Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Production of lactic acid and acidic acid

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Prochain SlideShare
Lactic acid Production
Lactic acid Production
Chargement dans…3
×

Consultez-les par la suite

1 sur 44 Publicité

Plus De Contenu Connexe

Similaire à Production of lactic acid and acidic acid (20)

Publicité

Plus récents (20)

Publicité

Production of lactic acid and acidic acid

  1. 1. PRODUCTION OF LACTIC ACID AND ACETIC ACID
  2. 2. ACETIC ACID  Acetic acid (CH3 COOH, molecular weight of 60.05).  Principal constituent of vinegar.  The first vinegar was spoiled wine,  Consisting the Latin word acetum means sour or sharp wine.  Also known as : ethanoic acid, ethylic acid, vinegar acid, and methane carboxylic acid.  Glacial acetic acid is the pure compound (99.8%), as distinguished from the usual water solutions known as acetic acid. PROPERTIES  The boiling point :118°C.  Melting point of rhombic crystals : 16.6°C.  Glacial acetic acid is highly corrosive to metals.  Acetic acid is soluble in alcohol, miscible with water, glycerol, ether, acetone, benzene, carbon tetrachloride,  Insoluble in carbon disulfide.
  3. 3. ACETIC ACID
  4. 4. ACETIC ACID PRODUCTION  Can be produced in the factories using the three major processes. They are :  CHEMICAL REACTION : Liquid- and vapor-phase oxidation of petroleum gases (with catalyst), Oxidation of acetaldehyde.  PRODUCTION FROM FOSSIL FUELS : Acetaldehyde oxidation, Hydrocarbon oxidation, and Methanol carboxylation  BIOLOGICAL PROCESSES : Aerobic process Anaerobic process
  5. 5. ACETIC ACID BACTERIA  These Gram-negative bacteria belong to the family Acetobacteriaceae, and to the alpha-subclass of Proteobacteria.  The recognized genera are: Acetobacter, Asaia, Acidomonas, Gluconobacter, Gluconacetobacter, and Kozakia.  With the exception of Asaia, they produce large quantities of acetic acid from ethanol, and can grow in the presence of 0.35% acetic acid
  6. 6. ANAEROBIC PROCESS  Produced by the two-step process.  FIRST STEP : Production of ethanol from a carbohydrate source (such as glucose).  Temperature : 30–32˚C using the anaerobic yeast Saccharomyces cerevisiae  C6 H12 O6 -> 2 CO2 + 2 CH3 CH2OH  SECOND STEP : Oxidation of ethanol to acetic acid.  Variety of bacteria can produce acetic acid,  Only members of Acetobacter used commercially (Acetobacter aceti at 27–37 ˚ C).  This fermentation is an incomplete oxidation because the reducing equivalents generated are transferred to oxygen and not to carbon dioxide.  2 CH3 CH2OH + O2 -> 2 CH 3COOH + 2 H2O  Theoretical yield is 0.67g acetic acid / g of Glucose (100%).  Realistic yield of 76% (0.51g acetic acid / g of Glucose),  This process requires 2.0lb of sugar or 0.9lb of ethyl alcohol per pound of acetic acid produced.  Complete aeration and strict control of the oxygen concentration during fermentation are important to maximize yields and keep the bacteria viable.
  7. 7. ANAEROBIC PROCESS  In the 1980s, emerged based on anaerobic fermentation using Clostridia.  Commonly used Bacteria : Clostridium aceticum, C.thermoaceticum, C. formicoaceticum, and Acetobacterium woodii  It is an obligate anaerobe, Gram-positive, spore-forming, rod- shaped, thermophilic organism with an optimum growth temperature of 55–60˚C and optimum pH of 6.6–6.8.  Clostridia can convert glucose, xylose, and some other hexoses and pentose, fructose, lactate, formate, and pyruvate almost quantitatively into acetate according to the following reaction:  C6H12O6 -> 3 CH3 COOH  Clostridium thermoaceticum is also able to utilize five-carbon sugars:  2 C5H10 O5 -> 5 CH3 COOH  Some acidogenic bacteria reduces the Co2 and 1-C into Acetate.  The anaerobic route should have a lower fermentation cost than the aerobic process.
