbgðajenAkñúgtarag 12>9 = d p RbsinebIeKmineRbIEdkBRgwgFmμta %> KNnabgÁúMkMlaMgkat;rbs;kabeRbkugRtaMg VP . kugRtaMgkMlaMgkat;emKuNKW Vu − φV p v= φbv d v kugRtaMgkMlaMgkat;EdlGacman nominal vc = v / h ^> KNna v / f 'c nigsnμt;tMélrbs; θ . karsnμt;dMbUgd¾l¥sMrab;FñwmrgeRbkugRtaMgKW θ = 25o &> KNnabMErbMrYlrageFobenAkñúgEdkrgkarTajedIm,ITTYl)antMélsakl,gθ nig β enAkñúg tarag 12>8 ⎡ Mu ⎤ ⎢ d + 0.5 N u + 0.5Vu cot θ − A ps f po ⎥ εx = ⎢ v ⎥ Fe ≤ 0.002 ⎢ ( 2 E s As + E ps A ps ) ⎥ ⎢ ⎥ ⎣ ⎦ Edl f po ≅ 0.70 f pu kugRtaMgsgát;enAkñúgebtugenARtg;TIRbCMuTMgn;rbs;EdkTajedayKitTaMgkMlaMg f ce = eRbkugRtaMgbnÞab;BIkMhatbg; nigbnÞúkGcié®nþTaMgGs;. RbsinebIbMErbMrYlrageFobenAkñúgEdkrgkarTajGviC¢man eKRtUvKuN ε x edayemKuN Fε ³ E s As + E ps A ps Fε = Ec Ac + E s As + E ps A ps Ac =RkLaépÞrbs;ebtugenAEpñkrgkarTajedaysarBt;begáagrbs;Ggát; *> bBa©ÚleTAkñúg LRFD rUbTI 12>9 mþgeTot CamYynwgtMél v / f 'c nig ε x RbsinebImMu θ min mantMélEk,rnwgtMélsnμt;enAkñúgkarsakl,geLIgdMbUgeTenaH edIm,ITTYl)antMélEktMrUv rbs; β . ebImindUecñaHeT KNna Vc BIsmIkar 12.23 Edl Vc = β f 'c bv d v (lb) b¤ Vc = 0.0316β f 'c bv d v (kip ) edayeRbItMél β Edl)anBI chart enAkñúgrUbTI 12>9. karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 781
  • 38. T.Chhay viTüasßanCatiBhubec©keTskm<úCa (> KNna Vs sMrab;EdkRTnug eRkayeBlkMNt;tMélrbs; Vc rYcehIy. kMNt;KMlatrbs;Edk kMlaMgkat;EdlRtUvKñaBI³ bv s Av = 0.036 f 'c fy !0> enAkñúgtMbn;énkugRtaMgkat;FM FanafabrimaNrbs;EdkbeNþay As nig Aps RtUvbMeBj smIkarxageRkam³ ⎡M N ⎛V ⎞ ⎤ As f y + A ps f ps ≥ ⎢ u + 0.5 u + ⎜ u − 0.5Vs − V p ⎟ cot θ ⎥ ⎜φ ⎟ ⎣ d vφ φ ⎝ ⎠ ⎦ eKENnaMeGayeFVIkarRtYtBinitüenARtg;épÞén bearing EdlsßitenAelIRbEvgepÞrrbs; strand EdlminmanekItkMlaMgeRbkugRtaMgRbsiT§PaBeBjelj. !!> enAeBlmankarrmYlrYmpSMCamYynwgkMlaMgkat; nigkarBt;begáag eKcaM)ac;RtUvGnuvtþtamCM hanxageRkam kMlaMgrmYl nominal Tn = 2 Ao At sf y cot θ bMErbMrYlrageFobenAkñúgEdkrgkarTaj ⎡M ⎛PT ⎞ ⎤ ⎢ u + 0.5 N u + 0.5 cot θ Vu2 + ⎜ h u ⎜ 2A ⎟ − A ps f po ⎥ ⎟ ⎢ dv ⎝ o ⎠ ⎥ εs = ⎢ ⎥ Fe ≤ 0.002 ⎢ ( 2 E s As + E ps A ps ) ⎥ ⎢ ⎥ ⎣ ⎦ Edl f po = 0.70 f pu ersIusþg;kMlaMgkat; nominal Av f y d v cot θ Vn = Vc + Vs + V p = β f 'c bv d v + +Vp s Edl d v = (d p − a / 2) EdkkMlaMgkat; Av Vn − 0.0316 β f 'c bv d v + V p = s f y d v cot θ kMlaMgKitCa kips ehIykugRtaMgKitCa ksi . sMrab;kareRbI lb nig psi ykemKuN 0.0316 ecj. EdkrmYl LRFD and Standard AASTHO Design of Concrete Bridges 782