  8. 8.  Theoretical yields : 3 mol of acetic acid is produced / mol of Glucose consumed (i.e., 1g acetic acid per g glucose).  The overall reaction can be written as follows:  C6 H12 O6 + 2 H2O -> 2 CH3 COOH + 2 CO2 + 8H+ 8e –  2 CH3 COOH + 2 CO2 + 8H+ + 8e – -> CH3 COOH + 2 H2O  ENZYMES INVOLVED IN THE PRODUCTION OF AA : Tetrahydrofolate enzymes, carbon monoxide dehydrogenase (CODH), NADP-dependent formate dehydrogenase (FDH), and a corrinoid enzyme.  These enzymes are metalloproteins. For example, CODH contains nickel, iron, and sulfur; FDH contains iron, selenium, tungsten, and a small quantity of molybdenum; and the corrinoid enzyme (vitamin B 12 compound) contains cobalt.  In most typical batch fermentations, cell concentration initially increases exponentially and then decreases toward the end of the fermentation.  Acetate concentration also increases and then levels off.  High glucose concentration inhibits the initial growth of C. thermoaceticum.  However, after adaptation, the fermentation proceeds rapidly.  They appears to be a minimum ratio of nutrient concentration to glucose concentration to produce acetic acid.
  9. 9.  If glucose is still available but the nutrient is not, the microorganism will produce by-products such as fructose.  Acetate production from glucose by C. thermoaceticum generates 5mol of ATP/ mol of Glucose consumed.  This results in high levels of cell mass/ mol of Glucose consumed.  To maintain productivity, the cells must balance their ATP supply and demand.  Since growth of C.thermoaceticum consumes more ATP than maintenance, most of the acetic acid produced during the growth phase.  When cells use yeast extract as a source of amino acids, nucleotides and fatty acids, they will need less ATP than if they have to synthesize these compounds using ammonium ions as the starting material.  Thus, assimilation of ammonium ions is important if cells are able to recycle the ATP generated during production of acetic acid.  Ammonium sulfate (a cheaper nutrient) could partially replace yeast extract without resulting in formation of by-products such as fructose.  Medium cost could be lowered further by substituting corn steep liquor for yeast extract.
  10. 10. INDUSTRIAL PRODUCTION OF ACETIC ACID  LET-ALONE METHOD  SURFACE FERMENTATION  SUBMERGED FERMENTATION  BATCH FERMENTION
  11. 11. LET-ALONE METHOD  Industrial fermentation processes have evolved from the simple ‘let-alone’ method involving a partially filled open container of wine exposed to air to the ‘field’ fermentation in which a series of casks are filled with wine and inoculated in series by the vinegar produced in the previous casks.
  12. 12. SURFACE FERMENTATION  The ‘trickling’ or ‘German’ process is a surface fermentation in which the microbial population is attached to an appropriate support (usually beech wood shavings) and the product is trickled down while a large volume of air is sparged up through the bottom of the tank.  This process was the basis for the manufacture of the trickling generator that incorporates forced aeration and temperature control.  The partially converted solution collects at the bottom and is cooled, pumped back up to the top, and allowed to trickle down until the reaction is complete.  Ethanol conversion into acetic acid is 88–90%; the rest of the substrate is used in biomass production or lost by volatilization.  ADVANTAGES : Include low costs, ease of control, high acetic acid concentrations, and lower space requirements.  DISADVANTAGES : The costs of the wood shavings, long startup time, loss of ethanol by volatilization, and production of slime-like material by the Acetobacter (e.g., A.xylinum) are some of the disadvantages
  13. 13. SUBMERGED FERMENTATION  In 1949, Hromatkar and Ebner applied submerged fermentation techniques to oxidation of ethanol to acetic acid.  The level of gas-phase oxygen is crucial to this process and thus, efficiency is based on broth aeration with oxygen.  For industrial processes, 10–18% ethanol and 5 times the nutrients used for submerged fermentation are the starting conditions for fermentation.  When the concentration of ethanol reaches 0.4–2.4g/l , 50–60% of the solution is removed and replaced with fresh substrate containing 10–18% ethanol.  There is usually ~80mg of dry bacterial solids per liter.  Theoretical yield is 1.7–2.1g acetic acid/Liter/Hour (in a Semi continuous). Dead cells cause foaming; hence, mechanical defoaming techniques are used to eliminate this problem.  Compared to surface fermentation, submerged fermentation results in higher productivity, faster oxidation of ethanol, smaller reaction volumes, low personnel costs due to automation, fewer interruptions due to clogging by shavings, and lower capital investment per product amount.
  14. 14. DOWNSTREAM PROCESSING & CELL SEPARATION  To isolate, purify, and concentrate the product often determines the economic feasibility of the process.  The first operation is cell separation &Cell lysis, which can be done by cross-flow microfiltration, Nano filtration and electro dialysis (Useful in concentrate the glacial acetic acid).  Solvent extraction with distillation is the preferred method for chemically derived acetic acid, whereas freeze concentration is used for vinegar,  Furthermore, if the acetate is required in the free acid form, there will be additional cost to convert the salt form produced in the anaerobic fermentation into the free acid form.  Liquid–liquid extraction has been used to recover acetic acid from the chemical manufacture of cellulose acetate, vinyl acetate, and other acetate products  Extraction efficiency is high when the organic acid is present in the un dissociated (acid) form (i.e., at a low pH).
  15. 15. USES OF ACETIC ACID
  16. 16. LACTIC ACID
  17. 17. LACTIC ACID  Lactic acid (LA) is  Catabolic products of Primary metabolism by microbes  Also produced by many higher organisms including man who produces the acid in the muscle during work.  LA products are formed from carbohydrate fermentation that are derived from pyruvic acid via the EMP, PP, or ED pathways.  Products such as ethanol, acetic acid, 2, 3-butanediol, butanol, acetone, lactic acid and xylitol production can also be produced as by products.  A lactic starter is a basic starter culture with widespread use in the dairy industry.  For cheese making of all kinds, lactic acid production is essential, and the lactic starter is employed for this purpose.  1780—Scheele identified lactic acid as the principal acid in sour milk.
  18. 18. PROPERTIES OF LACTIC ACID :  Lactic acid is a three carbon organic acid :  One terminal part of an acid or carboxyl group,  Other terminal carbon atom is part of a methyl or hydrocarbon group  Central carbon atom having an alcohol carbon group.  Soluble in water, but insoluble in other organic solvents.  Low volatility
  19. 19. THE LACTIC ACID BACTERIA (LAB)  They are formicates group, non-spore forming, Rods or cocci shaped.  Carnobacterium Oenococcus Enterococcus Pediococcus Lactococcus Paralactobacillus Lactobacillus Streptococcus Lactosphaera Tetragenococcus Leuconostoc Vagococcus  Lacks porphyrins and cytochromes. Do not carry out Electron transport phosphorylation and hence obtain energy by substrate level phosphorylation.  Grow anaerobically but are not killed by oxygen. (as is the case with many anaerobes).  They obtain their energy from sugars and are found in environments where sugar is present.  They have limited synthetic ability and hence are fastidious, requiring, when cultivated with the addition of amino acids, vitamins and nucleotides.
  20. 20. LACTIC ACID BACTERIA INTO TWO MAJOR GROUPS  HOMOFERMENTATIVE GROUP : Produce lactic acid as the sole product of the fermentation of sugars.  Glucose almost exclusively into lactic acid.  It converts the D-glyceraldehyde 3-phosphate to lactic acid.  Via : the Embden-Meyerhof pathway (i.e. glycolysis).  Since glycolysis results only in lactic acid as a major end-product of glucose metabolism, two lactic acid molecules are produced from each molecule of glucose with a yield of more than 0.90 g/g (30,31).  Only the homofermentative LAB are available for the commercial production of lactic acid.  HETEROFERMENTATIVE GROUP : Besides lactic acid also produce ethanol, as well as CO2. Uses the enzyme – Aldolase.  Aldolase : Key enzyme in the EMP pathway and spits hexose glucose into three-sugar moieties.  Catabolize glucose into ethanol and CO2 as well as lactic acid.  It receive five-carbon xylulose 5 phosphate from the Pentose pathway.  The five carbon xylulose is split into glyceraldehyde 3-phosphate (3-carbon), which leads to lactic acid.  And the two carbon acetyl phosphate which leads to ethanol.