  • 39. Department of Civil Engineering NPIC At Tn = s 2 Ao f y cot θ EdkRTnugbiTCitsrub (total web closed ties reinforcement) Avt Av A = +2 t s s s kugRtaMgkMlaMgkat; v sMrab;TTYl)anmMu θ (a) muxkat;RbGb;³ Vu − φV p TPh v= + φbv d v φAo h 2 (b) muxkat;epSgeTot 2 2 ⎛ Vu − φV p ⎞ ⎛ TPh ⎞ v= ⎜ ⎟ +⎜ ⎟ ⎜ φb d ⎟ ⎜ φA 2 ⎟ ⎝ v v ⎠ ⎝ oh ⎠ edIm,IeCosvagkMueGayEdkrgkarTajbeNþay yield³ 2 ⎛ 0.45Tu Ph ⎞ φ (As f s + A ps f ps ) ( ) M ≥ u + 0.5 N u + cot θ Vn − 0.5Vt − V p 2 +⎜ ⎜ 2A ⎟ ⎟ dv ⎝ o ⎠ !@> RtYtBinitükMlaMgkat; interface edk³ vn Acv ≤ φVn Edl ( Vn = cAcv + μ Avf f y ) ⎛ Avf ⎞ vuh ≤ φ ⎜ 0.1 + ⎜ ⎟ ⎟ ⎝ Acv ⎠ Edl Avf = 0.05bv s fy ¬ f y KitCa ksi ¦ ykersIusþg;kMlaMgkat; nominal CatMéltUcCageKkñúgcMeNam Vn ≤ 0.20 f 'c Acv b¤ Vn ≤ 0.80 Acv Edl c = emKuNs¥it (cohesion factor) μ = emKuNkkit Acr = RkLaépÞ interface ebtug = bv I v Avf = RkLaépÞrbs;EdkkMlaMgkat;Edlkat;tambøg;kMlaMgenAkñúgépÞ Acv φ = emKuNkat;bnßyersIusþg; kñúgkrNIEdl vuh / φ > 100 psi eKRtUvkMritEdnkMNt;rbs; Avf . karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 783
  • 40. T.Chhay viTüasßanCatiBhubec©keTskm<úCa rUbTI 12>10 bgðajBI flowchart sMrab;CMhanEdlRtUvGnuvtþedIm,IkMNt;ersIusþg;m:Um:g; nominal sMrab; bonded tendons nig unbonded tendons. !#> KMlatGnuBaØatGtibrmarbs;EdkkMlaMgkat;RTnug (web shear reinforcement) s ≤ 0.75h ≤ 24in. RbsinebI Vs > 4 f 'c bwd / kat;bnßyKMlat 50% sMrab;KMlat dowel reinforcement RbsinebI Vu < 0.1 f 'c bv d v / s ≤ 0.8d v ≤ 24in. RbsinebI Vu > 0.1 f 'c bv d v / s ≤ 0.4d v ≤ 12in. Edl bv = TTwgénépÞb:HsMrab;kMlaMgkat;edk LRFD and Standard AASTHO Design of Concrete Bridges 784
  • 41. Department of Civil Engineering NPIC 12.9. LFRD Design of Bulb-Tee Bridge Deck ]TahrN_ 12>1³ sikSaKNnaFñwm AASTHO-PCI bulb-tee xagkñúgEdlmanTMrsamBaØéns<ankMral smas EdlKμan skews. FñwmenHmanRbEvg 120 ft (36.6m) . eRKOgbgÁúMEpñkxagelI (superstructure) pSMeLIgeday pretensioned beam cMnYn 6 EdlmanKMlatBImYyeTAmYycMgay 9 ft (2.74m) EdlKitBI G½kSeTAG½kS dUcbgðajenAkñúgrUbTI 12>11. s<anmankMras;ebtugcak;enAnwgkEnøgkMras; 8in.