  21. 21. USE OF LACTIC ACID BACTERIA FOR INDUSTRIAL PURPOSES  The desirable characteristics of lactic acid bacteria as industrial microorganisms include :  Ability to rapidly and completely ferment cheap raw materials,  Minimal requirement of nitrogenous substances  Produces high yields of the much preferred stereo specific lactic acid  Ability to grow under conditions of low pH and high temperature, and  Ability to produce low amounts of cell mass as well as negligible amounts of other by products.
  22. 22. CHOICE OF A PARTICULAR LACTIC ACID BACTERIUM LACTIC ACID BACTERIUM IS ABLE TO FERMENT Lactobacillus delbreuckii subspecies delbreuckii Sucrose Lactobacillus delbreuckii subspecies bulgaricus Lactose Lactobacillus helveticus Both lactose and galactose Lactobacillus amylophylus and L.amylovirus Starch Lactobacillus lactis Glucose, sucrose and galactose Lactobacillus pentosus Sulfite waste liquor
  23. 23. PRODUCTION OF LACTIC ACID  The organisms responsible for the production of lactic acid includes  Bacteria : Lactobacillus helveticus, L. salivarus. L. brevis. L viridescens. L. plantarurn and Pediococcus damnosus.  Fungi : Candida krusei, Saccharomyces cerevisiae, Rhizopus sp, It requires only a simple medium and produces L (+) lactic acid. It also requires vigorous aeration. Rhizopus sp : Utilize glucose aerobically to produce lactic acid. Rhzopus species such as R. oryzae and R. arrhizus have amylolytic enzyme activity, which enables them to convert starch directly to L (+)-lactic acid.  In fungal fermentation, the low production rate, below 3 g/(Lh), is probably due to the low reaction rate caused by mass transfer limitation.  The lower product yield from fungal fermentation is attributed partially to the formation of by-products, such as fumaric acid and ethanol.
  24. 24. NUTRITION REQUIREMENTS FOR PRODUCTION OF ACETIC ACID  LAB requires : complex nutritional requirements (Due to their limited ability to synthesize their own growth factors such as B vitamins and amino acids).  There are several growth-stimulation factors that have a considerable effect on the production rate of lactic acid.  The mixture of amino acids, peptides, and amino acid amides usually stimulates the growth of LAB.  Fatty acids also influence LAB growth, and phosphates are the most important salt in lactic acid fermentation.  Ammonium ions cannot serve as the sole nitrogen source, but they seem to have some influence on the metabolism of certain amino acids.  Since minerals do not seem to be essential to LAB growth, the amount found in commercial complex media is usually sufficient.  Temperature and pH are also important factors influencing LAB growth and lactic acid production.
  25. 25. RAW MATERIALS  Cheap, Low levels of contaminants, Rapid production rate, High yield, Little or no by-product formation, ability to be ferment with little or no pre-treatment, and year-round availability.  When refined materials are used : The costs for Purification should be cheap.  Starchy and Cellulosic materials [because they are cheap, abundant, and renewable], whey, and molasses, have been used for lactic acid production.  STARCHY MATERIALS : Sweet sorghum, Wheat, Corn, cassava, potato, rice, rye and barley.  These materials have to be hydrolyzed into fermentable sugars before fermentation, because they consist mainly of a(1,4)- and a(1,6)-linked glucose. This hydrolysis can be carried out simultaneously with fermentation.  CELLULOSIC MATERIALS : These materials consist mainly of B(1,4)-glucan, and often contain xylan, arabinan, galactan, and lignin that have previously attempted to produce lactic acid from pure cellulose through simultaneous saccharification and fermentation (SSF).  Some industrial waste products, such as whey and molasses, are of interest for common substrates for lactic acid production.