(203mm) CamYynwg wearing surface BIxagelIkMras; 2in. . bnÞúkGefrKNnaKW HL-93 AASTHO-LRFD fatigue loading. snμt;fas<anenHsßitenAkñúgtMbn;rBa¢ÜydItUc. eKeGay kugRtaMgGnuBaØatGtibrma³ kMrals<an f 'c = 4,000 psi ebtugTMng;Fmμta f c = 0.60 f 'c = 2,400 psi Fñwm bulb-tee f 'c = 6,500 psi lkçN³muxkat;³ f 'ci = 5,500 psi Ac = 767in.2 f c = 0.60 f 'c = 3.900 psi Service III h = 72in. f c = 0.45 f 'c = 2,925 psi Service I I c = 545,894in.4 f ci = 0.60 f 'c = 3,480 psi cb = 36.60in. karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 785
  • 42. T.Chhay viTüasßanCatiBhubec©keTskm<úCa f t = 6 f 'c = 484 psi ct = 35.40in. f pu = 270,000 psi S b = 14,915in.3 f py = 0.90 f pu = 243,000 psi S t = 15,421in.3 I c 545,894 f pi = 0.75 f pu = 202,500 psi r2 = = = 712in.2 Ac 767 f y = 60,000 psi WD = 799 plf E ps = 28.5 ⋅10 6 psi E s = 29.0 ⋅10 6 psi dMeNaHRsay³ !> TTwgkMralbMElg (Transformed Deck slab controlling width) KNnaTTwgsøabbMElg Ecs = 33w1.5 f 'c = 33 × (1.5)1.5 4,000 = 3,830ksi enAeBlepÞr Eci = 33(1.5)1.5 5,500 = 4,500ksi eRkam service Ece = 33(1.5)1.5 6,500 = 4,890ksi TTwgsøabRbsiT§PaBKWtMéltUcCageKkñúgcMeNam (i) 1 4 ElVg = 1204×12 = 360in. (ii) 12h f + kMras;RTnugEdlFMCageK b¤ TTwgsøabxagelI/ b = 12 × 7.5 + 0.5 × 42 = 111in. 1 2 (iii) KMlatmFümrvagFñwm = 9 × 12 = 108in. dUcenH TTwgsøab = 108in. LRFD and Standard AASTHO Design of Concrete Bridges 786
  • 43. Department of Civil Engineering NPIC pleFobm:UDul ns = Ecs = 3,,830 = 0.78 Ec 4 890 TTwgbMElg (transformed) bm = nsb = 0.78 ×108 = 84in. @> lkçN³rbs;muxkat;smas eKmincaM)ac;KitBIkarcUlrYmén deck concrete haunch eTAkñúg I 'c eT edaysarPaBekag (camber) rbs;Ggát;cak;Rsab;. A'c = 1,397in.2 h = 80in. I cc = 1,095,290in.4 cbc = 54.6in. eTAsrésxageRkambMput ctc = 72 − 54.6 = 17.4in. eTAsrésxagelIbMputrbs;Fñwmcak;Rsab; ctsc = 80 − 54.6 = 25.4in. eTAsrésxagelIbMputrbs;kMral 1,095,290 S bc = = 20,060in.3 54.6 1,095,290 Sc = t = 62,950in.3 17.4 1,095,290 Sc = ts = 55,284in.3 25.4 × 0.78 #> m:Um:g;Bt;begáag nigkMlaMgkat; (bending moments and shear forces) kMral³ WSD1 = 12 × 9 × 150 = 900ib / ft 8 TMgn;bgáan;éd (barrier weight)³ WSD2 = 2barriers(300lb / ft ) = 100lb / ft 6beams ³ 2in. future-wearing surface WSD3 = 2 × 48 ft 12 6beams × 150 = 200lb / ft bnÞúkGefr (truck load) enAkñúg LRFD Ep¥kelI HL-93 truck fatigue loading. clear width BIrUbTI 12>12 = 48 ft (14.6cm ) cMnYn lanes = 12 = 4 lanes 48 (a) emKuNEbgEcksMrab;m:Um:g; (Distribution factor for moment) sMrab; lane load 2 b¤eRcInCagenH emKuNEbgEckbnÞúksMrab;m:Um:g;Bt; (tarag 12>3b) 0.2 ⎛ 0.1 ⎛ S ⎞ 0.6 ⎛S⎞ K ⎞ DFM = 0.075 + ⎜ ⎟ ⎜ ⎟ ⎜ g ⎟ ⎝ 9.5 ⎠ ⎝L⎠ ⎜ 12t 3 L ⎟ ⎝ s ⎠ karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 787
  • 44. T.Chhay viTüasßanCatiBhubec©keTskm<úCa kñúgkrNIEdl KMlatFñwm³ 3.5 ≤ S ≤ 16 Cak;Esþg S = 9.0 ft O.K. kMrals<an³ 4.5 ≤ Ts ≤ 12 Cak;Esþg Ts = 7.5in. O.K. ElVg³ 20 ≤ L ≤ 240 Cak;Esþg L = 120 ft O.K. cMnUnFñwm³ Nb > 4 Cak;Esþg N b = 6 O.K. e g = cMgayrvagTIRbCMuTMgn;rbs;Fñwm nigkMral 7.5 = + 0.5 + 35.4 = 39.65in. 2 E 4,890 n= c = = 1.28 E sc 3,830 ( K g = n I c + Ac e g 2 ) [ = 1.28 545,894 + 767(39.65)2 = 2,242,191in.4 ] 0. 1 ⎛ 9 ⎞ 0.6 ⎛ 9 ⎞ 0.2 ⎡ 2,242,191 ⎤ dUcenH DFM = 0.075 + ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ = 0.732 lanes/beam ⎝ 9 .5 ⎠ ⎝ 120 ⎠ ⎢12(7.5) (120 ) ⎥ 3 ⎣ ⎦ sMrab; design lane load mYy/ BItarag 12>3b 0.3 ⎛ 0.1 ⎛S⎞ 0.4 ⎛S⎞ K ⎞ DFM = 0.06 + ⎜ ⎟ ⎜ ⎟ ⎜ g ⎟ ⎝ 14 ⎠ ⎝ L⎠ ⎜ 12t 3 L ⎟ ⎝ s ⎠ 0. 3 ⎡ 0. 1 2,242,191 ⎤ 0. 4 ⎛9⎞ ⎛ 9 ⎞ = 0.06 + ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ = 0.499 lanes/beam ⎝ 14 ⎠ ⎝ 120 ⎠ ⎢12(7.5) (120 ) ⎥ 3 ⎣ ⎦ dUcenH krNI lane load BIr b¤eRcInCagBIr eK)anemKuNEbgEcgm:Um:g;FMCag dUcenHeK)an DFM = 0.732 lanes/beam Fatigue mement m:Um:g;RtUv)anKitsMrab; single design truck EdlmanTMgn;ePøA (axle) dUcKña dUcenAkñúg sßanPaBkMNt;déTeTot b:uEnþCamYynwgKMlatefr 30 ft cenøaH 32kips axles. eKeRbI lane factor 1.2 sMrab; fatigue edIm,Ikat;bnßyemKuN DFM Edllub. BItarag 12>2a/ emKuN bnÞúk (load factor) KW 0.75 ehIyemKuNTgáic (impact factor) (IM) sMrab; fatigue = 15% . dUcenH m:Um:g;Bt; fatigue truckload køayCa³ M f = (bending moment per lane)(DFM / 1.2)(1 + IM ) ⎛ 0.499 ⎞ b¤ M f = (bending moment per lane)⎜ ⎝ 1.2 ⎠ ⎟(1 + 0.15) LRFD and Standard AASTHO Design of Concrete Bridges 788