  26. 26. FERMENTATION APPROACHES TO LACTIC ACID PRODUCTION :  Batch, fed-batch, repeated batch, and continuous fermentations are the most frequently used methods for lactic acid production.  Higher lactic acid concentrations : Obtained in batch and fed-batch cultures  Higher productivity : May be achieved by using of continuous cultures.  Fermentation generally carried out in the Bioreactor which is suitable for the production of large quantity products.  Bio process having the processes of upstream and downstream processes.  Upstream process : Includes the R&D development of the strains that will be used in the fermentation. After the development of proper strain, thi initial culture ans the secondary culture were made in the flask.  Simultaneously the bio reactor was cleaned and avoided of microbial contamination. Aseptically the nutrient media will be prepared and from the flask culture, the inoculum will be introduced into the reactor.  At the end of the fermentation, the crude raw product will be collected and preserved aseptically to get the final products.  Downstream processes : The crude product will be undergone for the purification and extraction of the compound that we need.  Extraction can be performed using the lysis method in the case of products persists in side of the cell. Otherwise, the centrifugation method only will be used to get the final products.  These above processes are termed as Downstream processes.
  27. 27. PROBLEMS OF LACTIC ACID BACTERIA IN INDUSTRIES  While using the LAB in the laboratories, there are several chances of getting the contaminations and other problems.  Attack by bacteriophage  Inhibition by penicillin and other antibiotics  Undesirable strains.  Acid produced by the lactic starters introduce elasticity in the curd, a property desirable in the final qualities of cheese.
  28. 28. PRODUCTION OF LA AS BY PRODUCTS  During the production of Kaffir Beer and Other Traditional Sorghum Beers Lactic acid is produced as the by products.  The final product is the result of alcohol produced mainly by S.cerevisiae: the lactic acid in the beverage is produced by several Lactobacilli.  In some palm wine, microbial malo-lactic fermentation occurs.  In this fermentation, malic acid is first converted to pyruvic acid and then to lactic acid.  The most important contaminants in distilling industries are lactic acid which affects the flavor of the product.
  29. 29. USES OF LATIC ACIDS  INDUSTRY : It is used in the baking industry, plastics(Polymers of lactic acids are biodegradable thermoplastics), food industry as emulsifiers  Lactic acid is used as acidulant/ flavoring/ pH buffering agent or inhibitor of bacterial spoilage in a wide variety of processed foods.  It is a very good preservative and pickling agent.  Addition of lactic acid aqueous solution to the packaging of poultry and fish increases their shelf life.  IN MEDICINE : It is sometimes used to introduce calcium in to the body in the form of calcium lactate, in diseases of calcium deficiency.  PHARMACEUTICAL AND COSMETIC : Lactic acid has many applications and formulations in topical ointments, lotions, anti acne solutions, humectants, parenteral solutions and dialysis applications, for anti carries agent  They are high boiling, non-toxic and degradable components.  Poly L-lactic acid with low degree of polymerization can help in controlled release or degradable mulch films for large-scale agricultural applications.  It is non-volatile, odorless and is classified as GRAS (generally regarded as safe) by the FDA.
  30. 30. As salts  The sodium and potassium salts of acetic and lactic acid are widely used in foods, and they have a long history of use.  For example, sodium diacetate (CH 2 COONa·CH 3 COOH·xH 2 O) is used widely in the baking industry to prevent moldiness of bread and cakes.
  31. 31. REFERENCES Acetic Acid Production M Cheryan, University of Illinois, Urbana, IL, USA 2nd edition, volume 1, pp. 13–17, Industrial Pharmaceutical Biotechnology. Heinrich Klefenz, 2002 Wiley-VCH Verlag GmbH. ISBNs: 3-527- 29995-5 (Hardcover); 3- 527-60012-4 (Electronic) Modern Industrial Microbiology and Biotechnology. Nduka Okafor, SCIENCE PUBLISHERS, 2007 Biotechnological Production of Lactic Acid and Its Recent Applications. Y.- J. WEE et al, Food Technol. Biotechnol. 44 (2) 163–172 (2006) L (+) lactic acid fermentation and its product polymerization. Niju Narayanan et al., Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.7 No.2, Issue of August 15, 2004 Lactic Acid Fermentation. Lary et al., Carcass Disposal: A Comprehensive Review – Chapter 5, August 2004. Principles of biochemistry by Lehninger, 4’th Ed, 2005. Modern Food Microbiology by James, 7’th Ed, Springer publications

×