  • 45. Department of Civil Engineering NPIC = (bending moment per lane)(0.415)(1.15) = (0.478)(bending moment per lane) (b) emKuNEbgEcksMrab;kMlaMgkat; (Distribution factor for shear) BItarag 12>3 (a)/ sMrab; lane load BIr b¤eRcInCagenH 2 ⎛S⎞ ⎛S ⎞ DFV = 0.2 + ⎜ ⎟ − ⎜ ⎟ ⎝ 12 ⎠ ⎝ 36 ⎠ kñúgkrNIEdl³ KMlatFñwm³ 3.5 ≤ S ≤ 16 Cak;Esþg S = 9.0 ft O.K. kMrals<an³ 4.5 ≤ Ts ≤ 12 Cak;Esþg Ts = 7.5in. O.K. ElVg³ 20 ≤ L ≤ 240 Cak;Esþg L = 120 ft O.K. 10,000 ≤ K g ≤ 7,000,000 Cak;Esþg K g = 2,242,191in.4 O.K. 2 ⎛9⎞ ⎛ 9 ⎞ dUcenH/ DFV = 0.2 + ⎜ ⎟ − ⎜ ⎟ = 0.887 lanes/beam ⎝ 12 ⎠ ⎝ 36 ⎠ sMrab; design lane load mYy/ BItarag 12>3a ⎛ S ⎞ ⎛ 9.0 ⎞ DFV = 0.36 + ⎜ ⎟ = 0.36⎜ ⎟ = 0.720 lanes/beam ⎝ 25.0 ⎠ ⎝ 25.0 ⎠ dUcenH krNI lane load BIr b¤eRcInCagBIr eK)anemKuNEbgEcgkMlaMgkat;FMCag dUcenHeK)an DFV = 0.887 lanes/beam $> bnSMbnÞúk (Load combinations) bnÞúkemKuNsrub/ Q = η ∑ γ i qi Edl η = emKuNEdlTak;TgeTAnwgPaBsVit (ductility)/ GBaØatelIs (redundancy) nigPaB sMxan;éndMeNIrkar (operational importance) γ i = emKuNbnÞúk qi = bnÞúk yk η = 1.0 sMrab;RKb;karGnuvtþTaMgGs;enAkñúg]TahrN_enH eFVIkarGegátRKb;bnSMbnÞúkTaMgGs;EdlmanenAkñúgtarag 12>2 (a) nig (b). krNIEdllubKW dUcxageRkam³ (a) Service I sMrab;kugRtaMgsgát;enAkñúgGgát;ebtugeRbkugRtaMg karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 789
  • 46. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Q = 1.0(DC + DW ) + 1.0(LL + IM ) (b) Service III sMrab;kugRtaMgTajenAkñúgGgát;ebtugeRbkugRtaMg Q = 1.0(DC + DW ) + 0.8(LL + IM ) (c) Strength I sMrab; ultimate strength: tMélGtibrmarbs; Q = 1.25DC + 1.50DW + 1.75(LL + IM ) tMélGb,brmarbs; Q = 0.90DC + 0.65DW + 1.75(LL + IM ) (d) Fatigue sMrab;RtYtBinitükugRtaMgenAkñúg strands Q = 0.75(LL + IM ) (fatigue Q CabnSMbnÞúkBiesssMrab;RtYtBinitükugRtaMgTajenAkñúg strands EdlbNþal BIbnÞúkGefr nig dynamic allowance) %> kMlaMgkat; nigm:Um:g;Bt;KμanemKuN (Unfactored shear forces and bending moments) (a) Truck Loads kMlaMgkat; truck load: VLT = (shear force per lane)(DFV )(1 + IM ) = (shear force per line )(0.887 )(1 + 0.33) = 1.180(shear force per lane)kips m:Um:g;Bt; truck load: M LT = (moment per lane)(DFM )(1 + IM ) = (moment per lane)(0.732 )(1 + 0.33) = 0.974(moment per lane) ft − kips LT = bnÞúkGefrrbs; truck (b) Lane Loads sMrab; lane load EdlminmanGnuvtþ dynamic allowance VLL = (shear force per lane)(DFV ) = (shear force per lane)(0.887 )kips M LL = (moment per lane)(DFM ) = (moment per lane)(0.732 ) ft − kips Lane load BIrUbTI 12>4/ bnÞúkenAelIs<anenHdUcbgðajenAkñúgrUbTI 12>12. LRFD and Standard AASTHO Design of Concrete Bridges 790
  • 47. Department of Civil Engineering NPIC ^> KNnam:Um:g; nigkMlaMgkat; (Computation of moments and shears) (a) Lane Loads ¬ DFV = 0.887, DFM = 0.732 ¦ (i) muxkat;TMr³ kMlaMgkat;enARtg;TMrxageqVg (x = 0) BIsmIkar 12.6(a) nigrUbTI 12>12³ VLL = 0.64 (L − x )2 (DFV ) 2L = 0.64 (120)2 (0.887) = 34.1kisp 2 × 120 BIsmIkar 12.6 (b)/ nig DFM = 0.732 0.64( x )(L − x ) M LL = (DFM ) = 0 ft − kip 2 (ii) muxkat;enARtg; 24tf BITMr³ kMNt; VLL nig M LL enARtg; x = 24 ft BITMrxageqVg VLL = 0.64 (120 − 24)2 (0.887) = 21.8kips 2 × 120 0.64(24)(120 − 24) M LL = (0.732) = 539.7 ft − kip 2 ¬ (b) Truck live loads DFV = 1.180, DFM = 0.974 ¦ eKRtUvKitbBa©Úl Impact factor IM = 33% dUcenH eyIgTTYl)antMél DFV nig DFM FMCag mun (i) muxkat;TMr³ BItarag 12>4/ 72[(L − x ) − 9.33] VLT = (DFV ) L karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 791
  • 48. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 72[(120 − 0.0) − 9.33] = (1.180) = 78.1kips 120 BItarag 12>5/ 72(x )[(L − x ) − 9.33] M LT = (DFM ) L = 0 ft − kip sMrab;mU:m:g;Rtg;TMr (ii) muxkat;enARtg; 24 ft BITMr ³ 72[(120 − 24) − 9.33] VLT = (1.180) = 61.4kips 120 72(24)[(120 − 24) − 9.33] M LT = (0.974) = 1215.0 ft − kip 120 (c) Fatigue moment enARtg; 24 ft ¬ DFM = 0.478 ¦ BItarag 12>7 72( x )[(L − x ) − 18.22] Mf = (DFF ) L BIelIkmun/ DFF = 0.478 72(24)[(120 − 24) − 18.22] dUcenH Mf = 120 (0.478) = 535.8 ft − kip (d) Shears and moments EdlbNþalBIbnÞúkefr bnÞúkEdlRtUvBicarNaKWTMgn;Fñwm ¬WD ¦ bUknwgkMral deck nig haunches ¬WSD1 ¦ nig wearing surface ¬ WSD3 ¦ EdlRtUvRkalenAeBlGnaKt. edaysarvaCaFñwmTMrsamBaØ dUcenHkMlaMgkat; nigm:Um:g;tambeNþayElVgKW³ V x = WD (0.5L − x ) M x = 0.5WD x(L − x ) Kitmuxkat;Rtg; 24 ft BITMrxagxageqVg ehIyKNnakMlaMgkat; nigm:Um:g;EdlbNþalBITMgn;pÞal; WD = 0.799kip / ft ³ V x = 0.799(0.5 × 120 − 24) = 28.8kips M x = 0.5 × 0.799 × 24(120 − 24) = 920.4 ft − kip tarag 12>10 nig 12>11 bgðajBIkMlaMg nigm:Um:g;EdlRtUvkarsMrab;sikSaKNnaFñwmxagkñúg. eKRtUvcMNaMfakarKNnaedayédedIm,ITTYl)antaragEbbenHRtUvkarcMNayeBlevlay:ageRcIn. eKmankmμviFIkMuBüÚT½rEdlbegáIteLIgedayGKÁnaykdæandwkCBa¢Ún (state DOT) CaeRcIn EdlxøH manenAkñúg internet dUcCa Washington State DOT Program. LRFD and Standard AASTHO Design of Concrete Bridges 792
  • 49. Department of Civil Engineering NPIC &> sikSaKNnaFñwm bulb-tee eRbkugRtaMgxagkñúg (Computation of moments and shears) ¬!¦ kareRCIserIskabeRbkugRtaMg (Selection of Prestressing Strands) sMrab;bnSMbnÞúk Service-III/ kugRtaMgsrésxageRkam fb KW³ M D + M S M b + M WS + 0.8(M LT + M LL ) fb = + Sb S bc Edl MD = m:Um:g;TMgn;pÞal;EdlKμanemKuN/ ft − kip M S = m:Um:g;EdlKμanemKuNEdlbNþalBITMgn;kMral nig haunch, ft − kip M b = m:Um:g;bgáan;édEdlKμanemKuN/ ft − kip M WS = m:Um:g; wearing surface EdlKμanemKuN/ ft − kip karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 793
  • 50. T.Chhay viTüasßanCatiBhubec©keTskm<úCa M LT = m:Um:g;bnÞúk truck EdlKμanemKuN/ ft − kip M LL = m:Um:g; lane load EdlKμanemKuN/ ft − kip BIelIkmun/ Sb = 14,915in.3 S bc = 20,090in.3 BItarag 12>10 nig 12>11/ kugRtaMgkNþalElVgxageRkamenARtg;srésxageRkameRkam GMeBI service load KW f bc = 1,438.2 + 1,659.6 (12) + 180 + 360 + 0.8(1,830.3 + 843.2) (12) 14,915 20,090 = 2.50 + 1.60 ≅ 4.10ksi(T ) kugRtaMg 4.10ksi(T ) nwgRtUv)anlubbM)at;edaykMlaMgeRbkugRtaMg. kugRtaMgTajGnuBaØatGti- brma³ f t = 6.0 f 'c psi = 6 6,500 = 484 psi = 0.484ksi kugRtaMgsgát;eRbkugRtaMgtMrUvkarenARtg;srésxageRkambMput³ f cb = (4.1 − 0.48) = 3.62ksi snμt;facMgayBITIRbCMuTMgn;rbs;EdkeRbkugRtaMgeTAsrésxageRkambMput = 0.05h = 0.05(72 ) = 3.6in. yk 4in. / dUcenH ec = 36.6 − 4.0 = 32.6in. dUcbgðajenAkñúg]TahrN_énCMBUk 4 P ×e f bp EdlbNþalBIeRbkugRtaMg = e + e c P A c S b b¤ fbp = 767 + P14×,915.6 = 3.62ksi Pe e 32 eyIgTTYl)an Pe = 1,037kips snμt;kMhateRbkugRtaMgsrub = 25% 1,037 Pi = = 1,383kips 1 − 0.25 snμt;eRbI 7-wire 270-K low-relaxation strands Ggát;p©it 0.5in. ¬ Aps = 0.153in.2 ¦ cMnYntMrUvkarén strands = 0.153,383 .5 = 44.6strands 1 × 202 eRkayBIkarGnuvtþ trial and adjustment/ eyIgsakl,gmuxkat;Edlman 48 strand dUcbgðaj enAkñúgrUbTI 12>13. enAeBl strand ticCag 48 eFVIeGaykugRtaMgTajenARtg;srésxageRkam bMputeRkamGMeBI service load FMCagkugRtaMgGnuBaØatGtibrma ft = 484 psi . Strand cMnYn 20 LRFD and Standard AASTHO Design of Concrete Bridges 794
  • 51. Department of Civil Engineering NPIC RtUv)an harp enARtg; 0.4L . dUcenH 36 strands enArkSaPaBRtg;enAkñúgFñwm ¬emIlrUbTI 12> 13¦. BIsmμtikmμ/ cb = 36.60in. ehIy ct = 72 − 36.60 = 35.40in. ee = cb − [2 × 70 + 2 × 68 + 2 × 66 + 2 × 64 + 2 × 62 + 2 × 60 + 4 × 8 + 8 × 6 + 12 × 4 + 12 × 2] / 48 = 36.60 − 19.42 = 17.28in. ec = cb − [2 × 12 + 12 × 4 + 8 × 6 + 8 × 4 + 2 × 10 + 2 × 12 + 2 × 14 + 2 × 16 + 2 × 18 + 2 × 20] / 48 = 36.6 − 6.92 = 29.68in. eKeGay f pi = 0.75 f pu = 202,500 psi Pi = (48)(0.153)(202.5) = 1,488kips eRkayeBlGnuvtþnUvkarviPaK step-by-step rbs;kMhateRbkugRtaMg dUcenAkñúgCMBUk 3 Epñk 3.9 kMhatbg;eRbkugRtaMgsrubRtUv)ankMNt;edaymantMélesμInwg 26.4% . f pe = 202.5(1 − 0.264) = 149.0ksi dUcenH/ Pe = 1488(1 − 0.264) = 1095.0kips karsikSaKNnas<anebtugsþg;dar AASTHO nig LRFD 795
  • 52. T.Chhay viTüasßanCatiBhubec©keTskm<úCa ¬@¦ RtYtBinitükugRtaMgEdlKμanemKuNrbs;ebtug (Check of Concrete Unfactored Stresses) (a) kugRtaMgenAeBlepÞr eRbkugRtaMgedIm f pi = 0.7 f pu = 0.7 × 270 = 202.5ksi . karGnuvtþFmμtasnμt;fakMhat bg; relaxation edImenAeBlrgeRbkugRtaMgmanbrimaNBI 9% eTA10% . eRbIkarkat; bnßy 10% enAkñúg f pi Pi = 0.90 × 1,488 = 1,339kips dUcenH Pi = 0.9(202.5)(0.153 × 48) = 1,338kips (i) muxkat;Rtg;TMr BICMBUk 4/ smIkar 4.1(a) ⎛ ee ct ⎞ M D Pi ft =− ⎜1 − 2 ⎟ − t ⎝ Ac r ⎠ S 1,338 ⎛ 17.28 × 35.4 ⎞ =− 767 ⎝ ⎜1 − 712 ⎟ − 0 = −0.25ksi(C ) ⎠ / minrgkarTaj/ O.K. P ⎛ ec ⎞ M f b = − i ⎜1 + e 2b ⎟ + D Ac ⎝ r ⎠ Sb 1,339 ⎛ 17.28 × 36.3 ⎞ =− ⎜1 + ⎟+0 767 ⎝ 712 ⎠ = 3.29ksi(C ) < kugRtaMgGnuBaØat f c = 3.48ksi O.K. (ii) muxkat;kNþalElVg 1,338 ⎛ 29.68 × 36.60 ⎞ 1,438 ×12 ft =− ⎜1 − ⎟− 767 ⎝ 712 ⎠ 15,421 = 0.917 − 1.119 = −0.202ksi(C ) / minmanrgkugRtaMgTaj/ dUcenH O.K. 1,339 ⎛ 29.68 × 36.6 ⎞ 1,438 ×12 fb = − ⎜1 + ⎟+ 767 ⎝ 712 ⎠ 14,915 = −4.513 + 1.157 = −3.356ksi(C ) < kugRtaMgGnuBaØat f 'ci = 5.50ksi O.K. (b) kugRtaMgenAeBl Service (i) muxkat;kNþalElVg BICMBUk 4/ smIkar 4.3(a) nig 4.3(b): Pe ⎛ ec ct ⎞ MT ft =− ⎜1 − 2 ⎟ − t ≤ fc Ac ⎝ r ⎠ Sc Pe ⎛ ec cb ⎞ M T fb = − ⎜1 + 2 ⎟ + ≤ ft Ac ⎝ r ⎠ S cb LRFD and Standard AASTHO Design of Concrete Bridges 796